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An electrocardiogram (ECG) consists of complex segments, such as P-QRS-T waves. Manual
ECG annotation is challenging and time-consuming, even for specialist physicians. The
shortage of labelled ECG data is one of the essential factors that affect ECG intelligent anal-
ysis’s long-term development. This study proposes an intelligent ECG-assisted annotation
system, that not only supplements labelled data, but also significantly reduces the work-
load compared with manual annotation. Since beat annotation is the most basic and impor-
tant part, a GAN-based generation model that can generate 14 types of simulation beats
and a CNN-based beat pre-annotation model are proposed. The experimental results show
that the simulation beat has high similarity to real beat and the accuracy of the pre-
annotation model on the test set of 14 classes of beats is 99.28%. The proposed ECG intel-
ligent annotation system’s self-learning mechanism could improve pre-annotation perfor-
mance and annotation efficiency by generating more labelled data. The proposed
annotation system can also be extended to other data annotation applications.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

With the development of information technology, computer-assisted medical treatment has attracted increasing atten-
tion from academia and industry to free doctors from tedious work. Increased numbers of cardiovascular patients face
the problem of a lack of specialist physicians to diagnose ECG in most hospitals, especially in China. The ECG-assisted diag-
nosis system requires accurate and real-time feedback, which has high performance and operating efficiency requirements.
Computer hardware systems are sufficient to meet the auxiliary diagnosis model’s calculation and storage requirements
with computer science development. However, the lack of labelled ECG data has slowed down the building of excellent aux-
iliary diagnosis models. Although ECG diagnosis generates a large amount of ECG data every day, they are all unlabelled and
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cannot be used for model building directly. The labelled data are insufficient in terms of quantity and types, which hinders
the development of the computer-assisted diagnosis field to a certain extent.

In ECG intelligent analysis, many factors lead to the shortage of labelled ECG data. First, ECG data are sensitive and dif-
ficult to collect because of medical data confidentiality. Second, building a standard ECG database is a foundation work that
requires long-term human and financial investment. Finally, the critical factor is the difficulty of ECG annotation. The ECG
annotation is cumbersome, requiring a professional annotation system and manual annotation by specialist physicians from
beat to beat. ECG annotation includes beat, rhythm, morphology, and conclusive annotation. Fig. 1 shows a typical annota-
tion example, which provides the beat and rhythm labels. The annotation example in Fig. 2 contains beat, rhythm, and mor-
phological labels. Even a short-term ECG, not only has a wide variety of labels but also requires accurate positioning and
annotation.

Two ECG annotation software can be found. One is WAVE [1], an auxiliary annotation software developed by the Mas-
sachusetts Institute of Technology. The most widely used MIT-BIH Arrhythmia Database [2,3] is derived from WAVE. WAVE
includesbeat annotation, rhythmannotation, partialwavelet positioning, andkeywavelet shape changeprompts.WAVE is also
asemiautomaticbeatannotationsystem.First, allbeatswereautomatically labelledasnormalandthenmodified.Theotheraux-
iliary annotation software was developed based on the Chinese Cardiovascular Disease Database (CCDD) [4]. The annotation
functionsof this tool are thebeat,morphology,andconclusiveannotation.Bothannotationsystemshavesomelimitations. First,
they are bothmanually annotated, which is cumbersome andwork-intensive. Second, they lack perfectmanagement, which is
notconvenientfor large-scaleannotation.Finally,theannotationfunctionisincomplete,forexample,WAVElackscompletemor-
phological annotation, and CCDD auxiliary annotation software lacks rhythm annotation. Therefore, this paper proposes a
human–machine integrationECG intelligentannotationsystemthat integrates intelligent technology into theauxiliaryannota-
tionsystem.First, theECGdataarepre-annotatedusingartificial intelligence.Specialistphysiciansonlyneedtoreviewandrevise
the pre-annotation results, which can significantly reduce theworkload and improve the efficiency.

The data size of prevalent diseases (abnormal), especially rare diseases, is often much less than the healthy data (normal).
The imbalance of the data size between abnormal and normal will affect the classification performance of the model. Anno-
tating more ECG data is the most straightforward solution, especially for rare disease data. However, cases of rare diseases
are usually minimal. Therefore, we propose a solution that generates intelligent simulation data, which can be used as
labelled data to assist in model building. It solves the problem of insufficient labelled data and guarantees the pre-
annotation performance of minority classes. Generating sufficient and accurate data is conducive to training the model.
The ECG generation methods can be divided into two categories. One category is the traditional method, which extracts sig-
nal features manually and constructs a generation model. For example, McSharry et al. [5] used coupled ordinary differential
equations to generate a single beat signal dynamic model, Li et al. [6] used a data flow graph to describe the ECG signal,
Sayadi et al. [7] designed a Gaussian wave-based state-space to model the temporal dynamics of ECG signals, and Roonizi
et al. [8] introduced polynomial spline models for modeling. The abovementioned traditional methods need to extract fea-
tures and adjust model parameters manually, and the quality of the generation model depends entirely on the human expe-
rience. The second category uses deep neural networks to generate ECG data. Golany et al. [9] extracted features and then
input them to a GAN to synthesize ECG data. Zhu et al. [10] used a GAN to generate short-term ECG segments similar to clin-
ical data directly, and the GAN is composed of a CNN and LSTM. When balancing the data set, the generated data must be
accurate data corresponding to the unbalanced minority classes. Accuracy means that it can be used as a specific type of beat.
Hernandez-Matamoros et al. [11] used the Bidirectional Recurrent Neural Network (BiRNN) model to synthesize multiple
types of beat signals similar to the original data, but in the data preprocessing stage, strict signal segmentation and recon-
struction are required. Wang et al. [12] designed a simple GAN that can generate accurate left bundle branch block beats
without the need to reconstruct the original signal. However, this model is not universal for generating all types of beats
and lacks reliable indicators to measure the generated data’s quality. In this paper, we improved the model to apply to all
Fig. 1. A section of 10 s ECG data from record 205 of the MIT–BIH Arrhythmia Database. The figure contains two leads, the upper is the MLII lead, the lower
is the V1 lead, and the middle is the labels, including the beat labels and the rhythm labels. Beat annotation interpretation: V ? ventricular premature
beat;�?normal beat; A ? atrial premature beat. Rhythm annotation interpretation: (N ? normal sinus rhythm; (VT ? ventricular tachycardia. Source:
Image taken from https://archive.physionet.org/cgi-bin/atm/ATM.
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Fig. 2. The image is an annotation interface of the annotation system developed by this paper. The signal in the image is lead I, including beat, rhythm, and
morphology labels. Beat annotation interpretation: L ? Left bundle branch block beat. Rhythm annotation interpretation: (N ? normal sinus rhythm.
Morphological annotation interpretation: Above the waveform—P? PWave; T? TWave; R? R wave peak, representing QRS wave. Below the waveform—
PD ? P wave bimodal; R ? The morphological type of this QRS complex is R; TI ? T wave inversion.
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types of beats and introduced the indicator maximum mean discrepancy (MMD) to evaluate the accuracy of the generated
data.

