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A B S T R A C T

A game theoretic model was proposed for multiple container terminals competing with each other to maximize
their own profits by determining their terminal handling charges (THCs) that affect the market shares of
terminals. The pricing model can describe both the competitive and cooperative games. The congestion cost of
the terminals was also considered in the cost term, and revenue sharing rental fee schemes with two-step unit
fees were analyzed. To overcome the difficulty in obtaining the Nash Equilibrium of the THCs for container
terminals, this study proposed a coevolution-based procedure that adopts the neighborhood structure on toroidal
grids and supports localized interactions among species. The numerical experiments showed that both the cost
model with the congestion cost and the revenue sharing scheme help improve the total profit of the port. In
addition, the results obtained by the coevolution-based procedure in this study were compared with those in
previous studies.

1. Introduction

With the rapid growth of international trade and economic globa-
lization, the global container cargo volume has been increasing rapidly.
The percentage of container cargo volume has increased drastically
from 2.75% in 1980 to 6.14% in 1990, 10.49% in 2000, and 16.02% in
2010 (Tsai & Huang, 2017). The global container cargo volumes grew
6.7% in the first half of 2017 (Hand, 2017). In response to the in-
creasing demand for container cargo volume, some countries have
started to construct new ports to increase their competitive power, in-
cluding inter-competition power and intra-competition power, e.g.,
South Korea opened Busan New Port in 2010.

On the other hand, constructing new terminals incurs severe com-
petition among neighboring container terminals and results in a de-
crease in handling charge to a level threatening the profitability of
container terminals. Table 1 shows that the terminal handling charge
(THC) in Korea decreased by 21.5% on average after the operation of
Busan New Port began. As a result, some container terminals are suf-
fering from low profitability, even financial deficit, and the mass dis-
missal of employees. All the containers terminals are paying fixed rental
fees to the Busan Port Authority. The government of Busan Me-
tropolitan City and Busan Port Authority attempted to improve the
profitability of the container terminals in Busan by weakening the
competition among the terminal operators. This issue was well

discussed by Ha, Choi, and Kim (2013), who proposed a revenue
sharing rental fee scheme, in which the unit rental fee increases with
increasing throughput of a terminal, expecting the increased unit rental
fee will discourage the terminals from increasing the market share by
decreasing its THC.

One of the elements of Industry 4.0 is the horizontal integration
among various processes and among players in the supply chain (i-
SCOOP, 2020). The importance of the cooperation among players in the
global supply chain was also emphasized by Jamrus, Wang, and Chien
(2020). Container terminals are crucial players in the global supply
chain. This study investigates how container terminal operators de-
termine the terminal handling charges when they compete with each
other and what advantages they can obtain when they cooperate with
each other. This study also analyzes how the port authority can attract
terminal operators to cooperative decisions by using an appropriate
rental fee scheme.

This study proposes a game-theoretic model which describes the
competition among terminal operators for maximizing their own profit
by optimally determining the terminal handling charge. The model is
more general than previous studies in that it generalizes mathematical
expressions of the terminal operation cost and the revenue sharing
scheme between the port authority and a terminal. A new solution
method, called coevolution-based procedure, to solve the generalized
model is introduced and applied to the case of Busan port.
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The remainder of this paper is organized as follows. Section 2 pro-
vides a literature review. Section 3 proposes a new model for the game
theoretic THC pricing problem. Section 4 introduces a coevolution-
based procedure for obtaining the Nash Equilibrium (NE) in competi-
tive games. Section 5 selects the best coevolution strategy to be used in
the coevolution-based procedure and evaluates the performance of the
coevolution-based procedure. The results show that the coevolution-
based procedure in this study outperforms the approach in previous
studies. A case of the Busan port was analyzed using the coevolution-
based procedure in Section 6. The conclusions and future studies were
discussed in Section 7.

2. Literature review

In the field of genetic algorithm (GA), there have been studies on
parallel genetic algorithms (PGAs) which perform several concurrent
searches of the solution space (Crainic & Toulouse, 1998). There are
two types of parallel genetic algorithms: coarse-grained PGA and fine-
grained PGA. A coarse-grained PGA replicates the approach in the
standard GA on several subpopulations. A migration operator may be
added to exchange information among subpopulations regularly. The
fine-grained PGA divides the population into a large number of subsets
and each subset is connected to several others in its neighborhood. Each
subset may contain a single chromosome. Genetic operators are applied
for exchanging information between individuals in the same neigh-
borhood. A typical example of the neighborhood may be defined by the
set of neighboring entries when chromosomes are located at a two di-
mensional matrix, which is adopted in this study.

Collin and Jefferson (1991) compared two selection/crossover
schemes: panmictic scheme in which the selection of chromosome for
GA operation is done at the level of the entire population; local scheme
in which the selection and crossover are performed locally. It was found
that the local scheme finds the optimal solution and resistant to pre-
mature convergence because different solutions may be explored at
different neighborhoods. By the numerical experiments, it was found
that the fine grained PGA has advantages, compared with the panmictic
scheme, including the capability of maintaining the diversity of the
solutions and the short computation time for obtaining the solution.

Kohlmorgen, Schmeck, and Haase (1999) compared two PGAs: is-
land model, which is another name of the coarse-grained PGA, and the
neighborhood model, which corresponds to the fine-grained PGA. It
was shown that PGAs provide better solutions in shorter computational
time. It was also found that the island model converges much earlier
than the neighborhood model but the latter provides better solutions
than the former.

Kauffman and Johnsen (1991) studied the coevolutionary dynamics
among different species and provided some examples of the problems to
which coevolution approaches may be applied. Price (1997) suggested
that a coevolutionary programming approach may be used for solving
various game problems. It was shown that the coevolutionary genetic
algorithm may be applied to several standard industrial organization

games, such as the Bertrand and Cournot competition games with linear
demand functions for which the optimal solutions are known. A simple
coevolutionary genetic algorithm was used to solve these simple pro-
blems, in which a chromosome was selected randomly from the entire
population of each player for the fitness evaluation. Riechmann (2001)
attempted to explore the relationship between the theory of genetic
algorithm and the evolutionary game theory. Riechmann (2001) at-
tempted to explain that economic learning via genetic algorithms as a
special form of an evolutionary game, which GA learning results in a
series of near Nash equilibria approaching an evolutionary stable state.
Cau and Anderson (2002) proposed a coevolutionary approach, based
on genetic algorithm, for describing competitive electricity market.
Trading agents were described to co-evolve their own populations of
bidding strategies using a genetic algorithm. However, the evolving
strategies, including the fitness evaluation, were similar to those the
traditional genetic algorithm. The strategy of fitness evaluation, “all
against the best,” was used in which a chromosome of a player is
evaluated from the competition between it and the best chromosomes
of the other players’ populations. Ficici, Melnik, and Pollack (2000)
tested various selection methods in the coevolutionary algorithm for an
evolutionary game. Sefrioui and Perlaux (2000) also tested a Nash GA
to find Nash Equilibrium for various problems. They found that the
Nash GA is faster and more robust in finding the NE in terms of com-
putational time. They compared the Nash GA with the traditional
Pareto GA, which has been designed to derive the Pareto optimal so-
lutions that must be different from the NE. They used the best chro-
mosome from every other population as the partners for the evaluation
of a chromosome in a population.

Son and Baldick (2004) found that the conventional NE search al-
gorithms might trap into a local NE when a game problem has local NE.
To overcome this drawback, they proposed a hybrid coevolutionary
programming approach in which a population was maintained for each
player and the fitness values of chromosomes were evaluated by ran-
domly selecting a chromosome from each population and the result of
the tournament decides the fitness values of the selected chromosomes.
They proposed the second version of the coevolutionary programming
in which for evaluating the fitness value of a chromosome from a po-
pulation, the best chromosome from each of the other populations are
matched and for fine tuning, after matching, the chromosome is im-
proved for increasing its fitness value. They showed that the hybrid
coevolutionary approaches find the NE better than the conventional NE
search algorithms, and that the second version of the coevolutionary
approach performs better than the first version in finding the NE. Maher
and Poon (1996) solved computer-based design exploration problem by
using a coevolutionary approach. Kim, Kim, and Kim (2000) solved a
line balancing and sequencing problem in mixed model assembly lines
by using a coevolutionary approach in which chromosomes from dif-
ferent populations evolve through a localized interaction within a
neighborhood as in the case of a fine-grained PGA. Kim, Park, and Ko
(2003) solved an integrated problem of process planning and job shop
scheduling problem and showed that the integrated problem can be
solved efficiently by applying the coevolutionary GA with two popu-
lations, one for the process planning problem and the other for the shop
scheduling problem. They also used the neighborhood structure for the
localized evolution, which is also adopted in this study.

