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A B S T R A C T   

Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based 
on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are 
mostly based on complex signal transformation or precise waveform localization. This is a big challenge for 
complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based 
on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then cal-
culates the statistical distribution feature and the information quantity feature of the GDS as the input of the 
classifier. Experiments on four databases include 146 subjects show that the feature extraction method for 
detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high 
adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, 
it is a good choice for feature extraction in AF detection.   

1. Introduction 

Atrial fibrillation (AF) is a common arrhythmia disease in clinical 
practice, which can induce angina pectoris, heart failure, and cerebral 
embolism and has high disability and mortality rates. The timely and 
accurate detection of AF has important clinical significance, so many 
researchers are currently working on the automatic detection of AF 
based on ECG. As shown in Fig. 1, it can be seen that the differences 
between AF rhythm (below) and normal sinus rhythm (above) in the 
ECG are [1]: the P-wave disappears; f-waves have widely varying 
shapes; the R-R interval is not uniform. According to these features, the 
methods for detecting AF are roughly divided into the following cate-
gories: based on R-R interval (RRI) feature, based on P-wave absence 
(PWA) feature, features based on mathematical transformation, no need 
to extract features and use deep learning methods directly. 

RRI features are most widely used [2-7], Sadr et al.[3] extracted 122 
features including time domain, frequency domain, and statistical 

distribution features from RRI and ΔRRI (the change in RRI) as the 
feature set for AF detection. Kennedy et al.[4] used four RRI measure-
ments to train AF detection models: the coefficient of sample entropy 
(CoSEn), the coefficient of variance (CV), Root mean square of the suc-
cessive differences (RMSSD), and median absolute deviation (MAD). 
Andersen et al.[5] proposed a deep learning model combined with CNN 
and RNN to extract high-level features from segments of RR intervals to 
detect AF. Zhou et al.[6] proposed a real-time AF detection algorithm 
based on the heart rate’s instantaneous state, which achieved good re-
sults; this method adopts the heart rate sequence which can be calcu-
lated from the RRI, through a series of conversions and using threshold 
discrimination to detect AF. Andersson et al.[7] detected AF based on 
three parameters of RRI: turning point ratio, root mean square of suc-
cessive differences, and Shannon entropy. However, irregular RRI fea-
tures require a long-term ECG segment to be concluded, which has 
limitations in processing AF detection of short ECG segments (less than 
1 min)[8]. 
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PWA features are also widely used, and sometimes they choose to 
combine RRI features. Christov et al.[9] used PWA characteristics com-
bined with detection of atrial arrhythmia to form a combined algorithm 
to detect AF. Carlson et al.[10] also used a change in P-wave morphology 
when atrial fibrillation occurs to indicate atrial conduction defects. 
Ladavich and Ghoraani[11]first created a Gaussian mixture model 
(GMM) of the P-wave feature space and then used this model to identify 
PWA and detect AF. Liu et al.[12] extracted a total of 33 features, 
including RRI and PWA-related features to detect AF from a single lead 
ECG recording. The PWA feature’s main problem is that the P wave is 
not easy to identify, and the P wave is easily masked when the signal is 
noisy. Both RRI and PWA features require beat detection, so their per-
formance depends on beat detection performance. The ECG signal 
waveform is complex and variable, which makes beat detection 
extremely error-prone. 

Some researchers use mathematical transformation to extract fea-
tures, which avoids the R-peak or P-peak detection. For example, Asgari 
and others[13] used the stationary wavelet transform (SWT) to trans-
form ECG signal. Although such methods do not require beat detection, 
they generally require complex calculations, the accuracy and efficiency 
may vary greatly when dealing with large data sets [14]. 

At present, it is more popular to use deep learning algorithms to 
detect AF, which is an end-to-end model that does not require feature 
extraction. Andersen et al. [5] and Pourbabaee et al.[15] directly use the 
segments of RRIs and raw ECG time-series data as inputs to the deep 
learning model, respectively. Although the method can achieve good 
performance, the model interpretability has always been the focus of 
debate, especially in the medical field. 

Aiming at the existing feature extraction methods’ challenges, we 
propose a simple feature extraction method based on the gradient set 
(GDS) for AF detection. Since the gradient can reflect the change of the 
waveform at each moment. This method obtains the GDS by the co-
ordinates of all sampling points of the ECG segment, then calculates the 
statistical distribution features and information quantity feature of the 
GSD as inputs to the classifier. The proposed feature extraction method 
does not require heartbeat detection or long-term ECG segment. 
Although experiments show that the longer the ECG segment, the better 
the performance, yet the 2 s ECG segment also has good detection re-
sults. We also propose a simple deep neural network(DNN), verifying 
that the proposed method applies to all types of classifiers. 

We did multiple experiments on 5 data sets composed of 4 databases, 
which confirmed the optimal process of this method and proved its 
effectiveness and superiority. The remainder of this paper is organized 
as follows. Section 2 introduces the proposed feature extraction method 

and DNN classifier. Section 3 provides a description of the data used in 
the experiment, the design and the experiments’ results. In section 4, the 
performance of the feature extraction method proposed in this paper is 
comprehensively compared with that of other AF detectors. Finally, 
Section 5 is the conclusion. 