The purpose of this paper is to develop an ECG intelligent annotation system based on generated simulation data, which
can not only solve the problem of difficult annotation but also solve the problem of insufficient labelled data and imbalance
of data sets during the model training. The main contributions of this paper are summarized as follows: (1) This paper pro-
poses a human–machine integration ECG intelligent annotation system that can free annotation experts from heavy manual
annotation. Annotation experts only need to review and verify the pre-annotation result. (2) This paper also introduces a
GAN-based beat generation model that can generate 14 types of beats accurately. We measure the generation model’s effec-
tiveness and accuracy by the loss curve and quantitative indicator MMD and finally design a blind experiment to verify the
availability of the generated data. (3) This paper proposes a CNN-based beat pre-annotation model based on generated data.
The experimental results show that the performance of the proposed method is better than that of the state-of-art methods.
The ECG intelligent annotation system proposed in this paper will accelerate the development of ECG computer-assisted
diagnosis and can be extended to other intelligent medical fields.

This paper’s organized structure is presented as follows: Section 2 introduces the ECG intelligent annotation system based
on simulation data; Section 3 describes the beat pre-annotation algorithm. Section 4 discusses and compares the results of
the proposed algorithms. Finally, conclusions and future research directions are presented in Section 5.
2. The proposed framework

This section introduces the proposed framework of human–machine integration ECG intelligent annotation, which is an
efficient, intelligent system. The details of the proposed framework are presented as follows.

2.1. Framework overview

The ECG intelligent annotation system consists of three modules: the filtering module, the management module, and the
auxiliary annotation module. The details of the modules are described as follows.

Filtering module: Filtering ECG samples that are worth annotating or intercepting a segment in an ECG record as the sam-
ple to be labelled according to data annotation requirements. Generally, the data selected have clinical research value, and
the data are not polluted by serious noise.

Management module: Manage the entire annotation process, including annotation expert management, warehousing
management of samples to be labelled, annotation task management (task packaging and task allocation), intelligent pre-
annotation result review management, and labelled data storage management.

Auxiliary annotation module: The annotation includes beat annotation, rhythm annotation, morphological annotation,
and conclusive annotation. The morphological annotation marked each wavelet’s (P wave, QRS wave, T wave, and ST seg-
ment) shape, starting, and ending points.

The core idea of the proposed ECG annotation system is to integrate intelligent technology to solve the problem of oner-
ous and low efficiency. Fig. 3 shows a flowchart drawn from the perspective of intelligent annotation, which describes the
processes from the raw data to the labelled data into the ECG database. The detailed steps are selection and interception of
samples to be annotated (put into the sample database to be annotated), annotation task packaging and distribution, sample
pre-annotation, pre-annotation results review and modification, conclusive annotation, and labelled data put into the ECG
database. On the other hand, labelled data will be fed back to the intelligent annotation system to train the intelligent models
(the blue shading box in Fig. 3), significantly reducing the onerousness, and improving the efficiency and accuracy of anno-
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Fig. 3. The annotation process of the ECG intelligent annotation system based on simulation data generation. The ‘‘Intelligent pre-annotation” includes Beat
pre-annotation, Rhythm pre-annotation, and Morphological pre-annotation.
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tation. With the continuous increase in labelled data, the learning ability of the model becomes stronger. The intelligent
applications in the system are summarized as follows:

a) Generate intelligent simulation data: Due to the imbalance of the incidence of various arrhythmia diseases, the
training data set is unbalanced, which will greatly affect the pre-annotation performance. We introduce an artificial
intelligence-based method to generate simulation data. First, we use the precious labelled ECG data to train the gen-
eration model and generate accurate ECG data. Then the generated data feedback to the system for balancing and sup-
plementing the data set and assisting model training, such as sample filtering model and pre-annotation model. The
ECG data generation is the basis of the intelligent annotation system.

b) Intelligent selection and interception of samples to be annotated: Selecting or intercepting valid ECG records or
segments. The technology available for this task is intelligent detection of the ECG signal quality. ECG signals usually
contain noise, such as baseline wanders, motion artifact, and muscle electricity [13]. Signals with severe pollution
have no clinical diagnostic value and can be ignored directly. For signals with a large number of records or that are
dozens of hours long, the workload is tremendous if the expert browses one by one. Thus, the signal quality can be
graded using the ECG intelligent quality detection technology, and the screening experts only review the results.

c) ECG intelligent pre-annotation: Traditional annotation needs to manually label the type of each beat, identify the
starting point and label the type of each rhythm, mark the start–end points and shape of each wavelet, which is oner-
ous. Therefore, mature ECG intelligent diagnosis and analysis technology can be used for intelligent pre-annotation,
such as the classification of beats, diagnosis of diseases [14], and positioning of waveforms. The annotation experts
only need to review and modify the pre-annotation results.

d) Conclusive annotation: Summative diagnosis requires review experts to annotate all diseases in the sample, and
multi-label classification technology based on arrhythmia diagnosis can be used. Experts only need to review and
modify the conclusive pre-annotation results, which can improve the efficiency and reduce the rate of experts’ missed
annotations.

Although the system integrates intelligent technology to assist the annotation, it does not guarantee that the annotation
results are error-free. Therefore, after intelligent screening and pre-annotation, expert review is required. The human–ma-
chine integration mode not only improves the efficiency but also guarantees the accuracy of the annotation. With increas-
ingly more labelled data, the trained model’s performance will improve, the efficiency will increase, and the systemwill be in
a virtuous circle.
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2.2. Highlights of the framework

The proposed system is intelligent and efficient and can meet various large-scale annotation requirements. The highlights
of the proposed system are summarized as follows:

1) Web-based management mode: Compared to a stand-alone mode that does not require networking, the web-based
management mode has a rigorous and smooth design, which can manage large-scale annotation effectively, including
annotation task management, task assignment management, strict annotation process management, data manage-
ment at all stages, and role management, etc. Annotation experts can download the annotation client compression
package anytime and anywhere. To annotate data, the user only needs to unzip and log in, which maximizes make
use of the expert’s fragmented time.

2) Complete annotation function: This system has a complete annotation function, including beat, rhythm, morphol-
ogy, and conclusive annotation. It can select annotation content flexibly and build ECG databases of different topics.
It meets the requirements of traditional machine learning algorithms based on feature extraction and deep learning
algorithms that only need conclusive annotation.

