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Under disaster circumstances, people in the impacted areas need different levels of medical services provided by the 
temporary or existing medical relief shelters whose medical service capability should be equal to or greater than their needs. 
It is an important but challenging problem to provide effective and efficient medical or relief services to the affected people. 
This study proposed a bi-objective mathematical programming model to overcome this challenging situation considering the 
patients' severities, medical service level, and geographical locations under disaster circumstances. The proposed bi-objective 
mathematical model intends to determine the appropriate locations for temporary medical relief shelters (MRS), specifying 
the service level of MRS and plan the logistics network for medical supplies. The objective is to achieve the maximum 
coverage of medical relief service and the minimum logistics costs, including the construction and operating costs of 
temporary MRSs and the procurement and transportation costs of medical supplies from medical deployment centers 
simultaneously. This paper solves a bi-objective medical shelter location problem with differential coverage ratios, using the 
non-dominated sorting genetic algorithm II (NSGA-II) and the modified NSGA-II (mNSGA-II) to find the Pareto front. Due 
to the sensitivity of those algorithms to parameter values, the Taguchi method is used to tune the parameters of the algorithms. 
We have chosen five measures into two groups. Qualitative metrics include the number of Pareto solutions (NPS), diversity 
metric, and spacing metric, and quantitative metrics include mean ideal distance (MID) and calculation times to evaluate the 
performance of our proposed algorithms. Various test problems of different sizes are tested to compare the performance of 
the NSGA-II and mNSGA-II. The computational results compared the pros and cons of two algorithms in solving the bi-
objective medical relief shelter location problem. 
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1. INTRODUCTION 

 
Extreme events such as natural or human-made disasters have become regular occurrences in recent years. Such extreme 
events may cause significant losses of property damages, economic disruptions, and environmental degradation. In addition, 
many people are affected, frequently leading to deaths or injuries, and tremendous demands for medical supplies occur in the 
impacted areas in a short period. Affected people in disaster-impacted regions may have various severity and require different 
levels of medical services.  

In response to reducing the consequences of the extreme events, it is essential to recognize the severity and the required 
level of medical service for the affected people. Establishing the MRSs with different service levels and transporting the 
affected people to appropriate medical treatments can help to reduce the consequences of extreme events, considering the 
location of medical deployment centers, which provide the medical supplies (medical staffs, equipment, medicines, etc.). 

In any circumstance of disasters, it becomes challenging for the relief worker to distribute the relief supplies among the 
affected people to meet their requirements. Jia et al. (2007) proposed a maximal covering facility location model which 
efficiently found locations for tremendous demands of medical services in emergencies. A Chinese national emergency 
warehouse location problem was presented by Ye et al. (2015) with considering transportation, economic condition, 



Zhou and Lee Bi-Objective Medical Relief Shelter Location Problem 
 

972 
 

population distribution, and multi-coverage for some critical areas. Many facility systems are hierarchical in terms of the 
types of services they provided in nature. By applying the maximal covering location problem, Moore and ReVelle, (1982) 
introduced the hierarchical covering location problem to the health care service area, assuming that different kinds of services 
can be provided for customers. Lee and Lee (2010) proposed a tabu-based heuristic for the generalized hierarchical covering 
location problem to determine the locations and levels of the facilities and the set of customers which facilities needed to be 
served. Farahani et al. (2014) reviewed around 100 references on hierarchical location problems and classified all papers in 
terms of models, solutions, performance measures, and applications. Recently, Gao et al. (2017) presented a hybrid genetic 
algorithm for multi-emergency medical service center location-allocation problems in disaster response. 

Afshar and Haghani (2012) proposed a mathematical model that controlled the complete flow of several relief 
commodities from sources to their recipients via a supply chain network. A humanitarian and disaster relief supply chain 
within the broad area of supply chain management was studied by Day et al. (2012). Mohamadi and Yaghoubi (2017) 
introduced a bi-objective stochastic optimization model to determine the location of transfer points and medical supplies 
distribution centers considering the priority of injured treatments. Gu et al. (2016) proposed a mathematical programming 
model to determine the locations of temporary MRSs and provide the required medical supplies from medical deployment 
centers effectively and efficiently under the limited relief budget, considering patients' severities and geographical locations. 
In recent years, the Epsilon constraint method was adopted to solve multiple-objective humanitarian relief logistic problems 
by many studies (Baharmand et al., 2019). However, the Epsilon constraint method has difficulty finding an excellent value 
for the epsilon vector, especially for solving complex problems. 

This study assumes that the severity and distribution of the patients in the impacted areas are already known, and the 
respective medical service levels can be determined easily. Patients can be served by temporary MRSs whose medical service 
level is equal to or higher than the required. In this study, For seriously injured people, a high level of medical service must 
be taken care of with high priority. Patients with higher severity need immediate medical assistance and quickly transfer to 
the nearest medical shelters to have the necessary medical services. In this study, each patient has a severity level compared 
to the medical service level offered by the MRS. The patients can be assigned to MRSs when MRSs' medical service levels 
are equal to or higher than their severity levels.  

Candidate locations of MRSs are determined in advance before the disaster impact. It is assumed that each candidate 
location can construct exactly one MRS that provides one level of medical service. The total number of MRSs at each level 
of medical services to be constructed is known. Patients are only assumed to be covered within a circular region with a 
specific radius from the MRSs. Sometimes the coverage ratio function may vary depending on the problem. There are many 
different coverage ratio functions and types; linear or nonlinear, continuous or discrete, and others (Karasakal and Karasakal, 
2004). Figure 1 depicts three possible coverage functions: sigmoid partial coverage function, linear partial coverage function, 
and classical coverage function. In Figure 1, there are two parameters 𝛼𝛼 and 𝛽𝛽 representing the full and maximum partial 
coverage distances, respectively. If the distance is lower than 𝛼𝛼, the coverage function is equal to 1 for all the coverage 
functions. If the distance is higher than 𝛽𝛽, the coverage function is equal to 0 for all the coverage functions. If the distance is 
between 𝛼𝛼 and 𝛽𝛽, the classical coverage function equals 0, while the sigmoid partial coverage function value and the linear 
partial coverage function values are between 0 and 1. 

 

  
Figure 1. Sample of possible coverage functions. 
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Medical deployment centers provide the medical staff and supplies to MRSs and have their maximum capacity for each 
supply. Transportation cost includes the vehicle cost and variable cost. Nicholl et al. (2007) surveyed the relationship between 
the distance to the hospital and the patient death in an emergency. It is natural to see that fast evacuation is crucial to saving 
human lives. Figure 2 shows an example of the MRS location problem considered in this study. Square, triangle, and pentagon 
denote the MRSs with different medical service levels. The cylinders represent the medical deployment centers. The circles 
indicate patients, and the numbers in the circle represent the levels of medical service required for particular patients. The 
black dash line represents patients assigned to MRSs, and medical relief centers provide medical supplies to the MRS. 