2. Methods 

2.1. Overview 

Fig. 2 shows the general process of automatic AF detection with the 
morphology-based feature extraction method. The process consists of 
three main steps:  

(1) Preprocessing: The AF and normal rhythm (N) segments of each 
ECG record are first obtained, and then they are cut into segments 
of equal length. The length of the equal-length segments is called 
the window length (WL). The noise reduction step requires 
comparative experiments and determines the necessity based on 
the comparison results.  

(2) Feature extraction: First get the GDS of the specific WL, such as 2, 
5, 8, 10 s. Then calculate the statistical distribution characteris-
tics of the GDS including skewness coefficient (SKW), coefficient 
of variation (CV), mode (MO), and an information quantity 
feature information entropy (ETY). The normalization step re-
quires a comparison experiment and determines its necessity 
based on the comparison results.  

(3) Classification: The features obtained in step (2) are input into 
various types of classifiers, and finally, the results are analyzed 
according to the classification evaluation indicators. 

2.2. Preprocessing 

The preprocessing phase mainly includes data downsampling, data 
segmentation, and noise reduction. 

To verify the validity of the proposed feature extraction method, it is 
necessary to test it on different databases. The data come from different 
databases with different sampling rates. To ensure the accuracy of 
experimental results, equidistant sampling is adopted for databases to 
make their sampling rates as consistent or close as possible. The prin-
ciple is to ensure that the time interval between adjacent sample points 
for which all data is used to calculate the gradient is consistent. 

First, extract the complete AF rhythm segments and N segments of 
the original ECG record, and then cut them into specific WL segments, 

Fig. 1. ECG signals of normal sinus rhythm and AF rhythm.  
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the optimal WL needs to be determined experimentally here. 
ECG noise mainly comes from myoelectric interference and baseline 

wander. In this paper, Butterworth and zero phase shift filters are used to 
remove the myoelectric interference and baseline wander, respectively. 
The denoising process and effect are shown in Fig. 3. The top is the 
original ECG signal. The middle is the ECG signal after the myoelectric 
interference is removed. The bottom is the ECG signal after removing 
myoelectric interference and baseline wander. Experiments are needed 

to verify if noise reduction is needed. 

2.3. Feature extraction 

Fig. 2 shows that feature extraction can be roughly divided into two 
stages, GDS acquisition, and feature set acquisition, respectively. 

Fig. 2. The framework of the proposed method for AF detection.  

Fig. 3. Example of denoising: original signal (top row); the signal with myoelectric interference removed (middle row); the signal with myoelectric interference and 
baseline wander removed (bottom row). 
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2.3.1. GDS acquisition 
First, the GDS of each specific WL segment needs to be obtained. The 

calculation for obtaining the gradient is very simple, as shown in for-
mula (1); n represents the number of sampling points of the specific WL 
segment, and Ai+1 and Ai represent the amplitude of the (i + 1)-th and i- 
th sampling points, respectively. Δt represents the time interval between 
the (i + 1)-th and i-th sampling points, and si+1 represents the gradient of 
the (i + 1)-th sample point. The GDS S of each specific WL segment 
contains n − 1 gradient values. 

si+1 = (Ai+1 − Ai)/Δt(i = 1, 2, 3,⋯, n − 1) (1)  

S =
[
s2, s3,⋯, s(n− 1)+1

]

2.3.2. Feature set acquisition 
To comprehensively acquire the features of each dataset, the statis-

tical distribution features and information quantity feature of the GDS 
are extracted. CV, SKW, and MO are selected as statistical distribution 
features, which respectively can reflect the degree of distribution 
dispersion, the distribution form, and the distribution centralization 
trend of a dataset. The information quantity feature is represented by 
ETY, which is a quantitative measure of the information contained in the 
dataset.  

1. CV(Coefficient of variation) 

The CV, also known as ‘discrete coefficient’, is a normalized measure 
of the dispersion degree of a probability distribution. 

CV(S) = Sσ/Sμ (2)  

Sμ =
1

n − 1
∑n− 1

i=1
si, Sσ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − 1

∑n− 1

i=1
(si − Sμ)

2

√
√
√
√

CV is defined as the standard deviation ratio to the mean, as shown in 
formula (2), where Sσ is the standard deviation of the GDS S of the 
specific WL segment, and Sμ is the average value of S.  

2. MO(Mode) 

The MO is the value with obvious central tendency points in the 
statistical distribution. In this paper, it is defined as the value most 
frequently appears in the GDS S.  

3. SKW(Coefficient of skewness) 

SKW is a measure of the direction and extent of the statistical data’s 
skewness, as indicated by formula (3). 