3) Self-learning intelligent modules: Self-learning means that the training and using of intelligent modules is a virtuous
cycle learning process that inputs new knowledge continuously. As shown in Fig. 4, the labelled data annotated with
the assistance of the intelligent module will be fed back to the system again for model adjustment and optimization.
The optimized model can improve the pre-annotation performance and generate more accurate data. In this mode, the
learning ability and performance of intelligent models are becoming increasingly stronger, the generated data are
becoming increasingly accurate, the pre-annotation performance and annotation efficiency are increasing, and the
workload of annotation experts is decreasing.

4) Strict annotation process: To ensure the accuracy of the annotation results, the system has designed a rigorous anno-
tation process. First, each sample is annotated by two annotators (intermediate experts) simultaneously, and then the
results are matched to show inconsistent content. Finally, senior experts select the best version to modify and input
into the ECG database. This mode can guarantee the accuracy of the annotation results with a minimal workforce.

5) Cloud storage mode: Large-scale annotation requires high access speed and stability. The cloud storage mode can
ensure the speed of data access and ensure the stability and security of the system.

3. Beat pre-annotation optimization

Beat annotation needs to identify the type of each beat, which is an essential part of ECG annotation. Beat annotation is
more cumbersome than rhythm annotation and more necessary than morphological annotation, and thus, the pre-
annotation of beat is especially important. The difference in disease incidence will cause extremely unbalanced data sets,
affecting the classification results’ accuracy significantly. Therefore, to solve unbalanced data sets in beat pre-annotation,
we propose a beat pre-annotation method based on simulation data generation. This method uses simulation data generated
by a GAN model to balance the data set and improve the beat prediction.
3.1. Preliminaries

3.1.1. Generative adversarial networks (GAN)
Generative adversarial networks, which was proposed by Google researcher Ian Goodfellow in 2014, belongs to unsuper-

vised deep learning methods. The main structure of GAN includes a generator (G) and a discriminator (D), where G receives
random noise z to generate data G(z) as real as possible, and D judges whether the data is real and tries to distinguish
between real data � and fake data G(z). G and D confront each other and adjust the parameters constantly.
Fig.4. Self-learning mode of intelligent modules.
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The optimization objective function V(D, G) of GAN is shown in equation (1):
min
G

max
D

V D;Gð Þ ¼ Ex�pdata xð Þ logD xð Þ½ � þ Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ �; ð1Þ
where D(x) represents the probability that the real data � is real, and D(G(z)) represents the probability that the gener-
ated data G(z) is real. The probability range of D(G(z)) is [0,1], where 1 and 0 represent the real data and fake data, respec-
tively. The best state of the game is D(G(z)) = 0.5, which means that the data generated by generator G cannot distinguish
between true and false.

In this paper, the optimization functions of the discriminator D and the generator G can be obtained by formula (1). The
optimization function of the discriminator D is shown in formula (2):
max
D

V D;Gð Þ ¼ Ex�pdata xð Þ logD xð Þ½ � þ Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ �: ð2Þ
The optimization function of the generator G is shown in formula (3):
min
G

V D;Gð Þ ¼ Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ �: ð3Þ
3.1.2. Convolutional neural networks (CNN)
A convolutional neural network is a feedforward neural network that has been widely used in deep learning. It can pro-

cess one-dimensional and multidimensional data effectively, such as image data, time-series data, video data, and so on. The
CNN is mainly composed of the input layer, convolutional layer, pooling layer, fully connected layer, and output layer [15].
The details of these layers are described as follows.

Convolutional layer: The function of the convolutional layer is to extract the characteristics of the input data. It is a local
operation that contains multiple convolution kernels. Each element of the convolution kernel corresponds to a weight coef-
ficient and a bias vector. The input feature area corresponding to the size of the convolution kernel is called the receptive
field. The convolution kernel is generally square. There will be regular scanning of input features when working, and the
input features will be multiplied by matrix elements and summed in the receptive field. Then the deviation is superimposed,
as shown in formula (4).
Zlþ1 i; jð Þ ¼ Zl �wlþ1
h i

i; jð Þ þ b ¼
XKl

k¼1

Xf

x¼1

Xf

y¼1

Zl
k s0iþ x; s0jþ yð Þwlþ1

k x; yð Þ
h i

þ b

i; jð Þ 2 0;1; :::Llþ1f g Llþ1 ¼ Ll þ 2p� f
s0

þ 1 ð4Þ
where b is the bias vector. Zl and Zl+1 represent the (l + 1)th convolution layer’s input and output, respectively. Ll+1 is the size
of Zl+1, K is the number of channels of the feature map, while f, S0, and p correspond to the size of the convolution kernel, the
convolution stride, and the number of paddings, respectively.

Pooling: Pooling is a form of down-sampling. It has many different forms of nonlinear pooling functions. The essence is to
replace the result of a single point with the feature map statistic of its neighboring regions, and ‘‘max pooling” is the most
common. The pooling reduces the dimension under the condition that the feature is not deformed. It continuously reduces
the data’s space size, in such a way that the number of parameters and the amount of calculation will also decrease, which
controls over-fitting to a certain extent. Pooling layers are periodically inserted into convolutional layers.

Fully connected layer: The fully connected layer in the CNN is equivalent to the traditional feedforward neural network’s
hidden layer. It is generally located in the last part of the network, and its role is to transmit signals to other fully connected
layers.

The convolutional layer and pooling layer will generally have several, which are alternately arranged. A convolutional
layer is connected to a pooling layer, and then a convolutional layer is connected after the pooling layer. Each neuron’s input
in the convolutional layer is connected with the previous layer’s local area, and the local features are extracted. The pooling
layer is the calculation layer used to find local sensitivity and secondary feature extraction. The two-time feature extraction
structure reduces the feature resolution and reduces the number of parameters that must be optimized.

3.2. Data pre-processing

The most widely used MIT-BIH Arrhythmia Database [2,3] is selected as a standard data set to evaluate the proposed
method. The database contains 48 ECG records with a duration of half an hour, collected from 47 subjects, and the sampling
rate is 360HZ. Each ECG record consists of two leads. In this paper, one lead signal is selected for training and testing.

The ECG records of the database contain a wide variety of beats. To get a complete beat, 110 and 175 sampling points are
taken from the left and right of the R wave peak (reference point). Hence a beat contains 286 sampling points. Finally, the
extracted beats and their numbers are shown in Table 1. A total of 14 types of beats are extracted. The number of normal
beats is 75019, while the supraventricular premature or ectopic beat (atrial or nodal) has only two, and the atrial escape beat
is 16. The sample size of different beats varies greatly, which shows that the data set is extremely unbalanced.
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Table 1
Beat distribution of MIT-BIH Arrhythmia Database.