 

 
 Medical relief shelter with medical service level 1 
 Medical relief shelter with medical service level 2 
 Medical relief shelter with medical service level 3 
 Medical deployment center 
 Patient 

 
Figure 2. An example of the proposed medical relief shelter location problem in this study. 

 
This study aims to maximize the number of patients who get medical services at MRSs and simultaneously minimize 

the total cost. The total cost includes the fixed construction cost to establish temporary MRSs, the procurement cost of medical 
supplies, and the transportation cost of the medical supplies, including medical staff. The total cost also includes the variable 
construction cost of MRSs, which is proportional to the capacity of shelters, in addition to the fixed construction cost.   

NSGA (Srinivas and Deb, 1994) is a popular non-domination-based sorting genetic algorithm for multi-objective 
optimization problems. It received criticism for adding up high computational complexity, lack of elitism, and need for 
sharing parameters. Then, NSGA-II (Deb et al., 2002) was developed with a better sorting algorithm, elitism, and no sharing 
parameter. NSGA-II still has the drawbacks such as lack of uniform diversity in obtained non-dominated solutions and 
absence of a lateral diversity-preserving operator among the currently-best non-dominated solutions. These two drawbacks 
have been overcome by introducing dynamic crowding distance and controlled elitism into the modified NSGA-II (nNSGA-
II). 

This study proposes a bi-objective mathematical programming model to address the concerns above. The bi-objective 
optimization method has been studied in different areas (Karimi et al., 2010; Das and Bera, 2015; Akkan and Gülcü, 2018). 
To solve the proposed bi-objective mathematical programming model, NSGA-II and mNSGA-II have been implemented 
(Wang et al., 2017). Various test problems were tested to compare the performance of the NSGA-II and mNSGA-II for the 
proposed model in this study.  

The performance of solution methods for multi-objective optimization problems cannot be compared to single-objective 
optimization problems. We have chosen five performance metrics into two groups. Qualitative metrics are the number of 
Pareto solutions (NPS), diversity metric  and spacing metric and quantitative metrics are 
mean ideal distance (MID) and calculation times to evaluate the performance of our proposed algorithms.  

The Taguchi method is a statistical method, sometimes called a robust design method, developed by Genichi Taguchi 
to improve the quality of manufactured goods. It has been used in various areas, and it is also used to optimize the process 
control parameters for the best performance. Urval et al. (2008, 2010) applied the Taguchi method to optimize the power 
injection modeling process. Li et al. (2019) studied a multi-objective optimization of the fiber-reinforced composite injection 
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molding process using the Taguchi method to determine the effect of the process parameters.  Pradeepmon et al. (2020) 
adopted the Taguchi method to determine the optimal combination of parameters and operators for the genetic algorithm. 

Decision-makers in the deployment stage of disaster management can choose their most preferred solution from the 
solution set obtained by the NSGA-II and mNSGA-II. 

The remainder of this paper is organized as follows. In Section 2, a bi-objective mathematical programming model is 
proposed. The solution method is studied in Section 3. The computational results are discussed in Section 4. Finally, in 
Section 5, the conclusions are presented. 

 
2. MATHEMATICAL MODEL 

 
The proposed bi-objective mathematical programming model has been formulated based on the hierarchical covering location 
problem (Lee and Lee, 2010) and a maximal covering location problem (Gu et al., 2018). Gu et al. (2018) proposed a 
mathematical programming model for the MRS location problem with the limited operational budget. This study extended 
their mathematical programming model to a multi-objective programming model by lifting the budget constraints to an 
objective function. Their study focused only on the MRS locations, but this study minimizes the transportation costs and 
maximizes the number of patients for the medical treatment. Their study introduced the criteria as a single objective function 
considering the severity level of patients and the distance to the potential MRS to be established. We also used this approach 
in our greedy method to construct the final solutions. 

Before introducing the proposed bi-objective mathematical programming model, several assumptions are made as 
follows. 
 
Problem assumptions 

• The severities, locations, and required level of medical services for patients are known. 
• Patients with different severity levels require different quantities of medical supplies. 
• The patients can be served by MRSs whose medical service level is equal to or higher than their severities.  
• Each patient is assigned to only one MRS. 
• The total number of MRSs that are allowed to be constructed with different levels of medical service is limited. 
• The medical deployment centers provide medical supplies to MRSs at the maximum of pre-set quantities. 
• Each type of medical supply has a fixed volume.  
• A vehicle transporting medical supplies has the maximum capacity in volume. 

 
In this section, sets, parameters, and decision variables are initially summarized. 

 
Sets 

𝐼𝐼 Set of individual patients, 𝑖𝑖 ∈ 𝐼𝐼 
𝐾𝐾  Set of types of medical supplies, 𝑘𝑘 ∈ 𝐾𝐾 
𝐿𝐿  Set of medical service levels or severity levels  
𝑅𝑅  Set of candidate locations for MRSs, 𝑟𝑟 ∈ 𝑅𝑅 
𝐶𝐶  Set of medical deployment centers, 𝑐𝑐 ∈ 𝐶𝐶 

 
Parameters 

𝐴𝐴𝑘𝑘𝑙𝑙   Quantity of medical supply 𝑘𝑘, required for a patient with severity level l 
𝐴𝐴𝑘𝑘
𝑆𝑆𝑖𝑖  Quantity of medical supply 𝑘𝑘, required for patient i 

𝑀𝑀𝐾𝐾𝑘𝑘𝑘𝑘  Maximum quantity of medical supply 𝑘𝑘 at medical deployment center 𝑐𝑐 
𝑉𝑉𝑘𝑘  Volume of medical supply 𝑘𝑘 
𝑀𝑀𝑉𝑉  Maximum capacity of a vehicle in volume 
𝑆𝑆𝑖𝑖  Severity level of patient 𝑖𝑖 
𝐷𝐷𝑖𝑖𝑖𝑖  Distance from the location of patient 𝑖𝑖 to medical relief shelter 𝑟𝑟 
𝐶𝐶𝑉𝑉  Vehicle cost per vehicle 
𝐶𝐶𝐶𝐶  Transportation cost per vehicle per unit distance 
𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑖𝑖  Fixed construction cost for a medical relief shelter at candidate location 𝑟𝑟 for medical service level 𝑙𝑙 
𝐶𝐶𝐶𝐶𝑉𝑉𝑙𝑙𝑖𝑖  Variable construction cost per additional capacity for a medical relief shelter at candidate location 𝑟𝑟 for 