)b()a(

)d()c(

Fig. 4. Comparison of the distribution of feature values between AF class and N class in dataset A. (a) Scatterplot of ETY with CV by class. To improve visualization, 
feature ETY is used to assist display, because it has the largest difference in distribution between AF class and N class. It is obvious that the distribution of the CV of 
the AF class is more concentrated. (b) Scatterplot of ETY with MO by class. It is obvious that the distribution of MO of N class is mainly concentrated near 0, while the 
AF class is widely distributed. (c) Boxplot shows the distribution of SKW, and it is easy to see that the value of class AF is slightly higher than that of N class. (d) 
Boxplot shows the distribution of ETY, and it is obvious that the value of class AF is higher than that of N class. 
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SKW(S) = E
[
((S − Sμ)/Sσ )

3
]

(3)    

4. ETY(Entropy) 

ETY clarifies the relationship between probability and information 
redundancy and provides a quantitative measurement of information. 

ETY(S) = −
∑m

j=1
p
(
Sj
)
log2p

(
Sj
)
(m ≤ n − 1) (4) 

As shown in formula (4), m distinct values in the GDS S, and p(Sj) 
represents the probability of taking the j-th value in the gradient set S. 

The learning samples composed of the AF specific WL segment’s 
feature set is AF class, and the learning samples composed of the N 
specific WL segment is N class. Fig. 4 demonstrates an example of 
comparing the features values distribution of AF class and normal sinus 
rhythm (N) class. Fig. 4 (a), (b), (c) and (d) are comparisons of CV scatter 
plot, MO scatter plot, SKW box plot and ETY box plot of AF class and N 
class, respectively. 

Theoretically, it is expected that the CV value of the specific WL AF 
class is larger than that of the N [4,16]. As shown in Fig. 4 (a), although 
the CV value of  AF class is not significantly larger than the N, it can be 
easily summarized that the CV value distribution of the AF class is more 
concentrated. As shown in Fig. 4 (b), the MO of AF class is mostly 
concentrated in the interval of [− 5,5], while the N class value is mostly 
concentrated on and around 0. It is easy to see from Fig. 4 (c) that the AF 
class SKW is higher than that of the N class on the whole. Since AF has an 
irregularly shaped f-wave and the RR interval is not uniform, the AF 
waveform has greater uncertainty and unpredictability than the normal 
sinus rhythm waveform. Therefore, theoretically, AF should contain 
more information than normal sinus rhythm [17]. As shown in Fig. 4 (d), 
the AF class ETY value is significantly higher than the N class value. That 
is, the amount of information contained in AF rhythm is indeed greater 
than normal sinus rhythm. 

On the whole, the distribution of each feature is obviously different 
between AF and N classes. Therefore, we are very optimistic that we can 
achieve good classification results. 

2.4. The detailed process of AF detection based on GDS 

The method for detecting AF based on GDS feature extraction pro-
posed in this paper is briefly summarized in Algorithm 1 of Table 1. Here 
v is the number of raw ECG records; l is the number of samples in the 
learning sample set obtained after data preprocessing; G(AF/N) repre-
sents the set of AF/N segments, so Gt(AF/N) represents the set of AF/N 
segments of the t-th raw ECG record; gtj represents the j-th AF/N segment 
of the t-th record; the alternative values for the WL are 2 s, 5 s, 8 s, and 
10 s, the optimal WL needs to be determined experimentally; p repre-
sents the number of specific WL segments of each AF/N segment; Etq 
represents the set of specific WL segment of the q-th AF/N segment of the 
t-th raw ECG record, so etqp represents the p-th specific WL segment of 
the q-th AF/N segment of the t-th record. 

The calculation of the method proposed in this paper is based on the 
ECG signal sampling points, and the time is mainly spent on the acqui-
sition of the GDS. The number of sampling points of each WL segment is 
set to n, then the number of calculations to obtain the GDS of the WL 
segment is (n-1). And the calculation of the four features traverses the 
GDS, respectively, so the number of calculations is about 5(n-1), and the 
time complexity is O(n). 

2.5. The proposed DNN (Deep Neural Networks) 

A good feature extraction method should be suitable for all types of 
classifiers, not only for traditional classic classifiers but also for popular 
deep learning classifiers. So we designed a simple Deep Neural Networks 

(DNN) to verify the generalization ability of the proposed feature 
extraction method. As shown in Fig. 5, the DNN is a fully connected 
neural network, including 3 hidden layers, each hidden layer includes 
10 neurons, and the activation function is ReLU. 

3. Experiments and results 

To verify the effectiveness of the proposed method and determine its 
optimal processing steps, five comparative experiments were performed: 
robustness analysis to determine whether denoising is to be performed, 
normalized analysis to determine whether to perform normalization, 
and different WL(2/5/8/10 s) segment performance comparison anal-
ysis to determine the optimal WL, as well as feature importance analysis, 
and effectiveness analysis on multiple databases. 

3.1. Experimental data 

To facilitate our experiments, we used four databases, the MIT-BIH 
Atrial Fibrillation Database (AFDB) [18,19], the MIT-BIH Normal 
Sinus Rhythm Database (NSRDB) [18], the MIT-BIH Arrhythmia Data-
base (MITDB) [18,20], and the AF Termination Challenge Database 

Table 1 
A GDS-based feature extraction method for AF detection.  