Label ID Original label Label Description Number of real beats

0 N N Normal beat 75,019
1 L L Left bundle branch block beat 8072
2 R R Right bundle branch block beat 7255
3 e e Atrial escape beat 16
4 j j Nodal (junctional) escape beat 229
5 A A Atrial premature beat 2546
6 a a Aberrated atrial premature beat 150
7 J J Nodal (junctional) premature beat 83
8 S S Supraventricular premature or ectopic beat (atrial or nodal) 2
9 V V Premature ventricular contraction 7129
10 E E Ventricular escape beat 106
11 F F Fusion of ventricular and normal beat 802
12 / p Paced beat 7024
13 f f Fusion of paced and normal beat 982
Annotation: The ‘‘Label” column in the table1 is the annotation label of each type of beat defined in this study.
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3.3. Beat pre-annotation method based on generated data

The beat intelligent pre-annotation method based on simulation generation data proposed in this paper is roughly
divided into two parts: (1) generating accurate beats and balancing the data set and (2) training the pre-annotation model
on the balanced data set and pre-annotated the beats. The process of this method is shown in Fig. 5:

Design a new GAN-based beat generation model: The detailed process is that generator G receives noise z to generate
simulation data and passes it to discriminator D. D judges the authenticity of the generated data and feeds back the discrim-
ination result to the network. The network is adjusted and optimized according to the feedback results until G can generate
data that D cannot distinguish between real and fake, then, the GAN reaches the optimal state. Both generator G and discrim-
inator D designed in the GAN are composed of a fully connected network. In the experiment, the input labelled data is the 14
types of labelled beats we extracted from the MIT-BIH Arrhythmia Database. The noise z input for generating data is a set of
random numbers drawn from the standard normal distribution, and each generated beat is composed of 95 data points.

Design a new CNN-based beat pre-annotation model: The samples to be annotated are first pre-annotated by the beat
intelligent pre-annotation model, then the pre-annotation result is reviewed and modified by the reviewing expert, and
finally put into the ECG database. In the stage of model training, the pre-annotation model is jointly trained by the generated
data and the labelled data. In the stage used, samples to be annotated are pre-annotated. The CNN network structure of the
pre-annotation model is shown in Fig. 6. It is composed of 4 one-dimensional convolutional layers, 4 pooling layers, 2 fully
connected layers, and one output layer. Since each generated beat is composed of 95 data points, the real beat for training is
downsampled from 286 sampling points to 95. We first divide the extracted beats from the MIT-BIH Arrhythmia Database
into a training set and a test set for our experiment. Then the labelled data for input come from the training set, the samples
to be pre-annotated come from the test set, and the generated data come from the simulation data generated by the GAN.

Therefore, the intelligent annotation system based on generated data must be supported by a certain amount of labelled
data before using the smart function. With the continuous increase in labelled data, the self-learning ability and intelligence
will increase.
Fig. 5. The flowchart of the beat pre-annotation algorithm based on generated data.
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Fig. 6. The structure of the CNN model for beat pre-annotation.
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4. Experimental results analysis

The experiment is conducted in three parts. First, we discuss the quality of the generated beats; then, we discuss the per-
formance of the beat pre-annotation model, and finally, we discuss and analyse the efficiency advantages of the intelligent
annotation pattern.

4.1. Intelligent simulation data quality assessment

The generated simulation data are used to assist the pre-annotation model’s training. In the following experiments, the
quality of the simulation data is verified from different perspectives. First, we verify the generation model’s validity by the
loss curve. Then we discuss the filtering rules of the generated data and the precision of generated data is evaluated with an
MMD indicator. Finally, the validity of the generated data is verified by blind judgement.

4.1.1. Validity evaluation of GAN-based generation model
In this work, it is possible to identify whether the training is successful by drawing the loss curves of the generator G and

the discriminator D during training, and also verify whether the model is effective. The essence of GAN is generation and
confrontation. The G and the D continue to game until it generates data that cannot be distinguished between real and fake.
Therefore, G and D’s loss curves should constantly be fluctuating in an effective GAN model training. If G drops too fast, it
means that D is too weak and can be easily deceived. When D drops too fast, it means that the data generated by G is fake,
and it is easy to distinguish from real data. As shown in Fig. 7, where Fig. 7 (a), (b), (c), (d), (e), and (f) are the error curves for
generating beats e, j, a, J, S, and E. And there are only 16, 229, 150, 83, 2, and 106 real beats for e, j, a, J, S, and E, respectively.
Although the amount of beat is small, it is obvious that G and D’s loss curves in all beat generation training are constantly
fluctuating. The overall convergence to 1 and the D’s loss curve is close to 0.5, indicating that G and D have reached a state of
constant gaming.

4.1.2. Accuracy assessment of the generated data
The error curve is used to identify the model’s validity. In this subsection, the quality of the generated data is evaluated

using the maximummean discrepancy (MMD) [16] indicator, in which the MMDwas initially designed to judge whether two
distributions are the same. In this paper, MMD is adopted to measure the similarity between the generated and original data.
The definition of the square of the MMD is shown in formula (4). A smaller value of MMD denotes a more remarkable sim-
ilarity, and thus, this paper prefers a smaller value of MMD.
MMD2 ¼ 1
m2

Xm

i;j¼1

k xi; xj
� �� 2

mn

Xm;n

i;j¼1

k xi; yj
� �þ 1

n2

Xn

i;j¼1

k yi; yj
� � ð4Þ
The kernel function selected here is a Gaussian kernel function, a monotonic function of the Euclidean distance of two
vectors, as shown in formula (5), in which r denotes that the bandwidth controls the Gaussian kernel function’s local scope.
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Fig. 7. The error curve graph of GAN-based beat pre-annotation model training. (a), (b), (c), (d), (e), and (f) are GAN errors in training to generate beats e, j, a,
J, S, and E, respectively.
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k x; x0ð Þ ¼ e�
kx�x0 k2
2r2 ð5Þ
We take the fusion of ventricular and normal beat (F) as an example to observe the results and changes in MMD under
different parameters and different values. The value of MMD is mainly related to the parameters batch size, noise, and batch.
As shown in Fig. 8 (a), (b), and (c), the abscissa axis represents the number of training steps, and the ordinate axis denotes the
MMD. The detailed analysis of each parameter is as follows:

Batch size: The number of samples involved in training each time is called the batch size. To objectively observe the
changing trend from the batch size, the noise is set to 30 and the batch to 800. It is not difficult to find from Fig. 8(a) that
the MMD first reaches the lowest when the batch size is 50. When the batch size values are 100, 160, and 256, the MMD
value is approximately 0 and tends to be stable as the number of steps increases.

Noise: When generating the data, the input noise z is a set of random numbers drawn from the standard normal distri-
bution and the batch size is set to 50 and the batch to 800. The number of noises is set to 10, 30, 60, and 90. Fig. 8(b) shows
that the trend in the MMD values for all noise values are roughly the same, and the smaller the noise is, the faster it reaches
the lowest value.