This study proposes a new coevolutionary GA for solving competi-
tive game problems which adopts the neighborhood structure in the
population for each player, which has been used in PGAs for main-
taining the diversity of the solutions in a population but has never been
used for solving competitive game problems. The proposed algorithm
will be applied to solve the competitive pricing problem among con-
tainer terminals.

Several studies have reported the port pricing problems that are
related to the problem in this study. Song and Panayides (2002) applied
a cooperative game theory to the analysis of the cooperation among
members of strategic shipping liner alliances. Meersman, Van de

Table 1
Change in terminal handling charge per Twenty Foot Equivalent Unit (TEU)
after the Busan New Port started the operation (Korean Won) (Korea Port
Logistics Association, 2014).

Port Charge Reduction (%) compared with 2010

2010 2012

Busan 81,043 60,053 35
Gwangyang 49,108 39,070 25.7
Incheon 83,150 74,300 11.9
Pyeongtaek 79,750 66,500 19.9
Ulsan 72,250 72,250 0
Average 75,382 62,034 21.5
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Voorde, and Vanelslander (2003) introduced a range of factors influ-
encing the port service price. De Borger, Proost, and Van Dender (2008)
developed a two-stage game in capacities and prices to analyze the
interactions between the pricing behavior of the ports and the optimal
investment policies in the port and hinterland capacity. Ishii, Lee,
Tezuka, and Chang (2013) developed a non-cooperative game model to
analyze the effects of inter-port competition by selecting port charges
strategically in the timing of port capacity investment. Park, Min, and
Sung (2015) proposed a mathematical model based on cooperative
game theory to help port authorities determine the optimal berthing
charge, which is a critical element of port pricing. Veldman, Garcia-
Alonso, and Vallejo-Pinto (2013) used a logit model to allocate demand
among multiple transportation routes, including ports. Woo, Pettit,
Kwak, and Beresford (2011) introduced the logit model, which has been
popular for modeling the allocation of transportation demand into
multiple routes for freight and passengers in transport economics in
their survey paper.

Studies specifically related to the pricing problem of the handling
charge in container terminals, which is the main issue of this study,
have been reported. Chen and Liu (2014) examined the optimal con-
cession contracts considering the fixed-fee, unit-fee, and two-part tariff
contract schemes offered by a landlord port authority considering
competition among the operators of container terminals using a two-
stage game. Chen and Liu (2015) studied the optimal concession con-
tracts offered by a landlord port authority, who pursued traffic-volume
maximization, to competing operators of container terminals. Chen
et al. (2017) extended the study by Chen and Liu (2014) under the
assumption that terminal operators are competing in prices to max-
imizing their own profit, instead of competing in quantities. Based on
the Cournot model developed by Chen and Liu (2014), Liu, Chen, Han,
and Lin (2018) analyzed the optimal concession contracts of a port
authority with the minimum throughput constraint and with the ob-
jective of maximizing the profit of the terminal operators. Han, Chen,
and Liu (2018) examined the optimal concession contracts offered by
landlord port authorities with two different goals: maximizing the
weighted sum of fee revenues and throughput benefits, and maximizing
social welfare. The above studies (Chen & Liu, 2014, 2015; Chen, Lin, &
Liu, 2017; Han et al., 2018; Liu et al., 2018) have a limitation in that
they used a linear function to represent the relationship between the
THC and the amount of containers handled by a container terminal
operator, which this study attempts to overcome.

Saeed and Larsen (2010a) used a nonlinear function to represent the
relationship among the THCs of container terminals and the amounts of
containers handled by container terminals. A logit model was used to
allocate the total demand to multiple competing container terminals.
Although the cooperative game was addressed, the Bertrand Nash
Equilibrium was the key element for the analysis. The analytic ex-
pression for Bertrand Nash Equilibrium (NE) is derived, which will be
compared with the results from this study in section 6. Saeed and
Larsen (2010b) analyzed the effects of different types of concession
contracts on the revenue of the port authority, the profits of the con-
tainer terminals, and the port user surplus. Their results are again based
on Nash Equilibrium analysis. Saeed and Larsen (2013) provided detail
derivations of the analytic expressions for the Nash Equilibrium. Park
and Suh (2015) proposed non-cooperative and cooperative game
models based on the study by Saeed and Larsen (2010a) considering the
case of Busan port. Recently, Zhou & Kim, 2019 studied a two-stage
game for designing concession contract between a port authority and
container-terminal operators by revenue-sharing schemes with quantity
discount.

Compared with previous studies, the contributions of this study are
summarized as follows. (1) This study generalizes the operation cost
function of a terminal, which was assumed to be proportional to the
throughput in previous studies, to be dependent on the capacity utili-
zation of the terminal. (2) This study introduces a new revenue sharing
scheme for the rental fee of a terminal, which has a two-step unit rental

fee: the first unit rental fee for the throughput below a threshold break
point and the second unit rental fee for the throughput above the break
point. Note that the two-step unit rental fee is a generalized version of
the single unit rental fee in previous studies. (3) To overcome the dif-
ficulties in obtaining the Nash Equilibrium using mathematical ana-
lysis, this study suggests a coevolution-based method, which is expected
to handle more complicated demand allocation functions or profit
functions. (4) The proposed model and the coevolution-based proce-
dure are applied to the case of Busan port. The numerical experiments
showed that both the proposed operation cost function, considering the
capacity utilization and the new revenue sharing scheme with a two-
step unit fee, help to improve the total profit of the port. (5) A nu-
merical experiment compared the solution approach in this study with
the one in Saeed and Larsen (2010a) and showed that the procedure in
this study obtained more accurate Nash equilibria (NEs) than Saeed and
Larsen (2010a).

Regarding the third contribution above, this study applied a coe-
volutionary algorithm to the problem of determining the THC of con-
tainer terminals competing in the same market for the first time. Most
previous studies on this problem (Chen & Liu, 2014, 2015; Chen et al.,
2017; Han et al., 2018; Liu et al., 2018) have used analytic methods
which have limitations on the complexity of the models that can be
solved. Although Saeed and Larsen (2010a, 2010b, 2013) solved a non-
linear model analytically, it will be shown, at the end of Section 5, that
the NE solution obtained in Saeed and Larsen (2010a, 2010b, 2013) was
not as accurate as the algorithm in this study can obtain. This study
assumes a more complicated relationship, the logit model, between the
THC of a container and the amount of containers handled by the con-
tainer terminal operators. The pricing model based on the non-linear
constraints may not be solved by analytic approaches and the closed
form analysis may not be possible. This study attempts to overcome the
difficulty through the use of a coevolution based procedure. That is, the
necessary conditions for the NE cannot be derived in an explicit form
because the profit function is an implicit function and the relationship
between the THC of a container and the amount of containers handled
by each container terminal operator is also expressed as an implicit
function. Thus, this study proposes a new coevolution-based procedure
to obtain the NEs in competitive games. The coevolutionary GA, which
is a part of the coevolution-based procedure in this study, adopts the
neighborhood structure on toroidal grids, which has been used for the
evolution process in parallel GAs and which aims at maintaining the
diversity of the solutions in a population but has never been used for
solving competitive game problems. The coevolution-based procedure
proposed in this study is designed for finding NE solution efficiently,
because search strategies are selected through extensive numerical ex-
periments. It is expected that the coevolution-based procedure in this
study can be applied easily to a wide range of competitive game pro-
blems with minor modifications.

3. A competitive pricing problem for container terminals

Container terminals in the same port compete with each other to
maximize their profit by attracting more cargo. Although there are
many criteria for shipping liners to select a terminal to call in a port,
such as handling facilities, service level, turnaround time of vessels and
road trucks, storage space, and free time limit for storage, the THC per
container is one of the most important criteria. A lower THC will attract
more cargo considering the competition with other terminals. On the
other hand, this problem must be described as a game because one
terminal has to consider the reactions of the other terminals when de-
termining its THC.

This section describes the competitive pricing problem for container
terminals. The competition among container terminals is described as a
Bertrand game, in which the price is the decision variable of partici-
pating players for the competition. Before introducing the behaviors of
terminal operators, the notations used in the formulation are listed,

Y. Zhou and K.H. Kim Computers & Industrial Engineering 144 (2020) 106466

3



which are almost the same as those used by Saeed and Larsen (2010a):

Indices:
i j, : Indices for a container terminal, i j, {1, 2, 3, }.
Parameters:
COi: Fixed cost component of a terminal user i, who represents an agent who

pays the cost of container cargo and determines which terminal to use
for their cargo.