Algorithm 1 The detailed process of the method for detecting AF based on GDS 
feature extraction 

Input: ECG signal 
Output: the predicted labels of testing set:ŷ=(ŷ(9l/10+1),ŷ(9l/10+2),…ŷl)  
Procedure 
Set l = 0; 
for t = 1,2,…,v do 

The AF/N segments intercepting the t-th record constitutes the set G(AF/N): 
Gt(AF/N)={gt1, gt2,…, gtj}; 
Denoising Gt(AF/N) with Butterworth and Zero Phase Shift Filter 
for q = 1,2,…,j do 

p = length(gtq)/WL; 
Cutting the AF/N segments into specific WL segments constitutes the set E: 
Etq={etq1, etq2,…,etqp}; 
for k = 1,2,…p do 

Calculate the GDS Stqk of etqk according to (1); 
xtqk = [MO(Stqk), CV(Stqk), SKW(Stqk), ETY(Stqk)] according to (2), (3) and (4); 
xl ← xtqk; 

xl normalization; 
l++; 

end for 
end for 

end for 
Get labeled sample set Dl ={(x1, y1), (x2, y2),…, (xl, yl)}; 
Dl → varies classifiers(10-fold cross-validation mode) 

Calculate the GDS of the specific WL segment and the SKW, CV, MO, and ETY of 
the GDS as the classifier’s input features. And All experiments used the test mode 
of 10-fold cross-validation. 

Fig. 5. The structure of DNN.  
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(AFTDB).[18,21] 
The AFDB includes 25 long-term ECG recordings of human subjects 

with atrial fibrillation (mostly paroxysmal), each of which is about 10 h 
long, with a sampling frequency of 250 Hz, resolution of 12 bits, and 
recording bandwidth of 0.1 ~ 40 Hz, and mainly contains rhythm an-
notations including AF and AFL (atrial flutter). Because the first two 
records are incomplete, only the remaining 23 records are used. 

The NSRDB contains 18 ECG data records with a duration of 24 h and 
a sampling rate of 128 Hz. No significant arrhythmias were recorded in 
any of the signals. Data were collected from five males aged 26–45 and 
13 females aged 20–50. 

The MITDB contains 48 excerpts of two-channel ambulatory ECG 
recordings, per channel with 11-bit resolution over a 10 mV range, each 
record with a duration of half an hour and a sampling rate of 360 Hz. It 
contains heartbeat annotations and rhythm annotations for various 
arrhythmia diseases. The database is collected from 47 subjects, 
including 25 men aged 32 to 89 years and 22 women aged 23 to 89 
years, among which records 201 and 202 came from the same male 
subject. 

The AFTDB contains 80 one-minute segments of atrial fibrillation, 
including examples of both sustained and spontaneously terminating 
AF, collected from 60 different subjects, each record contains two ECG 
leads, and the sampling rate is 128 per second. 

Therefore, based on the description of the 4 databases, it can be 
roughly counted that the number of subjects in this experiment is 146. 

3.2. Experiment design 

3.2.1. Data preprocessing 
In this paper, five datasets are generated from four databases, as 

shown in Table 2. The dataset AFNSRs consists of AF rhythm data pro-
vided by AFDB and normal sinus rhythm (N) data provided by NSRDB. 
At the same time, to verify the robustness of the proposed method, two 
datasets are prepared, the dataset AFNSRs is called dataset A without 
denoising and is called dataset B after denoising. The AF data and N data 
of the dataset AFDBs are both from the AFDB database; similarly, the AF 
data and N data of the dataset MITDBs are both from the MITDB data-
base; in the dataset AFTNSRs, the AF data comes from the database 
AFTDB, and the N data comes from the database NSRDB; the Combined 
dataset covers data in datasets AFNSRs, AFDBs, MITDBs, and AFTNSRs. 

First, it is necessary to extract the AF/N segments of each ECG record 
and cut them into specific WL segments. Table 2 takes WL = 10 s as an 
example, and to maintain the balance of the AF and N data, an 
approximately equal number of N data are randomly extracted and 
segmented. For example, the MITDB database extracts a total of 107 AF 
segments and divides them into 752 10 s segments. At the same time, to 
maintain dataset balance, 808 10 s segments of N data are randomly 
extracted. 

Then calculate the GDS of each specific WL segment, extract MO, CV, 
SKW, and ETY of the GDS to form a learning sample, so the number of 

specific WL segments is also the sample size of the experiment. 
The data preprocessing and feature extraction were completed in 

MATLAB R2014a using the WaveForm DataBase (WFDB) Toolbox for 
MATLAB [22]. 

3.2.2. Classification 
The Waikato Environment for Knowledge Analysis (WEKA) 3.6 

(released in December 2008) [23] was selected as the experimental 
platform for classification in this paper. WEKA is an open source ma-
chine learning and data mining software based on the JAVA environ-
ment; it contains data preprocessing, classification analysis, cluster 
analysis, association rules, attribute selection, data visualization, etc. 
According to different algorithm principles, WEKA divides all the 
mainstream classification algorithms into six categories [24]: Bayesian 
techniques, tree-based classifiers, rule-based classification methods, 
function-based techniques, lazy methods, and meta-techniques. A total 
of 56 classification algorithms covering six classification models were 
tested on WEKA. 