Batch: To facilitate the training, the data set is divided into several small data sets, and the number of samples in the small
data set is the batch value. In this experiment, a batch is the number of real beats used in training for each epoch and the
noise is set to 30 and the batch size to 50. Fig. 8(c) describes the impact of the batch on the MMD. It can be clearly seen that
the larger the batch is, the smaller the MMD, and as the step increases, the MMD with a larger batch value tends to be con-
sistent and stable.
Fig. 8. The analysis of the influence of parameters on MMD by varying the value of batch size, noise, and batch.
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To obtain a more comprehensive observation, we set a high iteration value. In general, the MMD value is small with dif-
ferent parameters, and when the relevant parameter values are appropriate, the MMD can easily reach 0.01 and below.
Therefore, the generated data is different from the real data, and the difference is minimal. This finding indicates that the
generated data and the real data are incredibly similar.
4.1.3. Validity filtering of the generated data
It can be seen from Fig. 7 that the GAN is initially unstable, and thus, the generated data are also unusable. After training

for a certain number of iterations, the loss graph reaches convergence, and G and D also reach the game state. At this time, it
is difficult for D to distinguish the TRUE and FAKE of the data. Therefore, to filter out invalid generated data, the determina-
tion of the first stable convergence point (Fscp) is the key. Table 2 describes the method of determining Fscp in detail. The
comparison of the loss values of G and D’s corresponding positions in the window (the length is defined as LW) with Fscp
as the starting point need to be basically balanced, and the degree of balance is defined as the convergence density Pden,
which is a probability value. The absolute ideal state is that the probability Pden that G’s loss value is greater than D’s loss
value (or that D is more significant than G) is exactly 50%. In practical applications, we set Pden to a probability range (Pden,
1- Pden).

To obtain the best Fscp, we set LW equal to 500, 1000, and 1500 and set the Pden between 0.49 and 0.51. The obtained Fscp
is shown in Table 3.

From the analysis of Table 3, an LW of 1000 can ensure that the equilibrium state’s density in the window is better than
1500, such as beats R, e, j, A, a, E, p, and f. And LW of 1000 can break the limitation of local stability better than 500, such as
beat e. Therefore, the final LW is set to 1000. When LW equals 1000, e needs 3081 iterations to reach a stable convergence
state, which is the maximum number of iterations among all types of beats. From the analysis of MMD in Fig. 8, it is easy to
determine that as long as the appropriate parameters are set, when the number of iterations of beat F reaches 5000, the dif-
ference between the generated data and the real data is already minimal. The MMD value reached a relatively stable state
without significant fluctuations. Fig. 9 lists 4 groups of generated beats whose number of iterations does not reach Fscp (up-
per), reached Fscp (middle), and whose iterations reached 5000 (bottom). As shown in the figure, the beats whose number of
iterations does not reach Fscp are not only chaotic in shape and extremely noisy, while the shape of beats that reach Fscp is
ideal but not smooth enough. In contrast, the beats whose number of iterations reaches 5000 are perfect in shape and
smoother. In summary, Fscp is set to 5000, and the selected effective generation data are also generated by iterative training
starting from Fscp.
4.1.4. Availability assessment of generated data
We verified the beat generation model’s validity, quantified the difference between the generated data and the real data,

and described the validity filtering method of the generated beat. Fig. 10 shows the comparison of 8 groups’ beats. The
orange signals represent the generated data that reached Fscp, and the blue signals denote the real data. It can be observed
that the shape of the generated data is extraordinarily close to the real data. The noise input causes a slight difference, and
the difference ensures the diversity of the data.
Table 2
The determination of the first stable convergence point for GAN training.

Algorithm: The first stable convergence point (Fscp) determination method.

Input:
-LI: The length of the loss set; the total number of iterations.

-Glosses= Glossif gLIi¼1: The loss set of generator G (a loss value is obtained after one iteration).

-Dlosses= Dlossif gLIi¼1: The loss set of discriminator D.
-LW: The length of the window used to calculate the convergence density.
-Pden: The minimum convergence density value that satisfies the condition in a window of length LW.

Output:
-Fscp: The first stable convergence point, the number of iterations to reach stable convergence for the first time.

Steps:
for li = 1:LI
if Dlosses[li] < Glosses[li]
Fscp = 0
for lw = 1:LW
if Dlosses[li + lw] < Glosses[li + lw]
Fscp = Fscp + 1

if Fscp > LW*Pden and Fscp < LW*(1-Pden)
Obtain Fscp

end if
end for

end if
end for
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Table 3
Comparison of Fscp with LW.

Label LW = 500 LW = 1000 LW = 1500

R 587 587 441
e 2475 3081 2589
j 1527 1527 1316
A 2327 2004 1618
a 987 732 460
J 252 252 252
S 314 314 314
V 145 145 145
E 1383 1383 1237
F 260 260 260
p 1143 1143 845
f 1218 1218 1016
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To further confirm the validity and usability of the generated data, we designed a blind test experiment and invited two
senior ECG doctors to participate. One doctor is the director of the electrocardiogram department, and the other is a cardi-
ologist. Both experts are proficient in electrocardiography and have rich experiences in the field of ECG-assisted arrhythmia
diagnosis. We prepared 175 beats of all types, including 75 real beats and 100 generated beats. The beat type will be indi-
cated in the experiment, and the doctor will judge whether the beat is real or generated and whether it belongs to the indi-
cated beat type. If the beat is considered to be real and confirmed to be the indicated beat type, it is marked as TRUE. If the
beat is considered to be generated or confirmed to be not the indicated beat type, it is marked as FAKE. Table 4 and Table 5
are the confusion matrices generated by the two doctors’ judgements. T and F represent the number of beats that are initially
TRUE and FAKE, and T’ and F’ represent the number of TRUE and FAKE beats judged by experts.

The following is a detailed description of the meaning of each cell of the confusion matrix:
Row T and column T’: The number of beats that were originally TRUE and judged to be TRUE, represented by TT’.
Row T and column F’: The number of beats that were originally TRUE but judged to be FAKE, represented by TF’.
Row F and column T’: The number of beats that were originally FAKE but judged to be TRUE, represented by FT’.
Row F and column F’: The number of beats that were originally FAKE and judged to be FAKE, represented by FF’.
Table 6 specifically analyses the blind judgement of beats according to Table 4 and Table 5. ACCd represents the ratio of

correct judgements by doctors. TPRd represents the ratio of true beats that are correctly judged as true. FPRd represents the
ratio of fake beats that are incorrectly judged to be true. The definitions of ACCd, TPRd, and FPRd are as shown in formulas (6),
(7), and (8), respectively.
Fig. 9.
upper b
the rea
ACCd ¼ TT 0 þ FF 0

TT 0 þ TF 0 þ FT 0 þ FF 0 ð6Þ
Comparison of beats in different iteration stages. (a)-(d) are the comparisons of beats R, V, E, and f in different iteration stages. In each group, the
eats did not reach Fscp, the middle reached Fscp, and the bottom reached 5000. The orange signals are the generated beats, and the blue signals are
l beats.
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Fig. 10. A comparison of real beats and generated beats. (a)-(h) are the comparison of 8 groups of intelligent simulation beats and real beats. The 8 sets of
beats are R, e, j, A, a, E, F and f, the top of each group is the generated intelligent simulation data (orange), and the bottom is the real data (blue).