medical service level 𝑙𝑙 
𝐶𝐶𝑂𝑂𝑙𝑙𝑖𝑖  Operating cost for a medical relief shelter at candidate location 𝑟𝑟 for medical service level 𝑙𝑙 
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𝐶𝐶𝑃𝑃𝑘𝑘  Procurement cost of medical supply 𝑘𝑘 
𝑆𝑆𝐿𝐿𝑖𝑖  Maximum medical service level provided by the medical relief shelter 𝑟𝑟  
𝑃𝑃𝑙𝑙  Maximum number of MRSs allowed to constructed with medical service level 𝑙𝑙 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙  The coverage ratio level determined by the coverage function, for patient 𝑖𝑖,  MRS r, and medical service 

level l. 
𝑀𝑀𝑆𝑆𝐿𝐿𝑖𝑖  The medical service level required by patient 𝑖𝑖 
𝑄𝑄 A large number 

 
Decision variables 

𝑦𝑦𝑙𝑙𝑖𝑖  1, if MRS with level 𝑙𝑙 is constructed at candidate 𝑟𝑟; otherwise, 0  
𝑥𝑥𝑖𝑖𝑖𝑖  1, if patient 𝑖𝑖 is assigned to MRS 𝑟𝑟 ; otherwise, 0 
𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘   Quantity of medical supply 𝑘𝑘 for patients with level l, required to be transported from medical 

deployment center 𝑐𝑐 to MRS 𝑟𝑟  
 
In this study, the sigmoid partial coverage function (Karasakal and Karasakal, 2004) is adopted to calculate the coverage 

ratio level 𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙. The sigmoid partial coverage function 𝐹𝐹(𝐷𝐷𝑖𝑖𝑖𝑖 ,𝛼𝛼𝑙𝑙 ,𝛽𝛽𝑙𝑙) is defined as follows: 
 

𝐹𝐹(𝐷𝐷𝑖𝑖𝑖𝑖 ,𝛼𝛼𝑙𝑙 ,𝛽𝛽𝑙𝑙) =
1

1 + 𝑒𝑒𝛿𝛿(𝐷𝐷𝑖𝑖𝑖𝑖−(𝛼𝛼𝑙𝑙+𝛽𝛽𝑙𝑙) 2⁄ ) =  𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙  , 
 
where 𝛿𝛿 is a constant coefficient, 𝛼𝛼𝑙𝑙 and 𝛽𝛽𝑙𝑙 are the full and maximum partial coverage ranges for medical service level l, 
respectively. An MRS r fully covers all patients within the distance range of 𝛼𝛼𝑙𝑙 and partially cover the patients in the distance 
range [𝛼𝛼𝑙𝑙, 𝛽𝛽𝑙𝑙]. Those constants 𝛼𝛼𝑙𝑙 and 𝛽𝛽𝑙𝑙 can be chosen by the decision-maker considering the traffic conditions.  

The proposed bi-objective mathematical programming model under consideration in this study is presented in the 
following. 
 
Formulations 
 
 Maximize 𝑍𝑍1 = ∑ ∑ ∑ 𝑆𝑆𝑖𝑖 ∙ 𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙∈𝐿𝐿𝑖𝑖∈𝑅𝑅𝑖𝑖∈𝐼𝐼    (1) 
 

 Minimize 𝑍𝑍2 = ∑ ∑ 𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑖𝑖 ∙ 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙∈𝐿𝐿𝑖𝑖∈𝑅𝑅 + ∑ ∑ ∑ ∑ (𝐶𝐶𝑂𝑂𝑙𝑙𝑖𝑖 + 𝐶𝐶𝐶𝐶𝑉𝑉𝑙𝑙𝑖𝑖) ∙ 𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘 𝑘𝑘∈𝐾𝐾𝑘𝑘∈𝐶𝐶𝑙𝑙∈𝐿𝐿𝑖𝑖∈𝑅𝑅 +
∑ ∑ ∑ ∑ 𝐶𝐶𝑃𝑃𝑘𝑘 ∙ 𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘 𝑘𝑘∈𝐾𝐾𝑘𝑘∈𝐶𝐶𝑙𝑙∈𝐿𝐿𝑖𝑖∈𝑅𝑅 + 1

MV
∑ ∑ ∑ ∑ 𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘𝑉𝑉𝑘𝑘 ∙ (𝐶𝐶𝑉𝑉 + 𝐶𝐶𝐶𝐶 ∙ 𝐷𝐷𝑙𝑙𝑙𝑙) 𝑘𝑘∈𝐾𝐾𝑘𝑘∈𝐶𝐶𝑙𝑙∈𝐿𝐿𝑖𝑖∈𝑅𝑅  (2) 

 
Subject to 
∑ 𝐴𝐴𝑘𝑘

𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 ≤ ∑ ∑ 𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘𝑘𝑘∈𝐶𝐶𝑙𝑙∈𝐿𝐿        ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅 (3) 
∑ ∑ 𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘𝑖𝑖∈𝑅𝑅𝑙𝑙∈𝐿𝐿 ≤ 𝑀𝑀𝐾𝐾𝑘𝑘𝑘𝑘  ∀ 𝑘𝑘 ∈ 𝐾𝐾, 𝑐𝑐 ∈ 𝐶𝐶 (4) 
𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘 ≤ 𝑄𝑄 ∙ 𝑦𝑦𝑙𝑙𝑖𝑖 ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑙𝑙 ∈ 𝐿𝐿 (5) 
𝑥𝑥𝑖𝑖𝑖𝑖 ∙ 𝑀𝑀𝑆𝑆𝐿𝐿𝑖𝑖 ≤ ∑ 𝑙𝑙 ∙ 𝑦𝑦𝑙𝑙𝑖𝑖𝐿𝐿

𝑙𝑙=0   ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑙𝑙 ∈ 𝐿𝐿, 𝑖𝑖 ∈ 𝐼𝐼 (6) 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1𝑖𝑖∈𝐼𝐼   ∀ 𝑟𝑟 ∈ 𝑅𝑅  (7) 
∑ 𝑦𝑦𝑙𝑙𝑖𝑖𝑖𝑖∈𝑅𝑅 = 𝑃𝑃𝑙𝑙  ∀ 𝑙𝑙 ∈ 𝐿𝐿  (8) 
∑ 𝑦𝑦𝑙𝑙𝑖𝑖𝑙𝑙∈𝐿𝐿 ≤ 1  ∀ 𝑟𝑟 ∈ 𝑅𝑅  (9) 
∑ 𝑦𝑦𝑙𝑙𝑖𝑖𝐿𝐿
𝑙𝑙=1+𝑆𝑆𝐿𝐿𝑖𝑖 = 0  ∀ 𝑟𝑟 ∈ 𝑅𝑅 (10) 