WEKA is all traditional classification algorithms. To verify whether 
the GDS-based feature extraction method for AF detection is suitable for 
popular deep learning algorithms, we tested the performance of our 
proposed DNN on Python 3.6. 

3.2.3. Model evaluation metrics 
WEKA has a complete evaluation system, which calculates the 

confusion matrix and obtains several evaluation metrics. Six metrics 
were selected in this paper: accuracy, recall, specificity, precision, F- 
measure, and AUC (area under the ROC curve). F-measure is defined as 
shown in formula (5). AUC [25] is the area enclosed by the ROC curve 
and the coordinate axis, and the value ranges between 0.5 and 1. The 
larger the value, the closer to 1, indicating better classification results. 

F − measure = (2 × Recall × Precision)/(Recall+Precision) (5) 

Here, TP (true positive) is the number of AF rhythms correctly 
detected as AF rhythm; FP (false positive) is the number of normal sinus 
rhythms wrongly detected as AF rhythm; TN (true negative) is the 
number of normal sinus rhythms correctly detected as normal sinus 
rhythm; FN (false negative) is the number of AF rhythms wrongly 
detected as normal sinus rhythm. 

3.3. Experimental results 

3.3.1. Analysis of robustness and classifier adaptability 
To verify whether the feature extraction method proposed in this 

paper is sensitive to noise, dataset A (without denoising and WL = 10 s) 
and dataset B (denoising and WL = 10 s) were classified, respectively. 
Fifty-seven classification algorithms were involved in the experiment 
and all used the test mode of 10-fold cross-validation. Due to similar 
results for each algorithm, a total of 17 representative classification al-
gorithms were selected for all categories to list the results. Table 3 shows 

Table 2 
Structure description of five datasets.  

Dataset 

Database 
Sum (10 s) AFDB MITDB NSRDB AFTDB 

AF 
(seg) 

AF 
(10 s) 

N 
(10 s) 

AF 
(seg) 

AF 
(10 s) 

N 
(10 s) 

N 
(10 s) 

AF 
(seg) 

AF 
(10 s) 

Sum 
(AF) 

Sum 
(N) 

Sum 
(all) 

AFNSRs(A/B) 258 9391     9000   9391 9000 18,391 
AFDBs 258 9391 9000       9391 9000 18,391 
MITDBs    107 752 808    752 808 1560 
AFTNSRs       500 80 480 480 500 980 
Combined 258 9391 4300 107 752 808 5500  480 10,623 10,608 21,231 

Annotation: AF (seg): number of complete AF rhythm segments cut from ECG records; AF (10 s): number of WL = 10 s segments cut from the AF rhythm segment; N (10 
s): number of WL = 10 s segments cut from the normal sinus rhythm segment; Sum (AF): total number of 10 s AF rhythm segments; Sum (N): total number of 10 s 
normal sinus rhythm segments; sum (all): total number of 10 s AF rhythm and normal sinus rhythm segments. 
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the results for dataset A, and Table 4 shows the results for dataset B. 
It is obvious that all the classifiers have achieved high performance, 

and the performance of our proposed DNN is the best. It can be seen from 
Table 3 and Table 4 that the results for each algorithm in the two 
datasets are very similar, and the AUC values of most algorithms are up 
to 0.99. On the whole, the results for dataset A are slightly higher than 
for dataset B. The reason may be that some subtle information of the 
signal is filtered out during the filtering process, but there are some al-
gorithms whose evaluation metric dataset B is higher than or equal to 
dataset A, as shown in bold in Table 4. Therefore, it can be concluded 
that the method is insensitive to noise. 

On the other hand, the results we obtained on the 57 algorithms 
covering all categories classification models are similar to those listed, 
whether denoising or not. It can be concluded that the feature extraction 
method proposed in this paper is suitable for most classifiers. 

3.3.2. Normalization analysis 
The range of values of each feature varies greatly. Therefore, the 

zero-mean normalization function of IBM SPSS Statistics 20.0 [42] was 
used to normalize all features. After normalization, some algorithms are 
improved in performance, while others are reduced. Table 5 and Fig. 6. 
show the results of comparative experiments performed on datasets 
MITDBs and AFNSRs without denoising and WL = 10 s. It is not difficult 
to determine that the normalization effect is very unstable. Therefore, 
the method proposed in this paper can be used without normalization. 

3.3.3. Performance comparison of different window lengths(WL) 
To find the optimal WL, dataset A is cut into datasets with WL of 2 s, 

5 s, 8 s, and 10 s, respectively. Since paroxysmal AF sometimes has a 
very short duration and the duration of a static ECG is generally less than 
10 s, the maximum value was set to 10 s. The experimental results are 
shown in Table 6 and Fig. 7., with an increase of the WL, the AF 
detection effect gets better and better, and the optimal WL is 10 s. This 
result can be explained by the fact that the larger the data volume, the 
more obvious the data distribution characteristics. But it is worth noting 
that it has good performance even when WL = 2 s, indicating that this 
method is also suitable for AF detection in short-term ECG segments. 