Table 4
Confusion matrix of doctor 10s judgement results.

Real Doctor judgement

T’ F’ Total

T 46 29 75
F 76 24 100
Total 122 53 175

Table 5
Confusion matrix of doctor 20s judgement results.

Real doctor judgement

T’ F’ Total

T 50 25 75
F 75 25 100
Total 125 50 175

Table 6
Analysis of doctors’ judgement results.

Doctor ACCd TPRd FPRd

Doc1 40% 61% 76%
Doc2 42.9% 67% 75%
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TPRd ¼ TT 0

TT 0 þ TF 0 ð7Þ

FPRd ¼ FT 0

FT 0 þ FF 0 ð8Þ
From Table 6, it can be seen that the ACCd of the two doctors was 40% and 42.9%, which are both lower than 50%, which
indicates that the doctors could not distinguish whether the data were real or generated. At the same time, it is found that
the TPRd of the two doctors are less than the FPRd. In other words, the probability that the generated data are judged to be
TRUE is greater than that of the real data. This finding shows that the generated data can be used as a supplement to the real
data. Therefore, it can be concluded that the generated data are valid and usable.

4.2. Performance evaluation of beat pre-annotation

To make the performance of beat pre-annotation better, a beat pre-annotation algorithm based on intelligently generated
data is proposed. First, the GAN-based generation model is used to generate the data and balance the data set, and then the
balanced data set is pre-annotated using a CNN-based pre-annotation model. The performance of beat pre-annotation algo-
rithm is verified from three aspects: (1) The comparison of pre-annotation performance before and after data set balanced;
(2) The performance comparison of the proposed model and the classic models; (3) The performance comparison of the pro-
posed method and the state-of-the-art methods.

4.2.1. Performance comparison before and after balancing
It is worth pointing out that the minority class is usually the one with the highest interest from a learning point of view,

and it also implies a great cost when it is not well classified [17]. The same is true in clinical medicine. The rarer disease has a
higher research value. But in actual classification, fewer cases usually have less effectiveness. Because the standard classifi-
cation learning algorithms are often biased towards the majority class and have a higher misclassification rate for the minor-
ity class [18]. Table 1 describes the distribution of the number of beats in the data set, and it is found that the data set is
highly imbalanced. To balance the data set, each class is based on 8000 instances, classes with less than 8000 instances
are supplemented with simulation data, while classes with more than 8000 instances are selected 8000 randomly, such
as beat N. The number of simulation beats that need to be supplemented for each class are shown in the ‘‘Generated beats”
column of Table 7. The test set of the balanced and the original data set (unbalanced data set) are the same, both of which are
extracted from the real data set with a ratio of 33%.

It can be seen from Table 7 that the accuracy of most of the classes will increase after balancing, especially the minority
classes have a large improvement (in bold), such as, beat types with labels e, j, a, J, S, F. It is worth emphasizing that there are
only 2 records in class S, and the accuracy is 0% without balancing and 100% after balancing. Class e has only 16 records, and
the accuracy after balancing is 20% higher than before balancing. In addition, the accuracies of other beats have increased or
stayed the same basically after balancing.

To further verify whether Fscp is effective and accurate, use the generated data before Fscp, after Fscp, and the mixed (be-
fore and after Fscp) to balance the data set. The pre-annotation performances are shown in Table 7. By comparison, the per-
formance comparison of before and after balancing.

l Real
beats

Generated
beats

Test data set (33%
of real data)

ACCc

(Imbalanced
data set)%

ACCc (Balanced with the
data before Fscp)%

ACCc (Balanced with
mixed data)%

ACCc (Balanced with the
data after Fscp)%

8000 0 2640 99.85 99.55 99.62 99.85
8072 0 2664 99.85 99.66 99.62 99.85
7255 745 2394 99.87 99.67 99.67 99.79
16 7984 5 60 0 40 80
229 7771 76 94.74 90.79 96.05 98.68
2546 5456 840 96.55 95.95 97.50 97.50
150 7850 49 79.59 75.51 85.71 89.80
83 7917 27 88.89 88.89 92.59 92.59
2 7998 1 0 100 100 100
7129 871 2353 98.85 98.56 98.17 98.60
106 7894 35 97.14 97.14 94.29 97.14
802 7198 265 92.83 90.19 93.21 95.09
7024 976 2318 99.87 99.91 99.83 99.91
982 7018 324 96.91 97.53 98.77 97.22

l 42,396 69,678 13,991 99.14 98.85 99.04 99.28

tion: ACCc(Imbalanced data set) ? The accuracy of the test set, the training set is from ”Real beats” and the test set is from ”Test data set (33% of real
ACCc(Balanced with the data after Fscp) ? The accuracy of the test set, the training set is from ”Real beats”+‘‘Generated beats”(generated by iterative
starting from Fscp) and the test set is from ”Test data set (33% of real data)”, and so on.
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formances before Fscp are lower than that of after Fscp and the mixed. Simultaneously, it can be found that, for most classes,
the performances of using the before Fscp and the mixed generated data to balance the data set are lower than that of the
unbalanced data set. So the filtering of the validity of the generated data is vital, and invalid data will directly affect the pre-
annotation performance.

Fig. 11(a) and Fig. 11(b) are the confusion matrix before and after the data set’s balanced (Balanced with the generated
data after Fscp). By comparison, it can be found that the dark distribution in Fig. 11(b) is more concentrated on the diagonal.
Obviously, the performance of the confusion matrix Fig. 11(b) is better than confusion matrix Fig. 11(a), and the perfor-
mances difference between before and after balancing for the majority classes are tiny or even the same, while for the minor-
ity classes, the performance after balancing are greatly improved. Finally, the total accuracy after balancing is 99.28%, which
is higher than the 99.14% before balancing. Therefore, it can be verified that the beat pre-annotation model based on sim-
ulation data can not only deal with the problem of the high misclassification rate of minority class but also improve the over-
all classification performance. At the same time, it can be found that the accuracy before balancing is quite good, which
shows that the overall performance of the CNN-based beat pre-annotation model proposed in this paper is quite good even
for the imbalanced data set.

4.2.2. Performance evaluation of beat pre-annotation model
To verify the performance of the CNN-based beat pre-annotation model proposed in this paper, we compare it with mul-

tiple classical models in weka. The training set and test set of all models are the same. The training set is balanced by sim-
ulation data after Fscp, and the test set is drawn from the real data by an equal proportion of 33% as shown in Table 7.