𝑦𝑦𝑙𝑙𝑖𝑖 ∈ {0,1}  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑙𝑙 ∈ 𝐿𝐿  (11) 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1}  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑙𝑙 ∈ 𝐿𝐿  (12) 
𝑧𝑧𝑘𝑘𝑖𝑖𝑙𝑙𝑘𝑘 ≥ 0  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑙𝑙 ∈ 𝐿𝐿, 𝑘𝑘 ∈ 𝐾𝐾, 𝑐𝑐 ∈ 𝐶𝐶  (13) 
 
The objective function (1) maximizes the number of patients who get medical services at MRSs. The objective function 

(2) minimizes the total cost. Constraint (3) restricts the quantity of medical supplies 𝑘𝑘 , transported from the medical 
deployment center 𝑐𝑐. This quantity must be greater than what is required for patients at the medical relief center 𝑟𝑟. Constraint 
(4) defines the maximum amount of medical supplies transported from medical deployment center 𝑐𝑐.  Constraint (5) reflects 
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that the capacity of MRS 𝑟𝑟 with medical service level 𝑙𝑙 can be allowed only when its candidate location is chosen for 
construction. 

Similarly, constraint (6) indicates that the patient can be assigned to MRS 𝑟𝑟 only when the MRS is constructed at 
candidate location 𝑟𝑟 and the patient's required medical service level should be ensured by the MRS 𝑟𝑟. Constraint (7) indicates 
that a patient is assigned to only one MRS. Constraint (8) meets the restriction on the total number of allowed MRSs with 
different medical levels. Constraint (9) states that each MRS can only have a medical service level. Constraint (10) ensures 
that the constructed MRSs' medical service levels should be lower than the maximum medical service level provided by that 
medical relief candidate (each medical relief candidate has a maximum medical service level). Finally, constraints (11), (12), 
and (13) define the nature of decision variables.  

 
3. SOLUTION METHOD 
 
This section introduces the preliminary definitions and the proposed solution methods to solve the proposed MRS location 
problem. As explained in Section 2, the proposed model has two objective functions: minimizing the distribution costs and 
maximizing medical services to patients in need. The approaches to solving multi-objective optimization problems are 
different from the single-objective optimization problem. Multi-objective optimization problems do not necessarily have a 
single optimal solution that simultaneously optimizes all the objective functions. Therefore, important definitions are given 
in the following.  
 

Definition 1: multi-objective optimization problem 
Consider a multi-objective model with a set of conflicting objectives 𝐹𝐹(�⃗�𝑥) = [𝐹𝐹𝑖𝑖(�⃗�𝑥), … ,𝐹𝐹𝑘𝑘(�⃗�𝑥)] subject to 𝑔𝑔𝑖𝑖(�⃗�𝑥) ≤
0, where 𝑖𝑖 = 1,2, … , 𝑘𝑘, �⃗�𝑥 denotes n-dimensional decision variables that can take real, integer, or Boolean value 
and 𝐹𝐹(�⃗�𝑥) is a set of 𝑘𝑘 objective functions. Its feasible solution space is Ω. Without loss of generality, we assume 
only maximization functions. The multi-objective model consists of finding a vector �⃗�𝑥 ∈ Ω that optimizes the 
vector function 𝐹𝐹(�⃗�𝑥).  
 

Definition 2: Pareto dominance 
A vector �⃗�𝑥 dominates �⃗�𝑥′ (denoted by �⃗�𝑥 ≺ �⃗�𝑥′) if it is subject to (i) and (ii): 

(i) 𝐹𝐹𝑖𝑖(�⃗�𝑥′) ≥ 𝐹𝐹𝑖𝑖(�⃗�𝑥),∀𝑖𝑖 = 1,2, … , 𝑘𝑘 
(ii) ∃ 𝑖𝑖 ∈ {1,2, … , 𝑘𝑘}: 𝐹𝐹𝑖𝑖(�⃗�𝑥′) > 𝐹𝐹𝑖𝑖(�⃗�𝑥) 

 
Definition 3: Pareto optimal (Pareto efficiency or efficient solution) 

A vector �⃗�𝑥∗ is Pareto optimal if there does not exist a vector �⃗�𝑥′ ∈ Ω such that �⃗�𝑥′ ≺ �⃗�𝑥∗. 
 

Definition 4: Pareto optimal set   
Given a multi-objective model in definition 1, the Pareto set is defined as P∗ = {�⃗�𝑥∗ ∈ Ω}.  
 

Definition 5: Pareto front 
Given a multi-objective model in definition 1 and its Pareto set P∗, the Pareto front is defined as PF∗ = {𝐹𝐹(�⃗�𝑥) | �⃗�𝑥 ∈
P∗}.  

 
Pareto efficiency or Pareto optimality is defined as a situation where one objective function cannot be improved without 

making at least another objective function or any loss. It takes place when the resources are most optimally used.   
The Pareto frontier or Pareto front is the set of all Pareto efficient solutions. Therefore, this study tries to find Pareto efficient 
solutions by implementing NSGA-II and the modified NSGA-II (mNSGA-II) with a fine-tuned parameters using the Taguchi 
method.  
In genetic algorithms, chromosome representation plays an important role in the performance of the algorithms. It must be 
simple and straightforward because the efficiency of the algorithms is determined by crossover and mutation operations that 
work on the chromosome structure. The solution to the MRS problem in this study consists of two parts: (1) the MRS locations 
with some medical service levels to be constructed and (2) the assignments and patients and medical supplies to be assigned 
to those MRSs. We explain the chromosome representation and how to construct the solutions using the proposed 
chromosome representation in the following.   
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Step 1) MRS locations with specific medical service levels  
 
The MRS locations and their medical service levels are determined by satisfying the two following constraints: 

a) Each candidate location for an MRS has a maximum level of medical service it can offer to patients. This level 
is limited by the pre-defined maximum medical service level for all MRSs. 

b) The number of MRSs constructed is no more than the maximum number of allowed MRSs with the pre-defined 
medical service levels. 