3.3.4. Analysis of the importance and necessity of features 
To analyze the importance and necessity of statistical distribution 

features CV, MO, SKW, and information feature ETY for AF detection, 
four experiments were designed, one feature was removed each time for 
AF detection. Comparison of the four test results allows analysis of the 
features’ importance, the four results are compared with those in Table 3 
(the original result, that is, all features included in the test) to analyze 
the necessity of the features. Here, the Random Committee [33] algo-
rithm is taken as an example, and the experiment was performed on 
dataset A (WL = 10 s). 

The detection results are shown in Table 7 of the features CV, MO, 
SKW, and ETY were removed in order, and the last row of the table is the 
original result. It is easy to see that the result of removing ETY is the 
most unsatisfactory, and the accuracy of 69.2% is far lower than the 
accuracy of 98.3% of the original result. Therefore, the feature ETY is the 

Table 3 
Classification results for dataset A (without denoising).  

Algorithm Accuracy Recall Specificity Precision F-Measure AUC 

BayesNet [26] 97% 97.7% 96.3% 96.5% 97.1% 0.992 
MLP [27] 98.3% 99% 97.6% 97.8% 98.4% 0.995 
IB1 [28] 97.8% 97.9% 97.8% 97.9% 97.9% 0.978 
KStar [29] 96% 98.7% 93.3% 93.9% 96.2% 0.995 
Bagging [30] 98.4% 98.9% 97.9% 98% 98.4% 0.997 
Decorate [31] 98.3% 99% 97.7% 97.8% 98.4% 0.995 
Ensemble Selection [32] 98.3% 98.9% 97.7% 97.8% 98.4% 0.996 
Random Committee [33] 98.3% 98.7% 97.8% 97.9% 98.3% 0.992 
Rotation Forest [34] 98.5% 99.2% 97.8% 97.9% 98.5% 0.996 
DTNB [35] 97.9% 98.8% 97% 97.2% 98% 0.996 
JRip [36] 98.3% 99% 97.5% 97.6% 98.3% 0.987 
PART [37] 98.2% 98.8% 97.6% 97.7% 98.3% 0.995 
J48 [38] 98.3% 99.2% 97.5% 97.6% 98.4% 0.991 
LMT [39] 98.4% 99% 97.8% 97.9% 98.4% 0.997 
Random Forest [40] 98.3% 98.9% 97.7% 97.8% 98.4% 0.994 
REPTree [41] 98.4% 98.8% 97.8% 97.9% 98.4% 0.992 
DNN 99.2% 98.5% 100% 100% 99.2% 0.993  

Table 4 
Classification results for dataset B (with denoising).  

Algorithm Accuracy Recall Specificity Precision F-Measure AUC 

BayesNet [26] 93.6% 98.2% 88.9% 90.2% 94% 0.988 
MLP [27] 96.7% 96.8% 96.5% 96.7% 96.8% 0.993 
IB1 [28] 96.5% 96.5% 96.5% 96.6% 96.6% 0.965 
KStar [29] 95.8% 95.8% 95.7% 95.9% 95.9% 0.984 
Bagging [30] 97.5% 97.9% 97% 97.2% 97.5% 0.996 
Decorate [31] 97.2% 97.5% 96.8% 97% 97.2% 0.993 
Ensemble Selection [32] 97.4% 97.9% 96.9% 97.1% 97.5% 0.996 
Random Committee [33] 97.4% 97.8% 97% 97.1% 97.5% 0.991 
Rotation Forest [34] 97.5% 97.9% 97.1% 97.2% 97.5% 0.996 
DTNB [35] 96.3% 96.6% 96.1% 96.3% 96.4% 0.994 
JRip [36] 97.1% 97.5% 96.7% 96.8% 97.2% 0.981 
PART [37] 96.9% 96.3% 97.6% 97.6% 97% 0.994 
J48 [38] 97.3% 97.8% 96.9% 97% 97.4% 0.989 
LMT [39] 97.2% 97.3% 97.1% 97.3% 97.3% 0.994 
Random Forest [40] 97.5% 98.1% 96.9% 97.1% 97.6% 0.993 
REPTree [41] 97.2% 97.8% 96.7% 96.8% 97.3% 0.99 
DNN 98.5% 97.1% 100% 100% 98.5% 0.986  
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most important, followed by SKW, CV, and MO. At the same time, it is 
easy to find that no matter which feature is removed, none of the 
evaluation metrics are higher than the original result, so the four fea-
tures are all essential for AF detect. 

ETY describes the amount of information carried by the signal and 
the complexity of the signal. The result shows that ETY is the most 
significant for performance. On the other hand, the information quantity 
and complexity of the AF class and N class signals are quite different. 

Combined with the other three features, this not only proves that ETY 
can extract AF signal’s characteristics well, that is, f-wave with different 
shapes and irregular RR intervals. It also proves that the GDS-based 
features extracted in this paper are effective. 