CAPi: Annual handling capacity of terminal i, which is determined by the
number of berths, the number of quay cranes, areas of the storage yard,
and number of yard cranes and yard trucks.

ai: Alternative specific constant of the utility function of terminal i, which
represents the attribute of terminal i, enabling it to obtain a high market
share compared to other terminals.

wi: Rental fee paid by terminal i per TEU (handled by terminal i) to the port
authority.

i: Rental fee (in the percentage of the handling price) per TEU paid by
terminal i to the port authority.

ri: Annual rental fee paid by terminal i to the port authority. Note that this
rental fee is not dependent on the number of containers handled by
terminal i.

oi : Operation cost (per minute) of a gang, which includes the labor cost and
equipment-related cost of a quay crane, yard crane.

: Factor that converts the number of containers to TEUs (Twenty-foot-
Equivalent-Units) (1 2).

b: Coefficient of the price in the utility function of container terminals.
A: Base value of the aggregate handling demand function.
: Parameter for the aggregate handling demand function [0, 1].
Sets
T: Set of all the container terminals.
Tk

c: Set of container terminals in coalition k.
Decision variables:
pi: THC per TEU at container terminal i.
Derived variables:
xi: Yearly container volume handled by container terminal i.
OUCi: Other user costs for container terminal i.
Qi: Market share of container terminal i.
Ui: Utility function for container terminal i.
X : Total yearly aggregate demand.
Cost functions:

( )fi
xi

CAPi
:

Waiting cost function of shippers at container terminal i whose
throughput and capacity is xi and CAPi, respectively.

( )gi
xi

CAPi
:

Operation cost function of container terminal i whose throughput and
capacity is xi and CAPi, respectively. When this is assumed to be
constant, this will be denoted as ci.

3.1. Allocating demand for container handling services to terminals

A port terminal levies THCs on terminal users for the handling and
storing of containers. This study basically considers the effects of THC
on the amount of cargo handled by each terminal. On the other hand,
the decision regarding the choice of terminal is affected not only by the
THC, but also by some additional cost which is called “other user costs”
(OUC). OUC consist of (1) hinterland transport costs (i.e. rail and truck
transport costs for moving containers between container terminals and
the source locations of the cargo); (2) freight rates charged by container
lines, including any surcharges related to the port and terminal effi-
ciency; and (3) costs related to the transport time. The cost terms for
OUC may be classified into terms related to the operation efficiency of a
terminal and those with no relationship to the operation efficiency. The
operation is slowed down as the throughput approaches the capacity of
a terminal. Woo, Song, and Kim (2016) showed that the operation cycle
time of quay cranes becomes longer as the utilization of storage space
becomes higher using empirical data.

OUCi can be expressed generally as follows (Saeed & Larsen, 2010a):

= +OUC CO f x
CAPi i i

i

i (1)

where fi is an increasing function of the ratio,
x

CAP
i

i
, andCOi is a constant

value. The utility function of terminal user i can be expressed in the
following form:

= + +U a b p OUC( )i i i i (2)

where ai is the alternative specific constant for terminal i and b is the
coefficient of the THC and OUC at the terminals.

The logit model has been adopted widely to allocate demand among
multiple transportation routes, including ports (Bovy & Bliemer, 2006;
Papacostas & Prevedouros, 2001; Veldman et al., 2013). This study
assumed that the market share of terminal i can be expressed as Eq. (3)
using the logit model,

=Q e
ei

U

j
U

i

j (3)

The total aggregate demand (TEUs) for all the terminals is given by

=X Ae ,LS (4)

where A and are constant and < <0 1 (Saeed and Larsen, 2010a,
2010b) and

=LS ln e .
j

Uj

(5)

The total aggregate demand may be allocated to each terminal using

=x XQi i (6)

For given values of THCs of terminals and the constant parameters,
the values of xi’s satisfying equations (1)-(6) can be obtained using the
Newton-Raphson method (Ypma, 1995). Details of the Newton-
Raphson method in this study are described in Appendix A.

3.2. Various profit functions for container terminals

The following three methods for charging rental fees may be as-
sumed. The first rental fee model is a fixed rental fee, which is the one
rental system currently used in Korea. The profit function of container
terminal i becomes

= p g x
CAP

x r .
i i i

i

i
i i

(7)

The model proposed by Saeed and Larsen (2010a) and Park and Suh
(2015) is a special case of this model with ( )gi

x
CAP

i
i
= c .i

The second rental fee model is based on a fixed fee per TEU handled
at a container terminal. Let the rental fee be a function of xi, +v x r( )i i i1 ,
which is a revenue sharing model. The profit function of container
terminal i can be expressed as

= p g x
CAP

x v x r( ) .
i i i

i

i
i i i i1

(8)

The model proposed by Saeed and Larsen (2010a) is a special case of
this model, where =v x w x( ) .i i i i1 The third type of rental charge is a
function of the revenue of the terminal, p xi i. The profit function of
container terminal i can then be expressed as

= p g x
CAP

x v p x r( ) .
i i i

i

i
i i i i i2

(9)

In the study by Saeed and Larsen (2010a), a special case of this
model was proposed: =v p x p x( ) .i i i i i i2

The assumption by Saeed and Larsen (2010a, 2010b) that ( )gi
x

CAP
i

i
is

a constant, ci, means that the operation time per container remains
constant, even when the throughput approaches the handling capacity
of the terminal, which is not realistic. In addition, they considered only
the variable rental fee models, which is proportional to the total
throughput or the total revenue, i.e., =v x w x( )i i i i1 or =v p x p x( )i i i i i i2 .
This study will explore the impact of the variable revenue function with
a two-step unit fee on the total profit of the port.

To estimate the operation cost for different levels of capacity
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utilization of container terminals, Woo et al. (2016) conducted statis-
tical analysis of real data collected from a terminal in Busan and pro-
posed the following relationship: (average the quay crane cycle time
per move) = +c c(capacity utilization)1 2. Although they used “storage
capacity utilization,” under the assumption that handling capacity and
storage capacity are well balanced, the same relationship will be used in
this study. That is, this study assumed that the operation cost increases
linearly as the capacity utilization increases, which may be expressed
by

= +g x
CAP

o e x
CAP

e .i
i

i
i

i

i
1 2

(10)

For any contract between the port authority and terminal operators,
the profit of any terminal operators should be non-negative, that is,

0i .
In conclusion, the problem in this study can be defined as

i TMax for all
p i

i (11)

subject to

=x A exp exp ln exp U exp U exp U( ) ( ) ( )i
j

j i
j

j
(12)

= + + +U a b p CO f x
CAPi i i i i

i

i (13)

0
i (14)

Eq. (12) comes from Eqs. (3), (4), (5), and (6) and Eq. (13) may be
obtained by combining Eqs. (1) and (2). The next section proposes a
coevolution-based procedure to solve problems (11) - (14) for the fol-
lowing reasons. Even for the simplified case that =( )g ci

x
CAP i

i
i

,
=v x w x( ) ,i i i i1 and =v p x p x( ) ,i i i i i i2 which was assumed in Saeed and

Larsen (2010a, 2010b, 2013), from the necessary conditions, = 0p
i

i
for all i, it is impossible to derive the explicit equations that can be
solved by a numerical search (See Appendix C). The solution obtained
by Saeed and Larsen (2010a, 2010b, 2013) for the simplified case will
be shown to be inaccurate by a numerical experiment in Section 5.
When a set of (pi) is given, finding the set of (xi) satisfying conditions
(12) - (14) is possible using the numerical method in Appendix A. The
problem is to find the Nash Equilibrium for multiple terminals, which is
different from the problems with multiple objectives, in which the
Pareto optimal solutions are to be searched and the differences are well
explained by an experiment in Section 6. The coevolutionary algorithm,
in which the separate population, representing the decisions by each
company, evolves considering the evolving decisions in the populations
for other companies, coincides with the definition of the Nash Equili-
brium. Furthermore, the coevolutionary algorithm may be applied to
any more complicated type of profit function of the terminals including
Eqs. (7)–(9).

Because the explicit equations from the necessary conditions,
= 0p

i
i

for all i, may not be obtained, a search procedure for finding
the Nash Equilibrium, maximizing (11), directly needs to be developed.

Owing to the complexity of the game theory problem itself
(Daskalakis, Goldberg, & Papadimitriou, 2009; Gottlob, Greco, &
Scarcello, 2005), coevolutionary algorithms have been applied to solve
a game theory problem (Wiegand, Liles, & De Jong, 2002). This study
attempted to use a search procedure for finding the Nash Equilibrium of
(pi). A coevolutionary genetic algorithm, in which each population re-
presents the coevolving solution communicating with other population,
was proposed.