 
Considering these two constraints (a) and (b), the chromosome of an individual in a population is represented by a binary 

string with a length equal to ∑ |𝑅𝑅| ∙ 𝑆𝑆𝐿𝐿𝑖𝑖𝑖𝑖∈𝑅𝑅 , where |𝑅𝑅| denotes the maximum number of MRSs. The shaded binary string in 
Table 1 shows an example of chromosome representation. Table 1 illustrates the explanation of this chromosome 
representation. There are 4 candidate locations of MRSs, and the maximum medical service level for each candidate location 
is 3. One MRS with each medical service level is constructed.  Candidate locations 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 have newly-constructed 
MRSs with medical service levels 2, 1, and 3, respectively. Candidate location 𝑟𝑟4 does not have a new construction. Binary 
numbers 0 and 1 in the shaded row of Table 1 indicate whether a MRS with the corresponding level is constructed at the 
corresponding candidate location. The first three genes (0, 1, 0) of the chromosome corresponds to candidate location  𝑟𝑟1 and 
it indicates that a MRS is constructed there with medical service level 2. The second three genes (1, 0, 0) means that there is 
an MRS with medical service level 1 at candidate location 𝑟𝑟2. The thrd three genes (0, 0, 1) represent an MRS with medical 
service level 3 at candidate location 𝑟𝑟3. The last three genes (0, 0, 0) corresponds to candidate location 𝑟𝑟4, which has no 
construction for a MRS.  

Table 1. An example of chromosome representation. 
Candidate locations for 

MRSs 𝑟𝑟1  𝑟𝑟2  𝑟𝑟3  𝑟𝑟4 

Medical service level 1 2 3  1 2 3  1 2 3  1 2 3 

Chromosome 0 1 0  1 0 0  0 0 1  0 0 0 
 
Through the proposed chromosome representation, the locations of newly-constructed MRSs are determined.   
 
Step 2) Assignments and patients and medical supplies  
 
Once the locations of MRSs and their medical service levels are determined, the patients must be assigned to the 

appropriate MRSs to receive the appropriate medical services, and the medical supplies also need to be transported to MRSs. 
These are achieved using a set of greedy approaches on the top of solutions in Step 1. Firstly, MRSs choose the nearest 
medical deployment centers from their locations. Secondly, Patients need to be assigned to MRSs in a greedy principle of the 
shorter distance to an MRS and the higher priority on patients with the higher severity level. This idea was originally from 
Gu et al. (2018). They used an objective function that ensures this principle. The following approach has been used in this 
paper.  The coverage ratio level 𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙 for patient 𝑖𝑖,  MRS r, and medical service level l are calculated using sigmoid partial 
coverage function 𝐹𝐹(𝐷𝐷𝑖𝑖𝑖𝑖 ,𝛼𝛼𝑙𝑙 ,𝛽𝛽𝑙𝑙). Then, values of 𝑆𝑆𝑖𝑖 ∗ 𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙 of patient 𝑖𝑖 for all MRSs with the medical service level required 
by patient 𝑖𝑖 are calculated and sorted into a list in descending order. Each value is associated with patient i and MRS r, which 
indicates the assignments. Once a patient is assigned, we removed all its 𝑆𝑆𝑖𝑖 ∗ 𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙 values from the list. This completes the 
assignment of a patient. This process is repeated until all patients are assigned to MRSs. Thirdly, the medical supplies to be 
transported from medical deployment centers to MRSs are determined by adding up the amounts of medical supplies to be 
used to treat assigned patients with their medical service levels.  

Once Steps 1 and 2 are completed, two objective functions 𝑍𝑍1 and 𝑍𝑍2 can be calculated. In other words, we can used 
them as the fitness functions in NSGA-II and mNSGA-II. 

We explain the genetic operations that are used in our implementation of NSGA-II and mNSGA-II.  A binary tournament 
selection method has been used to select the parents for the crossover operation because it is simple and effective. Many 
previous studies have adopted this parent selection method to generate the mating pool, and two parents are randomly selected 
from the mating pool for reproduction (Deb et al., 2002; Wang et al., 2017). A multi-point crossover (De Jong and Spears, 
1992) is chosen for the crossover operator, and it is an enhanced crossover operation based on a one-point crossover by 
swapping alternated segments of chromosomes between two parents to generate new off-springs, as shown in Figure 3. As 
mentioned above, the genes of a chromosome have binary numbers to represent whether an MRS is established at the 
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corresponding location or not. Therefore, the chromosome designed in this paper is very suitable to adopt a bit-flip mutation 
(Chicano et al., 2015), which randomly selects one or more genes and flips the selected genes, as shown in Figure 4.  

 

 
Figure 3. A multi-point crossover operation 

 

 
 

Figure 4. A bit-flip mutation operation 
 
The study of Gu et al. (2018) proposed a mathematical model for an MRS location problem with a limited budget 

constraint and a single objective function and solved their model using a LINGO solver. Their experimental results showed 
that the MRS location problem is challenging to solve and time-consuming. The problem considered in this paper has two 
objective functions, making it belong to multi-objective optimization problems. Effective and efficient algorithms for multi-
objective optimization problems are considered to solve the proposed MRS location problem. NSGA-II (Deb et al., 2002), 
which consists of three essential cores including fast non-dominated sorting, fast crowding distance estimation, and simple 
crowding comparison operator, is one of the most popular multi-objective evolutionary algorithms and has been used to solve 
multi-objective problems, such as engineering design problems and medical treatments. Based on the proposed chromosome 
representation and evolutionary algorithm operators. A new algorithm, mNSGA-II (Wang et al., 2017), a variation of NSGA-
II hybrid with a memetic algorithm, is effective and efficient than the NSGA-II. This paper developed the mNSGA-II and 
NSGA-II for the proposed MRS location problem. 

 
4. COMPUTATIONAL EXPERIENCES 

 
This section presents the computational experiences and the discussion.  
 
4.1. Test problems 

 
To our best knowledge, there was no benchmark problem for the proposed MRS location problem in this study. Therefore, 
the problem generator from Gu et al. (2018) was extended to generate the severities and the locations of patients for the test 
problems.  

In our experiments, the maximum number of medical service levels is assumed to be 3, as Lee and Lee (2010) also used 
levels 1, 2, and 3 in their study. That is, the cardinality |𝐿𝐿| is set to 3. The number of medical deployment centers |𝐶𝐶| is set to 
2. The locations of patients and the medical deployment centers, and the candidate locations for MRSs are generated within 
a two-dimensional Euclidian space. The maximum X and Y coordinates are 100, respectively. The fixed construction costs 
of MRSs are randomly generated within the range [20000, 25000], [25000, 30000], and [30000, 35000] for levels 1, 2, and 
3, respectively. The variable construction cost per additional patient is $50 per assigned patient.  The operating cost of MRS 
per patient is $100. The vehicle cost is $1,000 per vehicle, and the transportation cost per unit distance is $10. The 
procurement costs of three different types of medical supplies are $30, $50, and $30, respectively. The volumes for the three 
types of medical supplies are 2, 3, and 5, respectively. The capacitated vehicle can load the medical supplies of 20 in volume.  
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Table 2 shows the characteristics of randomly generated test problems, i.e., the input parameters for the problem 
generator. For test problem e1 in Table 2, the number of patients |𝐼𝐼| is set to 100 and the number of candidate locations for 
MRS |𝑅𝑅| is set to 15. The maximum number 𝑃𝑃𝑙𝑙 of MRSs is allowed to be constructed at each level is set to 1, 2, and 3 for 
medical service levels 1, 2, and 3, respectively. The fourth column |𝑆𝑆𝐿𝐿𝑖𝑖=1| indicates the number of candidate locations to 
establish MRSs with medical service level 1. Similarly, |𝑆𝑆𝐿𝐿𝑖𝑖=2| and |𝑆𝑆𝐿𝐿𝑖𝑖=3| are given.  