Kappa coefficient [19] is a method of checking consistency in statistics, and it is often used to evaluate the accuracy of a
multi-class classification model. Kappa coefficient is a ratio, and the calculation is based on the confusion matrix, which rep-
resents the ratio of error reduction between classification and completely random classification. The calculation of Kappa
coefficient kap is shown in formulas (9) and (10).
Fig. 11
simulat
kap ¼ p0 � pe

1� pe
ð9Þ
where po represents the overall classification accuracy which is defined as the number of samples correctly classified divided
by the number of overall samples. The calculation of pe is shown in formula (10):
pe ¼
a1 � b1 þ a2 � b2 þ � � � þ aC � bC

n � n ð10Þ
where,a1; a2; � � � ; aC represent the number of real samples of each class. b1; b2; � � � ; bC represent the number of predicted sam-
ples of each class, and n represents the total number of samples.

The range of Kappa coefficient is [0,1] in practical applications, and the higher the value, the higher the classification per-
formance of the model. Generally, Kappa coefficients can be divided into five groups to represent the different consistency
levels [20], which are 0.0 � 0.20: slight, 0.21 � 0.40: fair, 0.41 � 0.60: moderate, 0.61 � 0.80: substantial, 0.81 � 1: almost
perfect. To comprehensively evaluate the model, we use accuracy (ACCc %) and Kappa coefficient(kap %) to measure the per-
formance of the model. The results are shown in Table 8. The Kappa coefficients show that all models except NaiveBayes,
. Confusion matrix. (a) is the confusion matrix of the original data set, (b) is the confusion matrix of the data set after balancing with intelligent
ion data.
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Table 8
The performance comparison with classical models.

Model ACCc(%) kap(%)

NaiveBayes[21] 54.41 47.92
BayesNet[22] 67.99 61.27
J48[23] 93.55 92.33
Bagging[24] 94.82 93.84
Dagging[25] 76.69 73.1
RandomCommittee[26] 96.95 96.37
PART[27] 94.83 93.84
KStar[28] 96.85 96.25
MLP[29] 89.69 87.8
RandomForest[30] 96.70 96.08
IB1[31] 97.88 97.47
RandomTree[30] 91.91 90.4
RotationForest[32] 98.18 97.84
This paper 99.28 99.14
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BayesNet, and Dagging have reached the perfect level. And our model has not only the highest Kappa coefficient but also the
highest accuracy. It can be concluded that the CNN-based beat pre-annotation model designed in this paper has significant
advantages in performance.
4.2.3. Comparison with previous methods
Besides, we compare our method with the state-of-the-art researches that were published in recent years, which all use

the MIT-BIH Arrhythmia Database. The comparison results are shown in Table 9, which details classes number and classifi-
cation method. The methods range from 2 classes to 17 classes. The previous methods classify beats only or classify beats
and rhythms for arrhythmia detection. In the proposed intelligent annotation system, Ventricular flutter is defined as a
rhythm, and the ‘‘ECG beats” column in Table 9 begins with ‘‘(” as rhythm labels. We summarize the classification methods
into the following 5 categories:

1) Divide beats into normal and abnormal, as in [39];
2) Divide beats according to the Advancement of Medical Instrumentation standard [45], such as [36,40,43];
3) Choose common beat types, such as [34,35] and [42];
4) Select common beats and common rhythms together for arrhythmia detection, such as [41];
5) A detailed and complete division of beats, such as [33,37,38,44] and our work.

In machine learning, the more classes there are on the same data set, the less likely it is to guarantee performance. The
comparison in Table 9 shows that the performance of the proposed model for 14 classes is not only higher than the models
with finer granularity, such as [37,38,41,44], and it is also higher than the models with a coarser granularity. Therefore, it can
be concluded that the CNN-based beat pre-annotation model of this paper achieved the best performance.
Table 9
Performance comparison of the proposed method and other high-performance approaches on the MIT-BIH Arrhythmia Database.

Authors Year ECG beats Number of beat types ACCc(%)

Rodriguez J et al.[33] 2005 N, L, R, j, A, a, J, S, V, E, F, p, f, (VFL 14 96.13
Melgani F et al.[34] 2008 N, L, R, A, V, p 6 91.67
Yu S N et al.[35] 2008 N, L, R, A, V, E, p, (VFL 8 98.71
Zhang Z et al.[36] 2014 BN(N,L,R) BS(e,j,A,a,J,S) BV(E,V) BF(F) 4 86.66
Raj S et al.[37] 2016 N, L, R, e, j, A, a, J, V, E, F, p, f, Q, x, (VFL 16 99.18
Chen S et al.[38] 2017 N, L, R, e, j, A, a, J, V, E, F, f, Q, x, (VFL 15 98.46
Sannino G et al.[39] 2018 N, AN 2 99.09
Li W et al.[40] 2018 BN(N,L,R,e,j) BS(a,A,S,J) BV(E,V) BF(F) BQ(Q, p, f) 5 99.01
Pławiak P et al.[41] 2018 N, L, R, A, V, F, p, (AFL, (AFIB, (SVTA, (PREX, (B, (T, (VT, (IVR, (VFL, (BII 17 90
Huang J et al.[42] 2019 N, L, R, A, V 5 99.0
Wang H et al.[43] 2020 BN(N,L,R,e,j) BS(a,A,S,J) BV(E,V) BF(F) BQ(Q, p, f) 5 99.06
Yang H et al.[44] 2020 N, L, R, e, j, A, a, J, S, V, E, F, p, f, Q 15 97.7
This paper N, L, R, e, j, A, a, J, S, V, E, F, p, f 14 99.28

Annotation: AN ? Abnormal beats; Q ? Unclassifiable beat; x ? Non-conducted P-wave(blocked APB); (AFL ? Atrial flutter; (AFIB ? Atrial fibrillation;
(SVTA ? Supraventricular tachyarrhythmia; (PREX ? Pre-excitation(WPW); (B ? Ventricular bigeminy; (T ? Ventricular trigeminy; (VT ? Ventricular
tachycardia; (IVR ? Idioventricular rhythm; (VFL ? Ventricular flutter; (BII? 2� heart block. For the meaning of other labels, refer to the ‘‘label” in Table 1
and its corresponding ‘‘description”. BN, BS, BV, BF, and BQ are big categories of beats, and the specific beat types included are described in detail in ‘‘()”.
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4.3. Performance comparison of three annotation patterns

We design a set of experiments to evaluate the intelligent annotation system’s performance compared with the tradi-
tional full manual annotation pattern and semi-automatic annotation pattern. To make a comprehensive and fair compar-
ison, 4 electrocardiology experts with different ages, medical qualifications, and physiological characteristics are invited
to participate, which shows in Table 10. The experts are from the top three hospitals in Henan province, which has a pop-
ulation of 109 million. The range of the age of 4 experts is between 33 and 59. The title also covers the attending physician,
deputy chief physician, and chief physician. We collected 9 real ECG records and divided them into 3 groups, which are the
full manual annotation group, semi-automatic annotation group, and audit group. At the same time, according to the oper-
ation complexity of the annotation, each group contains a low-complexity, an intermediate-complexity, and a high-
complexity ECG records. Here, records 1, 4, and 7 are low complexity, records 2, 5, and 8 are intermediate complexity
and records 3, 6, and 9 are high complexity, respectively.