4. A coevolution based procedure

One of the critical distinctions of coevolutionary algorithms from
ordinary evolutionary algorithms lies in how the interactions among
coevolving entities are implemented during the evolution. In the coe-
volutionary algorithm designed in this study, the population of each
player evolves considering that each player improves its population in
the direction of its own profit. Therefore, when a chromosome for a
player is evaluated, the chromosome that is highly preferred by each of
the other players should be selected as a partner. The reason why
multiple populations are maintained is not to speed up the calculation
but to mimic the real process of competition among players.

The proposed approach in this study, called the coevolution-based
procedure, consists of three stages: (1) coevolutionary genetic algo-
rithm (CoGA); (2) selection of one integrated solution; and (3) local
search by using the selected solution. In the CoGA stage, each player in
the game improves the set of candidate solutions by repeatedly testing
their solution set against those of other players. At the end of this stage,
each player derives a set of promising solutions in terms of their own
objective function. When the CoGA is finished, each player becomes to
have the final population in which many chromosomes exist. Thus, one
chromosome must be selected from each population to obtain the final
combined solution. The final combined solution, which is close to the
NE, may not be exactly located at the NE. Thus, the combined solution
is adjusted to the NE position by a local search. Fig. 1 summarizes the
coevolution-based procedure in this study.

4.1. Coevolutionary genetic algorithm (CoGA)

The procedure of the proposed coevolutionary genetic algorithm
can be summarized as follows:

Step 1. Initialize the population for each player. The initialization
can be done by randomly selecting solutions.
Step 2. Randomly select a player, h. Select an arbitrary chromosome
randomly from the population for player h.
Step 3. Identify the scope of the evolving neighborhood (EN) of the
selected chromosome. Select two parents from EN using the roulette-
wheel selection method (Lipowski & Lipowska, 2012).
Step 4. Generate two offspring by a crossover operation. Replace
two individuals with the worst fitness value in EN with the two new
offspring and then perform the mutation operation.
Step 5. Update the fitness values of the two offspring using the fit-
ness evaluation procedure, which is described below.
Step 6. If any termination condition is satisfied, then stop; other-
wise, go to the step 2. The two termination conditions are as follows:
(1) the coevolving process runs for a predefined number of gen-
erations; and (2) the deviation of the chromosome for each species is
smaller than the pre-specified threshold, .

The CoGA in this study is similar to the traditional genetic algorithm
but different in that (1) the latter has a single population, whereas the
former has a single population for each player; (2) the latter evaluates
the fitness value of a chromosome using the information included only
in the corresponding chromosome, whereas the former evaluates the
fitness value of each chromosome by matching the chromosome with
each partner chromosome from the population of each player.

In CoGA, the fitness value of a chromosome may be evaluated by
matching one partner chromosome from each of other players. The
following introduces various strategies for the selection of partners.

4.1.1. Fitness evaluation strategies for CoGA
Because there are multiple populations competing with each other

and the profit of each player can be calculated only if a partner chro-
mosome of each of other players is given, the main issue for CoGA is
how to select the partners to use for evaluating the fitness function, for
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which various alternatives are proposed in the following.

(1) Scope of partners
• Entire population (SE) is the scope of the evolving neighborhood;
all the chromosomes in the population of each of the other players
are candidate partners for the fitness evaluation.
• Toroidal grids (ST) are the scope of an evolving neighborhood.
Instead of considering all the chromosomes in the population, only
chromosomes, whose positions are in the neighboring toroidal girds
of the chromosome to be evaluated, are included in the evolving
neighborhood. Chromosomes in the same positions in the popula-
tion of the other players, as the evolving neighborhood are candi-
date partners for the fitness evaluation. This will be explained in
more detail later.

(2) Partner selection rules
• The best partner in the scope (PB) - the chromosome with the
highest fitness value in the scope of partners is selected as a partner
for the fitness evaluation
• Single partner by fitness-based random selection (PF) - a chromo-
some in the scope of partners is selected randomly based on the
fitness values of the chromosomes as a partner of each player
• Multiple partners by fitness-based random selection (PM) - a pre-
specified number of partners are selected randomly from the scope
based on their fitness values. All the selected partners of the other

players are matched with the chromosome under consideration and
the average of all the fitness values of all the combinations of
chromosomes is used as the fitness value of the corresponding
chromosome.
• All the partners in the scope (PA) - all the chromosomes in the scope
of the other players are matched with the chromosome under
consideration and the average of all the fitness values of all the
combinations of chromosomes is used as the fitness value of the
corresponding chromosome.

In the following, the neighborhood scope of toroidal grids (ST) and
localized interactions among species are explained in more detail (Kim
et al., 2000, 2003). The individuals from a given player are mapped into
toroidal grids. Let individual m n( , ) denote an arbitrary location on the
toroidal grids of the chromosome, for which a neighborhood is defined
for the evolution process, and Nmn denotes ×3 3 neighbors of the in-
dividual m n( , ).

For the evolution of populations, first, one species is selected ran-
domly, which called the evolving species. The other species are called
symbiotic species. Next, a location m n( , ) is selected randomly and the
neighborhoods of the evolving species and the symbiotic species are
specified. The neighborhood of the evolving species is denoted as

=EN Nmn and the neighborhood of an arbitrary symbiotic species is
denoted as =SN Nmn. Two parents are selected from EN using the
Roulette-wheel selection method (Lipowski & Lipowska, 2012) and two
offsprings are generated through a crossover operation. The worst two
individuals in EN are replaced with the two offsprings. For the muta-
tion operation, chromosomes from EN are selected randomly by using
the mutation probability. The mutation operation is implemented on
the selected chromosomes. Let the evolving species corresponding to
the hth player and a symbiotic species corresponding to the lth player.

To evaluate the fitness value of P ENab
h , which is the individual at

(a, b) belonging to the evolving species h, a partner P SNcd
l , which is

the individual with the best fitness value belonging a symbiotic species,
for each of the other players is selected. With the set of selected chro-
mosomes, the fitness value of Pab

h is evaluated. Information on partners
is stored together with the fitness value for each chromosome.

Fig. 2 gives an example of a localized interaction among species. In
this example, there are four players. Let species one be the evolving
species and the other species be the symbiotic species. Suppose that the
chromosome at (3, 3) of species one is selected as the initial point for
the evolution and the fitness value of P34

1 is to be evaluated. In the
following, a range of strategies for partner selection, when evaluating
the fitness value, are described. A numerical experiment will be con-
ducted to select the best among the strategies suggested below.

The best partner in scope (PB) - let P33
2 , P43

3 and P23
4 be the individuals

with the best fitness value belonging to the SN in each symbiotic spe-
cies. P34

1 is evaluated using P33
2 , P43

3 and P23
4 to combine a complete in-

tegrated solution.
Single partner by fitness-based random selection (PF) - assume that

the maximum number of candidate partners to be selected for the
evaluation is set to four. For species two, suppose that P32

2 , P33
2 , P22

2 , and
P43

2 are four chromosomes with the highest fitness values in the SN. One
partner among the four candidates is selected randomly with the se-
lection probability dependent on their fitness values. Partners are se-
lected in the same way for the other two species. P34

1 is evaluated using
the partners selected from each species.

Multiple partners by fitness-based random selection (PM) - assume
that the maximum number of candidate partners to be selected for the
evaluation is also set to four. Four partners are selected randomly from
the scope of each species based on their fitness values. A total of

× ×4 4 4 combinations of partners of three species are then made. The
average value of the fitness values of species one of 64 integrated so-
lutions becomes the fitness value of P34

1 .
All the partners in the scope (PA) - all the chromosomes in each SN

become candidate partners. A total of × ×9 9 9 combinations of

Fig. 1. Flowchart of the coevolution-based procedure.
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partners of three species are then made. The average value of 729 fit-
ness values of species one obtained from 729 integrated solutions be-
comes the fitness value of P34

1 .

4.2. Selection of one integrated solution

After applying the CoGA, each player obtains a set of its chromo-
somes in its population, each of which has a fitness value and partners
collected from the other population during the fitness evaluation of the
corresponding chromosome. Each player has a set of integrated solu-
tions each of which consists of the chromosomes for all the players.
Therefore, it is necessary to derive an agreement on the final solution
among all the players. The final agreement should satisfy each player as
much as possible. This section proposes a bidding process for deriving
agreement among players with multiple alternative solutions from the
CoGA. In the bidding process, each player submits one solution in each
round until all the players agree with the same solution among all the
solutions submitted thus far.

Players may agree with a solution if the solution satisfies the fol-
lowing two conditions:

(1) It is one of the Pareto optimal solutions among all the solutions the
players have.

(2) When the bidding process is applied, no other solution gives a
higher profit to each player than the agreed solution.