 
Table 2. Characteristics of the randomly generated test problems. 

Test 
problem |𝐼𝐼| |𝑅𝑅| 

Number of MRS candidate locations 
for medical service level l 

𝑃𝑃𝑙𝑙  

|𝑆𝑆𝐿𝐿𝑖𝑖=1| |𝑆𝑆𝐿𝐿𝑖𝑖=2| |𝑆𝑆𝐿𝐿𝑖𝑖=3| 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 
e1 100 15 4 5 6 1 2 3 
e2 100 15 4 5 6 2 3 4 
e3 100 15 4 5 6 3 4 5 

 
 

e4 200 20 5 7 8 1 2 3 
e5 200 20 5 7 8 2 3 4 
e6 200 20 5 7 8 3 4 5 

 
 

e7 300 25 6 9 10 1 2 3 
e8 300 25 6 9 10 2 3 4 
e9 300 25 6 9 10 3 4 5 

 
 

e10 400 30 7 11 12 1 2 3 
e11 400 30 7 11 12 2 3 4 
e12 400 30 7 11 12 3 4 5 

 
 

 
As explained, the sigmoid coverage function was used to calculate 𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙, where 𝛿𝛿 were set to 5. The full coverage range 

𝛼𝛼𝑙𝑙 is set to 20, 30, and 40 for medical service levels 1, 2, and 3, respectively. The partial coverage range 𝛽𝛽𝑙𝑙 is set to 30, 40, 
and 50 for medical service levels 1, 2, and 3, respectively.  

 
4.2. Performance metrics 

 
Performance metrics used for assessing multi-object algorithms are different from those used for assessing single-objective 
algorithms. This study uses the five criteria for assessing and comparing performances of NSGA-II and mNSGA-II 
(Tavakkoli-Moghaddam et al., 2007; Behnamian et al., 2009; Karimi et al., 2010; Asefi et al., 2014). These performance 
metrics are classified into qualitative and quantitative metrics.  

 
1. Qualitative metrics: 

 
• Number of Pareto solutions (NPS): The cardinality of the Pareto solution set is denoted as NPS, which refers 

to the number of solutions that exist in the Pareto solution set. This performance criterion is calculated by 
counting the number of nondominated solutions obtained from each algorithm. Intuitively, a larger number of 
NPS is preferred because of the flexibility of decision-making. 
 

• Diversity: Zitzler and Thiele (1999) defined 𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 to evaluate the range of the values covered by the Pareto 
solutions, i.e., the diversity of Pareto solutions. The formula of 𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 is shown in the following, and a 
bigger value indicates a better spread of solutions. 
 

𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 = ��max
𝑖𝑖≤NPS

𝑓𝑓𝑖𝑖1 − min
𝑖𝑖≤NPS

𝑓𝑓𝑖𝑖1�
2

+ �max
𝑖𝑖≤NPS

𝑓𝑓𝑖𝑖2 − min
𝑖𝑖≤NPS

𝑓𝑓𝑖𝑖2�
2
  

 
• Spacing: Schott (1995) proposed a metric called spacing to evaluate the variance of each solution's range 

(distance) to its closest neighboring solution. The formula of the measure is given in the following: 
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𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖𝑠𝑠𝑠𝑠 =
1

NPS − 1
���̅�𝑑 − 𝑑𝑑𝑖𝑖�

2
NPS

𝑖𝑖=1

, 

 
where 𝑑𝑑𝑖𝑖 = min

𝑙𝑙≤NPS,𝑙𝑙≠𝑖𝑖
{�𝑓𝑓𝑖𝑖1 − 𝑓𝑓𝑙𝑙1� + �𝑓𝑓𝑖𝑖2 − 𝑓𝑓𝑙𝑙2�}  and �̅�𝑑 = 1

NPS
∑ 𝑑𝑑𝑖𝑖NPS
𝑖𝑖=1 . The distance 𝑑𝑑𝑖𝑖  is the minimum 

Manhattan distance between the i-th solution and the others from Pareto solutions. The smaller value of 𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖𝑠𝑠𝑠𝑠 
indicates a better solution. 
 

2. Quantitative metrics: 
 

• Mean ideal distance (MID): Karimi et al. (2010) defined it to measure the nearness or closeness between 
Pareto solutions and the ideal point. MID is defined as follows: 
 

MID = ∑ 𝐶𝐶𝑖𝑖
NPS
𝑖𝑖=1
NPS

 , 
 
where 𝐶𝐶𝑖𝑖 = �𝑓𝑓𝑖𝑖1 ∗ 𝑓𝑓𝑖𝑖1 + 𝑓𝑓𝑖𝑖2 ∗ 𝑓𝑓𝑖𝑖2 and 𝑓𝑓𝑖𝑖1 and 𝑓𝑓𝑖𝑖2 are the values of the 𝑖𝑖th Pareto optimal solution for the first and 
second objective functions, respectively. The lower the value of MID is, the better performance of the algorithm 
is. 

 
• Computation time (CT): Computation time is a very common metric to evaluate the performance of 

algorithms, and time is usually considered the most critical resource in disaster circumstances. So, in this study, 
computation time is adopted as a metric, and the unit for time is "second."  

 
These five performance metrics are used as criteria to compare the effectiveness and efficiency of NSGA-II and 

mNSGA-II for the proposed MRS location problem in this study.  
 

4.3. Taguchi method for parameter tuning  
 

Two algorithms designed for multi-objective optimization problems are implemented using NSGA-II and mNSGA-II, where 
various parameters significantly impact the performances. Therefore, the efforts to optimize the parameter choices of the 
algorithms for the concerned problems are necessary. To obtain the suitable parameters of NSGA-II and mNSGA-II in this 
study, the Taguchi method (León et al., 1987) has been adopted. The Taguchi method is a powerful and easy way to set 
parameters for algorithms, and it has been applied to many engineering problems (Asefi et al., 2014).  