The specific operation of each annotation pattern is described as follows:

(1) Full manual annotation: The full manual annotation pattern requires experts to locate the beat and select the type
manually, which is the most original pattern.

(2) Semi-automatic annotation: The semi-automatic annotation pattern will automatically locate the beat and mark it as
normal(N) by default. The annotation expert only needs to change the type of the beat that is not N.

(3) Intelligent annotation: The intelligent annotation pattern proposed by this paper consists of two parts, the first is to
inspect the pre-annotation results, and the second is to modify the beats that have been wrongly pre-annotated.
Therefore, the time used in the intelligent annotation pattern is the audit time (all beats) plus the modification time
(the beats that are wrongly pre-annotated). So, we set the audit group, the 3 records in the group have been pre-
annotated accurately, and the experts don’t know whether there are errors in the pre-annotation results. Then we
get pure audit time.

We define the annotation time of 10 beats as a unit annotation time (UAT10b), which is shown in formula (11):
Table 1
Descrip
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1
2
3
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Annota

Table 1
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Anno

ECG
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Expe
Expe
Expe
ATexp
UAT1
AUAT
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Annota
time of
pattern
UAT10b ¼ ATexperts

Nbeats
� 10 ð11Þ
where ATexperts denotes the average time of each record annotated by each expert and Nbeats represents the number of beats
contained in the record. To obtain a more fair comparison of the experimental, we also compare the average unit annotation
time AUAT10b of 3 records for each annotation pattern.
0
tion of experts’ information.

rts Age Education background Professional title Years of employment (year)

59 B.S.Med Chief Physician 38
33 M.S.Med Attending physician 6
34 M.S.Med Attending physician 6
51 M.S.Med Deputy chief physician 28

tion: B.S.Med ? Bachelor of Science in Medicine; M.S.Med ? Master of Science in Medicine.

1
ative analysis of annotation time for different annotation patterns.

tation pattern Full manual Semi-automatic Audit

record 1 2 3 4 5 6 7 8 9

s of arrhythmias N R p N V p N L p
s/duration 18b/16s 26b/21s 24b/18s 16b/13s 35b/21s 30b/26s 23b/17s 37b/28s 36b/27s
rt 1 50s 61s 137s 13s 20s 91s 10s 23s 10s
rt 2 45s 51s 103s 10s 18s 88s 7s 10s 9s
rt 3 43s 54s 94s 9s 11s 85s 6s 7s 10s
rt 4 45s 55s 112s 11s 19s 98s 8s 9s 7s
erts 45.75s 55.25s 111.5s 10.75s 17s 90.5s 7.75s 12.25s 9s
0b 25.42s 21.25s 46.46s 6.72s 4.86s 30.17s 3.37s 3.31s 2.50s
10b 31.04s 13.92s 3.06s
ligent annotation(10b) 3.06s + 30.17s*(1-ACCc) = 3.28s

tion: Nbeats/duration ? Number of beats/duration of ECG record, such as 18b/16 s means that this is a 16 s record with 18 beats; ATexperts ? Average
4 experts to annotate the corresponding record; UAT10b ? Unit(10 beats) annotation time, calculated by ATexperts; AUAT10b ? Average unit time of the
, calculated by UAT10b; ACCc = 99.28%.
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Fig.12. Comparison of beat annotation time of three annotation patterns (10 beats).
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According to the above calculation, the AUAT10b of the full manual pattern and the semi-automatic pattern can be
obtained. The time of the intelligent annotation is the audit time of all beats adding the modification time of correcting
the wrongly pre-annotated beats (the error proportion is 1- ACCc). The modification time is referenced from the UAT10b of
record 6. Since its type is ‘‘p”, all beats should be changed from ‘‘N” to ‘‘p”, the pure modification time can be obtained.
The calculation and result of the time used for intelligent annotation are shown in the last row of Table 11.

From Table 11, we can conclude that the ECG record containing 10 beats requires 31.04 s in full manual annotation pat-
tern, 13.92 s in semi-automatic annotation pattern, and 3.28 s in intelligent annotation pattern, as shown in Fig. 12. Accord-
ing to these analyses, it can be concluded that intelligent annotation can reduce working time by 89.43% compared with the
full manual pattern, and can reduce working time by 76.44% compared with the semi-automatic pattern.

5. Conclusions

This paper introduces a human–machine integration ECG intelligent annotation system based on simulation data gener-
ation. The system can change the traditional manual annotation pattern and incorporate a variety of intelligent technologies
to assist the ECG annotation in such a way that the work of annotation experts can be transformed from annotation to audit,
which can significantly improve the annotation efficiency. However, all of the intelligent technologies are based on labelled
data. Therefore, to solve the problem of insufficient labelled data, the concept of generating accurate simulation data to assist
model training is proposed, including the intelligent screening model of samples to be labelled and the pre-annotation mod-
els. Beat annotation is the basis of ECG annotation, and thus, we propose a beat pre-annotation model based on intelligent
simulation beat generation. First, a GAN model for generating accurate beats was designed. After various verifications, it was
verified that the model could generate specific types of beats that can supplement labelled data. Then, a 14-class beat pre-
annotation model based on a CNN is proposed. The model is jointly trained by generated data and real data, and the accuracy
obtained on the test set is 99.28%. This model’s performance is higher than that of the existing state-of-the-art methods. The
most far-reaching significance lies in the annotation. Intelligent annotation can reduce the working time by 89.43% com-
pared with a full manual pattern and reduce the working time by 76.44% compared with a semi-automatic pattern.

The future work arising from this paper can focus on the following aspects: (1) It can be extended to study the rhythm
pre-annotation model based on precise, intelligent simulation rhythm data, in other words, to propose a model that can gen-
erate specific types of ECG rhythm segments and a high-performance rhythm pre-annotation model; (2) It is necessary to
design a high-performance, multi-label classification model for conclusive pre-annotation; (3) It is also necessary to design
an excellent quality inspection model to assist in the filtering of samples to be annotated; (4) It is necessary to continuously
supplement and improve the core algorithms required by the ECG intelligent annotation system. The concept of intelligent
annotation can also be extended to other fields that require professional annotation, especially various research directions in
computer-aided diagnosis. In conclusion, solving the difficulty of ECG signals annotation has far-reaching significance for
medical intelligence research.
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