To satisfy the above two conditions, the dominated solutions are
removed from the solutions in the population of each player resulting
from CoGA. This step will provide the Pareto optimal solutions for each
population. The Pareto optimal solutions remaining at the population of
each player are ordered in non-increasing order of payoff to the cor-
responding player. Before introducing the sequential bidding procedure
(SBP), the notations used in the SBP are listed as follows:

Notations:
T: set of players
Uj: set of all the Pareto-optimal integrated solutions of player j.
d: integrated solution.
dij: ith Pareto-optimal integrated solution of player j.
s d( )j : solution of player j in an integrated solution d.
payoff d( )j : payoff of player j in an integrated solution d. This is the

profit of player j in a competitive game, while this is the total profit of a
coalition in a cooperative game.

payoff i j( , ): payoff of player j in the ith Pareto-optimal integrated
solution of player j.

The bidding procedure may be described as follows:
Step 1: =i 0. =S .
Step 2: = +i i 1. If there is no solution in Uj for any player j, then

conclude that there is no agreed solution and stop. Otherwise, put dij for
all j T to the solution set, S, and remove dij from Uj for all j T .

Step 3: Check whether there exists any d in S, such that

payoff d payoff d( ) ( )j ij j for all j T . If no, then go to Step 2. Otherwise,
go to Step 4.

Step 4: =d d. If there multiple d’s exist, then select d with the
largest total payoff, as d . Stop.

Let DIS d( )k ij represent the level of dissatisfaction of dij to player k,
which satisfies the following conditions: (1) if >DIS d DIS d( ) ( )j ij j i j( 1)
for all i and j; and (2) =DIS d DIS d( ) ( )j ij k ik for all i, j, and k. The fol-
lowing property holds:

Property 1:. When SBP is terminated with a single agreed integrated
solution, d, then the solution d minimizes the maximum dissatisfaction of
players.

The proof of property 1 is provided in Appendix B.
Table 2 presents an example of the application of SBP. Suppose that

the payoff data in Table 2 is obtained by applying CoGA. The integrated
solutions for each player are sorted in decreasing order of the profit of
the corresponding player. When two players submit their 4th bids,
player 1 will accept the 4th bid proposed by player 2 because the profit
of player 1 in the 4th bid by player 2 is larger than the profit of player 1
in the 4th bid proposed by player 1. In other words, they arrive at an
agreement. The final agreed prices will be (15, 9), which gives the
profits (81, 72).

4.3. Local search procedure

The selected integrated solution may be close to the NE solution but
they require fine-tuning using a local search to make them to arrive at
the exact position of the NE. The iterative local search algorithm opti-
mizes the solution of a player to maximize the profit of the player with
fixed solutions of the other players until no player can increase its profit
or a termination condition is met.

4.4. Applying the coevolution-based procedure to the competitive pricing
problem

When the coevolution-based procedure in this section is applied to
the competitive pricing problem in Section 3, some more detail issues

Fig. 2. Example of localized interactions among species.

Table 2
An example of SBP application.

Bidding round Player 1 Player 2

(p1, p2) Payoff (p1, p2) Payoff

1 (10, 13) (110, 30) (18, 5) (60, 80)
2 (11, 12) (100, 50) (17, 7) (75, 76)
3 (13, 10) (90, 60) (16, 8) (77, 74)
4 (14, 9) (80,70) (15, 9) (81, 72)
5 (16,7) (70, 75) (14, 12) (85, 60)
6 (18, 6) (65, 76) (13, 13) (87, 66)
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specific to this problem need to be discussed.

4.4.1. Evaluation of the fitness value
For evaluating the fitness value of a chromosome (THC) for a

terminal, the chromosomes (THCs) of the other terminals are selected
by using one of the strategies provided in Section 4.1.1. Once the values
of pi are given, xi’s values satisfying equations (12) - (14) can be ob-
tained using the Newton-Raphson method which is explained in Ap-
pendix A in detail. The profit of each container terminal operator can be
evaluated by equations (7)–(9).

In the simultaneous game with incomplete information, each player
makes a decision without knowing the strategy choice of the other
players. This study assumes a simultaneous game with incomplete in-
formation, which means that each terminal does not know the other
player’s payoff (profits). The optimal solution for a simultaneous game
is the NE. On the other hand, if more than one terminal forms a coa-
lition, it is allowed for those in the same coalition to “share” its payoff
information with the other terminals in the same coalition, and the
terminals consider the payoff of the other terminals in the same coali-
tion at the same time, while competing with each other for their own
profit. To motivate different species to cooperate with each other
during evolution, the fitness function may be defined to include the
total profit term in addition to the individual profit as follows.

Suppose that terminal i is included in coalition k. The fitness value
of the individual s t( , ) in Nmn may be evaluated using the following
expression:

= +

F s t
s t min p q

max p q min p q
s t min p q

max p q min p q

( , )
( , ) ( , )

( , ) ( , )
( ( , ) ( , ))

( , ) ( , )

i

i p q N i

p q N i p q N i

j T i

j p q N j

p q N j p q N j

( , )

( , ) ( , )

{ }

( , )

( , ) ( , )

mn

mn mn

k
c

mn

mn mn (15)

where [0, 1] represents the ratio of considering the profit of other
terminals in the evaluation of the fitness value and s t( , )i is the profit
value of an individual s t( , ) for population i, which is generated by the
interaction. If = 0, then each population only considers their own
profit, which corresponds to the competitive game. If = 1, then the
proposed coevolution-based procedure becomes the same as the tradi-
tional fully cooperative game. If < <0 1, then the game will be
considered to be partially cooperative.

4.4.2. Local search
For searching the best THC with maximizing the profit of a terminal

for a given THCs of the other terminals, because the decision variable is
continuous, the step size of the local search is set to be µ and the range
of the local search to improve each THC per iteration is [p boundi

k ,
+p boundi

k ], where pi
k is the current value. Although pi

k is a con-
tinuous variable, the search space is discretized for the simplicity of the
algorithm. In this study, =µ 0.0001 and the bound equaled 5.

4.4.3. Crossover and mutation
As introduced in Section 4.1, from two parents which are selected

from EN , two offsprings are generated through a crossover operation.
The worst two individuals in EN are replaced with the two offsprings.
Chromosomes from EN are selected randomly by using a mutation
probability. The mutation operation is implemented on the selected
chromosomes.

Considering a chromosome is represented by a real value, the
crossover operation introduced by Haupt and Haupt (2004) was
adopted. A chromosome is represented by a value between 0 and 1. For
encoding the terminal handling charge, it was normalized to a value in
[0,1] in which the lower and the upper bound corresponds to 0 and 1,
respectively.

Let pi
m and pi

n are the chromosomes of individual m and n in the

population of terminal i, respectively. The crossover operation can then
be expressed by using Eq. (16).

= +p p p(1 ) ,i
new

i
m

i
n (16)

where is a random number in the interval [0, 1]. For mutation
operation, the random resetting method was adopted. That is, the
randomly selected chromosome was replaced with a random value that
belongs to [0, 1].

5. Numerical experiments for evaluating the proposed
coevolution-based procedure

Three experiments were performed to test the proposed coevolu-
tion-based procedure. The first experiment attempted to select the best
fitness evaluation strategy among all combinations of two strategies for
“the scope of partners” and four partner selection rules. The second
experiment showed that how the profits of terminals may be improved
by sharing information on their profit functions. The third experiment
compared the solutions by the coevolution-based procedure in this
study with those in previous studies.

5.1. Exploring the best fitness evaluation strategy for CoGA by numerical
experiments

The proposed coevolution-based procedure was implemented using
C++ programming language on a desktop PC with an Intel(R) Core
(TM) i7-4790 CPU at 4.0 GHz and 32 GB of memory. Various experi-
ments were performed to find good strategies of the CoGA. The profit
function, assuming =( )g ci

x
CAP i

i
i

, =v x w x( ) ,i i i i1 and
=v p x p x( ) ,i i i i i i2 was used. This study used the data in Table 3 and it

was assumed thatA = 800,000, = 0.05 and b = −0,05, which are
provided by previous studies (Saeed and Larsen, 2010a, 2010b). In the
following experiments, terminals Q and P represent QICT and PICT in
the studies by Saeed and Larsen (2010a, 2010b), respectively. The two
terminals are assumed to compete with each other, i.e., = 0.