For this parameter tuning, test problem e10 in Table 2 was used because of its problem size. In addition, assuming the 
parameters of our interests have a similar influence to both NSGA-II and mNSGA-II because of their similar procedures, 
only an algorithm, NSGA-II was used to conduct the parameter tuning. These tuned parameters through the Taguchi method 
are used by both algorithms for comparison purposes. To apply the Taguchi method, four parameters of our interests are 
chosen to be tuned. They are population size, crossover rate, mutation rate, and maximum generations as the terminal 
condition.  Through the experimental runs of the algorithms, the five different levels are chosen as potential optimal levels 
for parameters. Those levels are summarized in terms of parameters in Table 3.   

 
Table 3. Parameter levels for NSGA-II. 

Level 
Parameters 

Population 
size 

Crossover 
probability 

Mutation 
probability 

Maximum 
generation 

1 60 0.5 0.05 50 
2 80 0.6 0.1 70 
3 100 0.7 0.15 90 
4 120 0.8 0.2 110 
5 140 0.9 0.25 130 
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The L25 orthogonal array of the Taguchi method is adopted to design the experimentation. The L25 orthogonal array with 
corresponding parameter settings is presented in Table 4. 

 
Table 4. Experimental layout for NSGA-II: Taguchi L25 orthogonal array. 

Experiment 
Parameters 

Population 
size 

Crossover 
probability 

Mutation 
probability 

Maximum 
generation 

1 60 0.5 0.05 50 
2 60 0.6 0.1 70 
3 60 0.7 0.15 90 
4 60 0.8 0.2 110 
5 60 0.9 0.25 130 
6 80 0.5 0.1 90 
7 80 0.6 0.15 110 
8 80 0.7 0.2 130 
9 80 0.8 0.25 50 

10 80 0.9 0.05 70 
11 100 0.5 0.15 130 
12 100 0.6 0.2 50 
13 100 0.7 0.25 70 
14 100 0.8 0.05 90 
15 100 0.9 0.1 110 
16 120 0.5 0.2 70 
17 120 0.6 0.25 90 
18 120 0.7 0.05 110 
19 120 0.8 0.1 130 
20 120 0.9 0.15 50 
21 140 0.5 0.25 110 
22 140 0.6 0.05 130 
23 140 0.7 0.1 50 
24 140 0.8 0.15 70 
25 140 0.9 0.2 90 

 
An optimal signal of the performance is also important for the best results of the tuning because it would directly impact 

the performance of the algorithms. Because the five performance metrics are chosen to compare two algorithms in this study, 
we have used a utility function aggregating five criteria to evaluate the quality of the solution (Asefi et al., 2014). For 
simplicity, the utility function in this study is defined as follows: 

 
𝑈𝑈𝐹𝐹 = MID + 𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖𝑠𝑠𝑠𝑠 − 𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 + 𝐶𝐶𝐶𝐶 − NPS. 

 
To determine the optimal levels of the parameters of the NSGA-II, the signal-to-noise (S/N) ratio with the smaller-the-

better rule is adopted for the Taguchi method. The S/N ratio is defined in the following: 
 

𝑆𝑆 𝑁𝑁⁄ = −10𝐿𝐿𝐿𝐿𝑔𝑔10(∑ 𝑈𝑈𝑈𝑈�𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
𝑠𝑠

), 
 
where 𝑈𝑈𝐹𝐹�𝑖𝑖 = 𝑈𝑈𝐹𝐹𝑖𝑖 + |𝑚𝑚𝑖𝑖𝑚𝑚{𝑈𝑈𝐹𝐹1, … ,𝑈𝑈𝐹𝐹𝑠𝑠}| and 𝑈𝑈𝐹𝐹𝑖𝑖 denotes the value of utility function at i-th experimental run and 𝑚𝑚 denotes 
the number of experimental runs. In this study, the NSGA-II implementation was run 10 times under the same settings of the 
L25 orthogonal array in Table 4. The experimental results produce the plot of the mean S/N ratio for different levels of the 
parameters for test problem e10 using NSGA-II, as given in Figure 5.  
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Figure 5. The mean S/N ratio plot for different levels of the parameters for test problem e10. 
 

4.4. Comparisons and Discussions of NSGA-II and mNSGA-II  
 

This section compares the effectiveness and efficiency of NSGA-II and mNSGA-II for the proposed MRS location problem 
using the performance metrics 4.2. Both algorithms solve the test problems introduced in Section 4.1 using the optimized 
parameters in Section 4.3.  

These two algorithms are developed in the C++ programming language and implemented on a PC with an Intel Core 
i7-4792 CPU at 3.6 GHz and 16 GB of memory. Since the evolutionary algorithms belong to the Monte-Carlo approach, any 
experiment to solve each test problem using NSGA-II and mNSGA-II is repeated 10 times to obtain the average performance 
for five performance metrics.  

The twelve test problems (instance) were solved 10 times using NSGA-II and mNSGA-II to produce the Pareto solutions. 
Then, five metrics are calculated from the solutions at each run. Then we take the average of five performance metrics. The 
experiment results of those five average performance metrics are compared in Figure 6.  

Figure 6(a) shows the calculation times of NSGA-II and mNSGA-II to solve the Pareto solutions. For test problems of 
relatively small sizes, the calculation times of both algorithms were very similar. Interestingly the calculation times of 
mNSGA-II are significantly larger than that of NSGA-II for the test problems of larger sizes.  It is conjectured that the 
proposed MRS location problem's combinatorial nature signifies the additional computational burden of mNGSA-II.  

For diversity of the Pareto solutions, mNSGA-II produces a similar or slightly better performance than NSGA-II, as 
shown in Figure 6(b). The mean ideal distance (MID) in Figure 6(c) shows similar results as the diversity metic were obtained 
as mNSGA-II shows a similar or slightly shorter MID than NSGA-II. Then, Figure 6(d) shows that mNSGA-II generates 
more Pareto solutions (or Pareto front) than NSGA-II, making mNSGA-II performance superior to NSGA-II.  
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Figure 6. The average value of the five criteria obtained by mNSGA-II and NSGA-II. 
 

Regarding the spacing metric, one can observe that there is no dominating algorithm. It is observed that the performance 
of the two algorithms depends on the test problems in terms of the spacing metric.  

 Descriptive statistics are calculated further to illustrate our evaluation and comparison regarding the performance of 
NSGA-II and mNSGA-II in terms of five performance metrics. 7 shows the boxplot of the five average performance metrics 
from the 10 experimental results of test problem e10. The dashed line in the box denotes the median, and the small circle 
denotes the statistical outlier. Figure 5 shows mNSGA-II outperforms NSGA-II for 4 performance metrics, including diversity, 
mean ideal distance, the number of Pareto solutions, and spacing. NSGA-II completes the execution of the algorithms much 
quicker than mNSGA-II on average.  
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Figure 7. Boxplot of the five performance metrics for mNSGA-II and NSGA-II on test problem e10. 
 