3.3.5. AF detection results for different datasets 
Table 2 details the structure of five datasets consisting of four data-

bases AFDB, NSRDB, MITDB, and AFTDB. Table 8 shows the five 

Table 5 
Performance comparison of normalized and non-normalized.  

Algorithm 

MITDBs AFNSRs 

Unnormalized Normalized Unnormalized Normalized 

Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall 

BayesNet [26] 93.5% 94% 93.5% 94% 97% 97.7% 97.1% 98% 
MLP [27] 93.3% 92% 93.3% 92% 98.32% 99% 98.34% 99.1% 
Bagging [30] 94.6% 93.6% 94.6% 93.9% 98.40% 98.9% 98.42% 98.9% 
PART [37] 94.5% 94.4% 94.2% 94.4% 98.21% 98.8% 98.18% 99% 
J48 [38] 94.9% 93.8% 94.6% 93.9% 98.35% 99.2% 98.37% 99.2% 
Random Forest [40] 94.4% 93.8% 94.2% 94.4% 98.33% 98.9% 98.28% 98.8% 
DNN 97.4% 94.7% 97.42% 94.67% 99.2% 98.5% 99.18% 98.40%  

Fig. 6. Performance comparison histogram of normalization and non-normalization.  

Table 6 
Performance comparison analysis of different WL (2/5/8/10 s).  

Algorithm 
2 s 5 s 8 s 10 s 

Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall 

BayesNet [26] 92.2% 93.4% 92.6% 95.6% 95.2% 98.3% 97% 97.7% 
MLP [27] 92% 94% 93.3% 95.6% 95% 97.5% 98.3% 99% 
IB1 [28] 90.8% 90.5% 92% 92% 94.3% 94.3% 97.8% 97.9% 
Rotation Forest [34] 93.5% 95.7% 94.3% 96.7% 96.2% 98.3% 98.5% 99.2% 
DTNB [35] 93.3% 95.2% 94.1% 96.1% 96% 98.2% 97.9% 98.8% 
REPTree [41] 93.4% 95% 94.2% 96.1% 96.1% 97.8% 98.4% 98.8% 
DNN 92.06% 90.96% 93.39% 94.78% 97.93% 98.51% 99.2% 98.5%  

Fig. 7. Performance comparison histograms for different WLs.  
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datasets’ performance (without denoising, unnormalized, and WL = 10 
s) on five classical classification algorithms. It is not difficult to see that 
the performance for AFNSRs and AFTNSRs are the best, followed by that 
are AFDBs, MITDBs, and Combined, the overall detection performance is 
close to 97%, which proves that the GDS-based feature extraction 
method for AF detection proposed in this paper is effective. It is worth 
mentioning that our proposed CNN has achieved the best performance. 

4. Discussion 

Through the above five experimental analysis, the following con-
clusions can be obtained: 1) in the data preprocessing step, no denoising 
and normalization are needed, which shows that the GDS-based feature 
extraction method has good robustness; 2) in the classification step, 
experiments prove that the method is suitable for most classifiers, 
indicating that the method has good generalization ability and its fea-
tures are not limited by the classifier categories; 3) the information 
quantity feature ETY has the greatest effect on classification perfor-
mance, and all features have an impact on performance, indicating that 
the feature set(SKW, CV, MO and ETY) extracted based on GDS in this 
paper is very representative; 4) the method is also suitable for the 
detection of AF in short-term ECG, and the longer the WL is, the better 
the performance is; 5)it has achieved good results on different databases, 
so in summary, the GDS-based feature extraction method proposed in 
this paper is effective. 

At present, many researchers are working on the automatic detection 
of AF, as shown in Table 9, which lists the comparative analysis of 

representative methods since 2008 on the database AFDB (same as 
dataset AFDBs). Most of the methods, including methods 1[43], 2 [44], 
3 [17], 4 [45], and 5 [5] are based on RRI; such methods first need beat 
detection, and the WL is between 31 ~ 128 beats, indicating that there 
are limitations in short-term ECG detection. Although method 2 [44] 
does not explicitly explain WL, the summary clearly states that its lim-
itation is that it cannot detect short-term (such as 10 s) ECG. The main 
difficulty of the PWA-based method is the detection of the P wave. 
Because the P wave is extremely easy to miss, this method requires 
higher signal quality, the methods 6 [11] and 7 [46] explicitly propose 
to denoise or need to be combined with other features, such as methods 
7 [46] and 8 [47]. Methods 9 [13]and 10[48] are based on SWT and AR 
coefficients, respectively. Although such methods do not require beat 
detection, they require high signal quality and require denoising 
processing. 