The following values of parameters for the CoGA were used for the
experiment: population size = 100, crossover probability = 0.8, mu-
tation probability = 0.1, Maximum no. of generations = 200000,
lower bound of THC = 0, upper bound of THC= 200, and = 0.0001.
The lower and upper bounds of the terminal handling charge were set
as the search space for the optimal solution and thus should be wide
enough to include the optimal solution. The lower bound was set to be
0, while the upper bound was set to be a sufficiently large value, 200
USD, which is roughly three times of the largest handling charge,
69.9438 USD, in Busan New Port in Table 1. The following expression,
which was used by Saeed and Larsen (2010b), was assumed to express
the other user cost in the numerical experiment:

=f x
CAP

x
CAP

0.5
0.8

.i
i

i

i

i

4

A total enumeration method was used to find the NE for the two
terminal game, in which all the values of the THC of a terminal were

Table 3
Data for two terminals (Saeed & Larsen, 2010a).

Parameters Terminals

Container terminal name Q P
Alternative specific constant (ai) 0.1 0
User cost constants in $ (COi) 7 5
Marginal cost in $ (ci) 50 55
Capacity (CAPi) 600,000 400,000
Terminal fee in $ ( i) 5% of price –
Terminal fee in $ (wi) – 12.54
Annual rental fee in 1000$ r( )i 800 1650
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enumerated to maximize its profit for each fixed value of the THC of the
other terminal. To obtain the NE, the value of pQ, which maximizes the
profit of terminal Q for each fixed value of pP, is obtained. Insert the
obtained solution, (pP, pQ), into A. This process is repeated for all the
possible values of pP. The value of pP, which maximizes the profit of
terminal P for each fixed value of pQ, can then be obtained. Insert the
obtained solution, (pP, pQ), into B. This process is repeated for all the
possible values of pQ. The pair of (pp, pQ), which is included in both A
and B, is selected as the NE.

The effectiveness and efficiency of the various solution strategies for
CoGAs were compared with each other. Because all the solution stra-
tegies obtained the NE, their calculation times were compared with
each other. The calculation time of the coevolution-based procedure
consists of two parts: the calculation time for CoGA and that for the
iterative local search.

Table 4 summarizes the calculation time of the coevolution-based
procedure. Two termination conditions for the coevolution genetic al-
gorithm were used in this study. The first termination condition is the
maximum number of coevolving generations. The second termination
condition was that the procedure stops when the deviation of fitness
values becomes smaller than a pre-specified threshold value for all
populations. If one between two holds, then the coevolution genetic
algorithm will stop. When the algorithm is stopped by the second ter-
mination condition, different strategies may have a different number of
iterations. The ST outperformed SE for any partner selection rule in
terms of the computational time. The number of partners selected for
the fitness evaluation from one population, affected the computational
time of the coevolution genetic algorithm significantly. Therefore, the
CoGA with the entire population as the neighborhood (SE) always re-
quires more computation time than the Toroidal grids (ST). For the
same reason, PM and PA strategies, which require a larger number of
fitness evaluations, took a longer computational time. In addition, the
solution by the random selection rule (PF) for the partners based on the
fitness converges to the final solution faster than the rule selecting the
partner with the highest fitness value. The strategy, ST + PF, was used
for the experiments in the following sections.

Fig. 3 shows the solutions obtained by the coevolutionary learning
stage and local search for the case of (ST + PF). The first column in
Fig. 3 shows the randomly initialized solutions. The second column
shows the solution after 500 iterations. The third column presents the
solutions after the coevolutionary learning process is completed. The
final column shows the solutions after the iterative local search, which
coincide with the NE obtained by the total enumeration.

5.2. Effect of sharing payoff information on the profits of terminals

This section evaluates the effects of various levels of information
sharing among the terminals in a coalition. COMP represents the
competitive game with = 0. When > 0, the game was denoted as
“COOP.” Fig. 4 shows the results of COMP and COOP for various values
of parameter . Fig. 4 shows the position of the NE for COMP, which is
represented by the star on the low-left corner in Fig. 4 (a)-1, (a)-3, (b)-1,
(b)-3, (c)-1, and (c)-3. The other nodes in Fig. 4 are solutions obtained
by applying only CoGA for COOP. Note that the position of the NE is far
away from the solutions of COOP. The distances from the NE to the
solutions of COOP in both the prices and profits become longer as
increases. Fig. 4 (a)-2, (a)-4, (b)-2, (b)-4, (c)-2, and (c)-4 shows a close-
up view of a part, which was selected by the small rectangle, of Fig. 4
(a)-1, (a)-3, (b)-1, (b)-3, (c)-1, and (c)-3, respectively. In the figures for
profit, solid circle nodes represent the Pareto front among the solutions
for COOP. In both figures for the price and profit, the solid circle node
with a cross inside indicates the final solution of COOP after applying
SBP. Note that in COOP, both the profits of two terminals were sig-
nificantly increased, which implies that all the terminals may become
better off by collaboration among terminals in determining the THCs.

Fig. 5 compares the profit between the COMP and COOP. The dash-
single dotted and dashed lines denote the profit of terminal Q and
terminal P in the NE solution of COMP, respectively. The lines with the
circle and rectangle nodes indicate the profit of terminals Q and P in
COOP, respectively. The line with the pentagonal nodes denotes the
total profit of terminals Q and P by COOP. Fig. 5 shows that, as the
value of increases, the total profit increases monotonically.

5.2.1. Cooperative game
Some container terminals may organize a coalition of container

terminals, in which all the container terminals cooperate to maximize
the total profit of container terminals involved in the coalition.
However, the coalition competes with other terminals outside the
coalition. By using the coevolution-based procedure in this study, this
cooperative game may be analyzed by setting the objective function of
players in the same coalition to be the total profit of all the terminals in
the coalition ( = 1).

5.3. Comparison of the coevolution-based procedure with an approach by
previous studies

In this section, to evaluate the proposed approach, different pro-
blems including the independent game and cooperative games were
studied. In independent game, each container terminal is an

Table 4
Calculation time of the coevolution-based procedure with various strategies for CoGA.

Strategy SE + PB SE + PF SE + PM SE + PA ST + PB ST + PF ST + PM ST + PA

Time (Second) 135.1 70.4 79.6 35.56 61.56 24.3 42. 33.8

Fig. 3. Solutions after CoGA and the final solution for the (ST + PF) procedure.
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independent player. However, in cooperative games, different con-
tainer terminal ally as a coalition to compete with other container
terminals not belonging to their coalition. The solutions were compared
with those provided by previous academic studies (Saeed and Larsen,
2010a, 2010b, 2013), using the same input data and expressions for the
demand and profit functions, as in previous studies. Saeed and Larsen
(2010a, 2010b, 2013) proposed an analytical method for obtaining the
NE solution which showed considerable gaps from true values (see
Appendix C).

Table 5 shows the input data of the case provided by Saeed and
Larsen (2010a), where terminals QICT, KICT, PICT and KPT in Saeed
and Larsen (2010a) are represented by terminals Q, K, P, and T. The
rental charge method of Eq. (8) is applied to terminal Q, while that of
Eq. (7) is applied to terminals K and P. Note that terminals K, P, and T
are located in the same port. The port authority of the port owns
terminal T and thus it has the revenue of rental fees collected from
terminals K and P. The port authority and terminal T are always con-
sidered to be an economic entity which is represented by terminal T.
That is, the profit of terminal T consists of two parts: (1) the profit
obtained by the container terminal operator and (2) the revenue ob-
tained by the port authority. Finally, the profit function of terminal T
can be expressed as

= +p c x w x( ) .
T T T T

j K P
j j

{ , } (17)

The parameters for the coevolution-based procedure were assumed
to be the same as in the previous experiment for two terminals, which
was provided in Table 4. It was assumed that A = 1,550,000, = 0.01,
and b = −0.05. All the values of the parameters used in this experi-
ment were the same as those used by Saeed and Larsen (2010a).

5.3.1. Experiments for the competitive game among container terminals
In this experiment, it is assumed that all the terminals compete with

each other without any cooperation ( = 0). Table 6 presents the so-
lution obtained by the proposed coevolution-based procedure (ST +
PF). The THCs obtained by the coevolution-based procedure were
higher than those by Saeed and Larsen (2010a). On the other hand,
each terminal makes one or two million US dollars higher profit than
that by Saeed and Larsen (2010a).

Figs. 6 and 7 show the curve of the profit function in the neigh-
borhood of the final solution by Saeed and Larsen (2010a) and this
study, respectively. The curve in each figure shows the change in the
profit function for various THC values of one container terminal while
the THCs of the other three container terminals are fixed at their values
in the final solution. Fig. 6 (a), (b), (c) and (d) shows that by changing

(a)
Fig. 4. COMP and COOP with different values of parameter .
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the THC for each container terminal, the terminal can gain more profit,
which suggests that the final solution provided by Saeed and Larsen
(2010a) is not located exactly at a local NE. Fig. 7 shows that no con-
tainer terminal can gain more profit by changing its THC, which means
that the final solution obtained by the proposed coevolution-based
procedure is at a local NE.