Additional analysis and discussion on the Pareto solutions (or Pareto front) are given here. The Pareto front obtained by 

NSGA-II and mNSGA-II for test problem e10 is visualized in Figure 8. The Pareto front from both algorithms for 10 runs is 
given. The red circles and blue crosses denote the Pareto front obtained by NSGA-II and mNSGA-II, respectively. The 
proposed model in this study has two objective functions of maximizing 𝑍𝑍1 and minimiziing 𝑍𝑍2 simultaneously. Therefore, 
preferred solutions are located at the lower-right area of the 𝑍𝑍1- 𝑍𝑍2 graphs in Figure 8. In addition, the widespread of the 
Pareto solutions indicates the higher diversity, offering various options of choice for the decision-makers. 

A numerical analysis has been completed to compare the results of both algorithms, using the Pareto dominance. Overall, 
the Pareto solutions obtained by the mNSGA-II have a stronger tendency to be located at the lower-right area of the graph 
than those by the NSGA-II. We can observe them in Figure 8.  In Figure 6(a), mNSGA-II generates 19 Pareto solutions while 
NSGA-II produces 16 Pareto solutions. In addition, 14 Pareto solutions by NSGA-II are dominated by the Pareto solutions 
by mNSGA-II. Only two Pareto solutions by NSGA-II are not dominated, as shown as two Pareto solutions near 3000 and 
4000 of Z1 values.  in Figure 6(a).  In Figures 8(i) and 8(j), mNSGA-II obtained 19 Pareto solutions, and NSGA-II obtained 
11 Pareto solutions. Those of mNSGA-II dominate all the Pareto solutions obtained by NSGA-II. Therefore, it is concluded 
that mNSGA-II finds more Pareto solutions than NSGA-II. The solutions obtained by mNSGA-II dominates most of the 
solutions obtained by NSGA-II. 
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In terms of the diversity of Pareto solutions, it was observed that the Pareto solutions generated by mNSGA-II are 
located over the wide ranges in all 10 runs, as shown in Figure 8. It is concluded that mNSGA-II generates better Pareto 
solutions than NSGA-II.  

 

 
 

Figure 3. Pareto front obtained by NSGA-II and mNSGA-II for test problem e10 
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Table 6 presents the number of Pareto solutions obtained by NSGA-II and mNSGA-II for test problem e10 in each run.  
The results show that mNSGA-II produces more Pareto solutions than NSGA-II except for run 2, where both algorithms 
generate the same number of Pareto solutions. 

 
Table 6. Number of Pareto solutions obtained by NSGA-II and mNSGA-II for test problem e10 in each run. 

 

Algorithms 
Runs 

1 2 3 4 5 6 7 8 9 10 
NSGA-II 16 19 16 15 9 10 12 13 11 11 

mNSGA-II 19 19 16 22 16 22 21 19 19 19 
 
This result indicates that mNSGA-II provides more informative and various decisions of choice to the decision-makers 

for selecting MRS locations. It reveals that mNSGA-II outperforms NSGA-II in the proposed MRS location problem. 
Decision-making in response to disasters is complex (Horita et al., 2018). Many influential factors, including external 

and internal factors, incur the dynamics of disaster, which increase the difficulty of disaster responses. In the context of a 
disaster, providing more candidate solutions will help the decision-makers to make good responses. Usually, decision-makers 
need to consider the preferences, hopes, and opinions before responding to a disaster, when decision-makers adopt priori 
methods (Miettinen 1998) to solve multi-objective optimization problems under disaster context. The information provided 
by the mNSGA-II could enhance the preferences, hopes, and opinions. 

The experimental results in this section find a trade-off between computational time and solution quality for NSGA-II 
and mNSGA-II.  NSGA-II converges faster than the mNSGA-II. However, the solution quality obtained by the NSGA-II is 
worse than the solutions obtained by the mNSGA-II. The trade-off between computational time and solution quality is 
widespread in solving industrial problems, such as scheduling problems and routing problems. This paper mainly explores 
the performances of NSGA-II and mNSGA-II by comparing different performance metrics, including the number of Pareto 
solutions, mean ideal distance, spacing, diversity, and computation time. This discussion helps decision-makers choose an 
appropriate solution method based on the acceptable computation time under the disaster emergency circumstance. After 
obtaining the Pareto front, the decision-maker must select one preferred solution from the Pareto front, considering the pre-
defined selection criteria. Choosing one solution from the Pareto front is also a challenging problem too. It is beyond the 
scope of this paper. Many previous studies (Wang and Rangaiah, 2017) investigate how to select one solution from the Pareto 
front. The decision-maker can select a selection method as a criterion or design a new method for determining one solution 
from the Pareto front. 
 
5. CONCLUSIONS  

 
In emergencies such as typhoons, earthquakes, or terrorist attacks, quick responses are imperative for the administrations. 
The administrations need to augment their medical response capability by using scarce medical resources to provide 
emergency medical service. In an emergency management system, the planner aims to serve as many affected people as 
possible with a minimum budget concerning the emergency relief logistics. Therefore, in this study, we proposed a bi-
objective mathematical programming model to minimize the total cost associated with the logistics of medical supplies and 
maximize the total number of patients who get appropriate medical services at multiple MRSs. 

This study considers the severity levels of patients and medical service levels of MRSs. The patients are assumed to be 
located in the impacted areas, and the candidate locations or buildings are pre-determined ahead of the disaster strike. Patients 
can be served by temporary MRSs whose medical service level is equal to or higher than the severity levels of patients. The 
locations of MRSs are determined in consideration of the distribution of patients of various severities and the locations of 
medical deployment centers.  

Because the proposed MRS location problem has bi-objective functions, five different performance metrics has been 
chosen to measure the performance of solution methods. Those include the number of Pareto solutions, mean ideal distance, 
spacing, diversity, and computation time.  

To solve the multi-objective optimization model, NSGA-II and an mNSGA-II are implemented. The algorithm 
parameters were tuned for the best performance using the Taguchi method. Extensive computational experiments are 
conducted to compare and evaluate the performance of NSGA-II and mNSGA-II. The experimental results show that 
mNSGA-II outperforms NSGA-II in terms of solution quality.  
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Future studies should consider the following aspects: (1) considering vehicle routing problems to pick-up patients; (2) 
multi-time period will be incorporated, which may lead to computational intractability.  
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