In disease diagnosis, the most important thing is to reduce the missed 
diagnosis rate and misdiagnosis rate. Therefore, recall and specificity are 
the most commonly used evaluation indicators. The Recall is also called 
True Positive Rate (TPR), where it represents the proportion of AF pa-
tients who are correctly diagnosed as AF. The Specificity is also called 
True Negative Rate (TNR), which means the proportion of healthy 
people who are correctly diagnosed as healthy. In many AF automatic 
diagnosis studies, only performance recall and specificity are described. 
As shown in Table 9, the GDS-based method proposed in this paper does 
not require beat detection and does not require denoising. By comparing 
WL, it is found that most of the WLs are larger than the WL (10 s) of our 
proposed method, while the WLs of methods 6[11], 7[46], 8[47], and 10 
[48] are closer to 10 s, but the performance of Recall and Specificity 
were lower than that of the proposed method. And the method we 
proposed gets the highest performance with an accuracy of 99%, a recall 
of 99.7%, and a specificity of 98.2%. Therefore, the feature extraction 
method based on GDS proposed in this paper is a good choice in the 
detection of AF. 

5. Conclusion and further research 

Current research indicates that the feature extraction method based 

Table 7 
Analysis of the importance and necessity of features.  

Remove Accuracy Recall Specificity Precision F-Measure AUC 

CV 97.8% 97.8% 97.7% 97.8% 97.8% 0.978 
MO 97.8% 97.8% 97.8% 97.8% 97.8% 0.978 
SKW 94.8% 95% 94.7% 94.9% 94.9% 0.948 
ETY 69.2% 69.7% 68.8% 70% 69.8% 0.692 
NONE 98.3% 98.7% 97.8% 97.9% 98.3% 0.992  

Table 8 
Atrial fibrillation detection results using feature extraction method based on GDS.  

Dataset 
Bagging [30](%) En-Selection [32] (%) PART [37] (%) J48 [38] (%) DNN(%) 

Acc Rec Spe Acc Rec Spe Acc Rec Spe Acc Rec Spe Acc Rec Spe 

AFNSRs 98.4 98.9 97.9 98.3 98.9 97.7 98.2 98.8 97.6 98.4 99.2 97.5 99.2 98.5 100 
AFDBs 95.9 94.2 97.8 95.9 93.9 98 95.6 93.7 97.6 95.8 93.9 97.8 99 99.7 98.2 
MITDBs 94.6 93.6 95.4 94.1 92.7 95.4 94.5 94.4 94.6 94.9 93.8 96 97.4 94.7 100 
AFTNSRs 99.3 99.6 99 98.8 98.8 98.8 99.5 99.8 99.2 99.4 99.6 99.2 100 100 100 
Combined 94.3 93.7 94.9 94.2 93.6 94.9 93.8 92.7 94.9 94.2 93.6 94.8 98.3 96.7 100 

Annotation: En-Selection:Ensemble Selection; Acc: Accuracy; Rec: Recall; Spe: Specificity. 

Table 9 
Comparison of the performance of recent AF detection algorithms on AFDB.  

ID Method Features Beat detection Denoising WL Accuracy Recall Specificity 

1 Lian et al. [43] RRI Yes ─ 128 beats ─ 95.8% 96.4% 
2 Zhou et al. [44] RRI Yes Yes ─ 97.50% 96.82% 98.06% 
3 Li [17] RRI Yes ─ 40 s 95.9% 95.3% 96.3% 
4 Afdala et al. [45] RRI Yes Yes 40 s 89.79% 91.04% 89.01% 
5 Andersen et al. [5] RRI Yes ─ 31 beats 97.80% 98.98% 96.95% 
6 Ladavich [11] PWA Yes Yes 1 beat ─ 89.37% 89.54%      

7 beats ─ 98.09% 91.66% 
7 Couceiro et al. [46] PWA + RRI + AA Yes Yes >12 beats ─ 93.8% 96.09% 
8 Rincón et al. [47] PWA + HBR (RRI) Yes ─ 10 s ─ 96% 93% 
9 Shadnaz Asgari et al. [13] SWT No Yes 30 s 97.1% 97.0% 97.1% 
10 Parvaresh et al. [48] AR coefficients No Yes 15 s ─ 96.14% 93.20% 
11 This paper(GDS + DNN) GDS No No 10 s 99% 99.7% 98.2% 

Annotation: PWA: P-wave absence; RRI: RR intervals; AA: atrial activity; AR coefficients: autoregressive coefficients; HBR: heartbeat rate; HBR (RRI): heartbeat rate 
analysis is based on R–R interval variance; SWT: stationary wavelet transform; GDS: gradient set; ‘─’ indicates not mentioned in the paper. 

H. Wang et al.                                                                                                                                                                                                                                   



Journal of Biomedical Informatics 119 (2021) 103819

10

on GDS proposed for detecting AF does not require noise reduction, does 
not require beat detection or complex mathematical transformation, and 
nor does it need normalization of the feature set to be input to the 
classifier. It shows good performance on 5 datasets composed of 4 da-
tabases not only suitable for the vast majority of classifiers but also AF 
detection in short-term ECG. At the same time, the method achieves the 
best performance on our proposed DNN classifier. Therefore, this 
method is a good choice for feature extraction in AF detection. In the 
future, the feature extraction method needs to be further improved, such 
as improving AF detection performance by proposing a more represen-
tative feature set or combining it with other types of features, and can 
also be extended to other directions of ECG intelligent assisted detection. 
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