5.3.2. Experiments for the cooperative game with coalitions
This section applies the coevolution-based procedure to four cases

with different coalitions of terminals K, P, and T in the same port as
follows, which was studied in Saeed and Larsen (2010a):

Case A: Cooperation between terminals T and K
Case B: Cooperation between terminals K and P
Case C: Cooperation between terminals T and P
Case D: Cooperation between all three container terminals K, P, and
T.

When more than one container terminal are included in the same
coalition, it is assumed that = 1, that is, they become to have the
same objective function which is the total profit of all the terminals in
the coalition.

Table 7 compares the final THCs from Saeed and Larsen (2010a) and

those from the coevolution-based procedure in this study. Table 7
shows that the results from the two solution methods have big gaps. The
difference between two solutions ranges between 2.64% and 14.47%.

Let pi
' denote the final THC for container terminal i, which is ob-

tained by an algorithm. And let pi
o represent the THC of container

terminal i with maximizing the profit of container terminal i (or a
coalition where terminal is involved in a cooperative game) under the
condition that values of THCs of the other container terminals are set to
be p j i( )j

' . Thus, the deviation of the final solution from the peak
(Dev) can be written as

= ×Dev
p p

p
| |

100%.i
i i

o

i
o

Table 8 shows that Devi obtained by the study of Saeed and Larsen
(2010a) ranges between 0.19% and 22.19%, which represents how far
the final solutions are located from the NEs. Note that the values of Dev
of the result from the coevolution-based procedure are zero, which
means that the final solutions satisfy the condition for the NE.

6. Application of the coevolution-based procedure to Busan port

Busan port is the largest port in South Korea and it is operated by
the Busan Port Authority (BPA). Busan port consists of two main parts:

(b) 
Fig. 4. (continued)
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The North port and New port. In the Busan port, there are container
terminals, such as Korea Express Busan Container Terminal (KBCT),
Hutchison Busan Container Terminal (HBCT), Dongbu Pusan Container
Terminal (DPCT), Gamman Container Terminal (Gamman), Pusan New

Port Company (PNC), and Hanjin New Container Terminal (HJNC).
This study analyzed the case of Busan port, where six container term-
inals are competing with each other ( = 0). Note that PNC is a pri-
vately owned terminal and thus does not pay any rental fee to the BPA.
The same input data as those in Park and Suh (2015) were used for the
experiments, which are listed in Table 9. The values of the model-de-
mand parameters are as follows: ai = 30.111 for all i, =b 0.046,
and = 0.01. The following expression for the waiting cost function for
shippers, as in Park and Suh (2015), was used in this section:

(c)
Fig. 4. (continued)

Fig. 5. Profit comparison between COMP and COOP.

Table 5
Input data of the case provided by Saeed and Larsen (2010a).

Parameters Terminals

Container terminal name Q K P T
Alternative specific constant (ai) 0.1 0.5 0 0
User cost constants in $ (COi) 7 5 5 40
Marginal cost in $ (ci) 50 55 55 27
Capacity (CAPi) 600,000 525,000 400,000 300,000
Terminal fee in $ ( i) 5% of price – – –
Terminal fee in $ (wi) – 6.03 12.54 –
Annual rent in 1000$ 800 1616 1650 –
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(18)

BPA has been charging a fixed rental fee of Eq. (7) to the terminals
except for the PNC.

As mentioned before in Table 1, BPA has been seriously suffering
from the low profitability of terminals in Busan resulting from severe
competition among the terminals. Thus, BPA attempts to find an al-
ternative rental fee scheme that increase the profitability of the con-
tainer terminals. Revenue-sharing schemes are candidates as

alternatives. This study examined and compared various revenue
sharing schemes.

The following four rental fee schemes were considered in this study:
one fixed rental fee and three revenue sharing schemes:

= p g x
CAP

x r(Scheme 1) ,
i i i

i

i
i i1 (19)

= p g x
CAP

x w x r(Scheme 2) ,
i i i

i

i
i i i i2 (20)

=
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i i
x

CAP i i i i i i

i i
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2 1

i
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i
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(21)

with >w wi i1 2 ( = ×w w(1 )i i2 1 ), where denotes the discount
ratio (penalty ratio) and (0, 1).

= < = + ×w w w w(Scheme 4) with ( (1 ) ).
i i i i i i4 3 1 2 2 1 (22)

Note that i1 represents the profit function of a terminal when a
fixed rental fee scheme is used, as in Park and Suh (2015). i2 re-
presents the profit function when a single revenue sharing rate is used,
as in Saeed and Larsen (2010a). i3 includes the revenue sharing with a
discounted unit rate for the throughput exceeding its capacity, while

i4 applies an increased unit rate for the throughput exceeding its
capacity. Note that i3 and i4 are proposed in this study for the first
time. When = 0 and =w wi i1 , i3 and i4 become i2 .

Table 6
Comparison between the procedure in this paper with that in Saeed and Larsen
(2010a).

Parameters Terminals Algorithms

Saeed and Larsen This study

Price (US dollar/TEU) Q 81.6 84.6
K 90.1 94.2
P 91.9 94.3
T 53.2 60.3

Handling quantity (TEU) Q 450,600 468,380
K 465,620 470,650
P 270,360 290,143
T 315,420 269,908

Profit (in million US dollar) Q 12.4 14.2
K 13.8 15.6
P 6.6 7.8
T 14.3 15.5
Total 47.1 53.1

Fig. 6. Profit changes in the neighbor of the final solution by Saeed and Larsen (2010a).
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To evaluate the various rental fee schemes, the total profit function
of the port was used. Because the rental fee paid by a terminal to the
BPA becomes the revenue of the BPA, the rental fee was excluded from
the total profit of the port, which may be expressed as follows:

=
=

SW p g x
CAP

x .
i

T
i i

i

i
i1

| |

The values of other parameters, which were not provided by Park
and Suh (2015), were set as follows:

=w r
CAPi

i

i

= +o c e realized throughput
CAP

eand i i
i

1 2
(23)

First, the model with a fixed operation cost per container,
=( )g ci

x
CAP i

i
i

, and that including a congestion cost,

= +( ) ( )g o e ei
x

CAP i
x

CAP1 2
i

i
i

i
( = 1.5, =e 1.7951 , e2= 0.7547 min)

(Woo et al., 2016) were compared. The base values of ci are listed in
Table 8 and the values of ci were varied in steps of 10%. The value of oi
was varied using Eq. (23), as the value of ci changes. Table 10 lists the
total profit of the port obtained by the model with the operation cost,
including the congestion cost and that with a fixed unit operation cost,
when rental fee scheme 1 of Eq. (19) is used. Table 10 suggests that the
operation cost model including the congestion cost, which is more

Fig. 7. Profit changes in the neighbor of the final solution by the coevolution-based procedure.

Table 7
Comparison of terminal handling price obtained by different schemes.

Saeed and Larsen (2010a) ($) Coevolution-based procedure ($)

Q K P T Q K P T

Case A 79.60 91.60 92.20 64.00 85.70 96.60 95.10 67.00
Case B 80.40 96.70 103.40 53.80 87.80 101.70 106.20 62.90
Case C 78.50 89.70 86.70 58.90 84.30 93.80 90.80 62.50
Case D 83.00 102.00 102.00 74.00 92.9 111.7 110.8 82.6

Table 8
Comparing the deviation of the final solution from the peak (Dev) for various
cases.

Cases Saeed and Larsen (2010a) (%) Coevolution-based procedure (%)

Q K P T Q K P T

Case A 5.46 2.76 1.50 0.62 0 0 0 0
Case B 22.19 1.63 0.19 10.93 0 0 0 0
Case C 5.31 2.39 2.03 2.00 0 0 0 0
Case D 6.11 3.77 2.67 3.39 0 0 0 0
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realistic than the fixed unit operation cost model, helps increase the
total profit of the port. Because the cost function becomes to have ad-
ditional cost term, the congestion cost, the decrease in the total profit
may be expected. However, the terminal operators attempt to decrease
the congestion cost by lowering the throughput which may be done by
increasing the THC. The increased revenue from a higher THC dom-
inates the cost increase from adding the congestion cost, which results
in the increase in the total profit.

Next, using the operation cost model with the congestion cost, the
revenue sharing scheme, Eq. (20), and the fixed rental scheme, Eq. (19),
were compared with each other. The value of wi was varied between 80
and 120% of the base value. Table 11 shows that the revenue sharing
scheme outperforms the fixed fee scheme by 24.54% on average.

Table 12 compares rental fee schemes 2, 3, and 4. The total profit of
the port increases by introducing the two-step unit rental fee with a
penalty but decreases with the two-step unit rental fee with a discount
compared to the revenue sharing with a single unit rental fee. Note that
the total revenue increases with increasing penalty rate ( ) but de-
creases with increasing discount rate.

6.1. Managerial implications

The above experiments give the following managerial implications:

1. The inclusion of the congestion cost, which increases with in-
creasing throughput, increases the total profit of the port. Therefore,
to increase the profitability of terminals in a port, a more realistic
operation cost function considering the negative impact of the
congestion in terminals should be used to estimate the profit of
terminals.

2. The revenue sharing schemes increases the total profit of the port.
The revenue sharing scheme with a penalty for throughput ex-
ceeding a threshold increases the total profit of the port further.

Therefore, to increase the profitability of the terminals in a port, the
revenue sharing scheme instead of the fixed rental fee scheme
should be used. In addition, if possible, the revenue sharing scheme
with a penalty for a high throughput should be used.

7. Conclusion

This study proposed a coevolution-based procedure to find the Nash
Equilibrium of the handling charges for multiple container terminals in
a port, which compete among individual terminals or among the coa-
litions of terminals to maximize their own profit.

The relationships among handling prices and handling demands
allocated to containers are expressed using multiple non-linear si-
multaneous equations, which do not allow closed form expressions for
the Nash Equilibrium (NE) solution. To overcome this difficulty, this
study proposed a coevolution-based procedure consisting of a coevo-
lutionary genetic algorithm for obtaining solutions close to the Nash
Equilibrium solution, a bidding procedure for selecting one solution,
and a local search procedure to fine tune the selected solution. It was
also discussed how the coevolution-based procedure can be applied to
the cooperative game.

This study generalized the operation cost function of the container
terminals, which can include the congestion cost and unit fixed cost
that have been used in previous studies. Four different rental fee
schemes by the port authority have been analyzed, including the fixed,
revenue sharing with a single unit fee, revenue sharing with a dis-
counted unit fee, and revenue sharing with a penalty unit fee.

A numerical experiment with two terminals showed that a coevo-
lution-based procedure obtains the NE solution successfully. It was
found that the neighborhood structure with toroidal grids is effective in
defining the scope of an evolving neighborhood for selecting fitness-
evaluating partners.

The solutions from the coevolution-based procedure in this study
were compared with that by Saeed and Larsen (2010a) for both the
competitive game and the cooperative game. It was found that the
coevolution-based procedure in this study obtained the NE solutions
more accurately than that by Saeed and Larsen (2010a).

A numerical experiment was conducted to evaluate the effects of the
cooperation among terminals by sharing the information on their own
profit functions among terminals. It was found that solutions from the
collaboration increase the profits of every terminal compared with the
NE solution obtained in the competitive situation.

Numerical experiments were performed for the case of Busan port to
analyze the effects of using a more realistic operation cost function with
the congestion cost and the four rental fee schemes on the total profit of
Busan port. Both the inclusion of the congestion cost into the operation
cost and the revenue sharing rental fee help increase the total profit of
the port. The revenue sharing rental fee scheme with a penalty in-
creases the total profit of the port further.

Future studies address the following issues: (1) a method for a port
authority to determine the optimal parameters of the revenue sharing
schemes considering the expected responses of the terminals; (2) de-
veloping new revenue sharing schemes; and (3) applications of the
coevolution-based approach in this study to other competitive game
problems.

Table 9
Input data for terminals in Busan.

Terminals Handling
capacity
(million TEU)
(CAPi)

Current fixed
rental charge
(million $) (r )i

COi($) ci($) Current
handling charge
per TEU ($) (p )i

KBCT 2 30.6 19 16.51 41.7
HBCT 1.7 25.7 16 33.55 48.7
DPCT 0.8 16.6 14 8.23 37.8
Gamman 1.6 23.4 16 20.57 35.7
HJNC 1.6 22.8 17 22.12 39.5
PNC 2.8 0 16 29.71 40.1

Table 10
Comparison of the total profit (unit in million US $) of the port between the
profit model with fixed unit operation cost and that with congestion cost in
rental fee scheme 1.

Operation cost 0.8ci 0.9ci ci c1.1 i c1.2 i

Fixed unit operation cost 486 494 502 511 519
Congestion cost 603 621 639 657 674
Improvement (%) 24.01 25.56 27.15 28.63 29.98

Table 11
Total profit (unit in million US $) of the port of the revenue sharing scheme, i1
and i2 , for various values of wi.

Rental fee scheme w0.8 i w0.9 i wi 1.1wi 1.2wi

1 639 639 639 639 639
2 765 780 796 811 826
Improvement (%) 19.77 22.17 24.59 26.90 29.27

Table 12
Total profit (unit in million US $) of the port of the revenue sharing schemes 3
and 4 with .

Rental fee scheme Value of

0.05 0.1 0.15 0.2 0.25 0.3

2 796 796 796 796 796 796
3 686 678 672 663 657 650
4 799 802 806 809 813 818
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Appendix A:. Newton-Raphson method applied to the allocation of handling demand

Let be the threshold for the Newton-Raphson method and kmax be the maximum number of iterations for the Newton-Raphson method. In this
study, it was assumed that = 0.00001 and kmax = 1000 in the experiments. Let X be the vector and =X x x( , , ).i1 X will be obtained using an
iterative procedure. Let X k( ) be the value of X in the kth iteration. Eq. (6) can be rewritten as Eq. (A1).

= =F X x XQ( ) 0.i i i (A1)

It was attempted to find x s'i satisfying (A1). By taking the derivative of Eq. (A1) with respect to xi,
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By taking the derivative of Eqs. (1) and (3) with respect to xi,
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Eq. (A6) is obtained by replacing the intermediate variables in Eq. (A2) as follows:
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By taking the derivative of Eq. (A1) with respect to xj,
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Using Eqs. (A6) and (A7), the Jacobian matrix of X can be represented as

Y. Zhou and K.H. Kim Computers & Industrial Engineering 144 (2020) 106466

16



=J X( )

F
x

F
x

F
x

F
x

n

n n
n

1
1

1

1 (A8)

At the kth iteration, J X( ) is formed and the following expression is evaluated repeatedly until the values of X converge

=+X X J X X[ ( ] F( )k k k k( 1) ( ) ( )
1

( ) (A9)

The details of the Newton-Raphson method are summarized in the following.
Step 1. Initialize the parameters and set =k 0, then initializeX k( )

Step 2. Calculate Jacobian matrix J X( ) and update +X k( 1) using Eq. (A9)
Step 3. = +k k 1. If =k kmax , then the procedure stops with no convergence. Otherwise, go to step 4.
Step 4. Update XF( )k( )
Step 5. If XF( )k( ) , then stop the procedure and return X .k( ) Otherwise, go step 2.
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, the same procedure may be used to allocate handling demand
to terminals using the following Jacobian matrix:
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Appendix B:. Proof of Property 1

Proof of Property 1: Assume that the iteration is finished at the ith iteration. Let =S s payoff d payoff s s S{ ( ) ( )and }ij j ij j at the ith iteration. From
the condition that there is a single d satisfying such that payoff d payoff d( ) ( )j ij j for all j T , =S d{ }j T ij .This means that there is at least one
player k for which >payoff d payoff d( ) ( )k ik k

' for every d d( )' in S. Therefore, for every d d( )' in S, there is a player k such that
>payoff d payoff d payoff d( ) ( ) ( )k k ik k

' , which implies that <DIS d DIS d DIS d DIS d( ) max( ( )) ( ) ( ).k
j

j k ik k
' Thus, DIS dmax( ( ))

j
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j
j

' . For

d', which is not in S, >payoff d payoff d( ) ( )k ik k
' and payoff d payoff d( ) ( )k k ik . Hence, <DIS d DIS d( ) ( ')k k for all k and thus

<DIS d DIS dmax( ( )) max( ( '))
j

j
j

j . In conclusion, d minimizes the maximum dissatisfaction of all players. ■

Appendix C:. Discussion on NE provided by Saeed and Larsen (2010a, 2013)

Saeed and Larsen (2010a, 2013) assumed that ( )gi
x

CAP
i

i
= ci which is a constant. Suppose that profit function (7) is used. The NE is characterized

by the first-order conditions of Eq. (C1),
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By taking the log of Eq. (6),
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By taking the derivative of the above Eq. (C2) with respect to pi,
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The derivate of xi with respect to pi can be expressed as
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Let us calculate the derivate of LS and Ui with respect to pi, respectively. Eqs. (C5) and (C6) can be derived.
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Saeed and Larsen (2010a, 2013) derived = bLS
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= b, which are not true for the fol-

lowing reason. The volume handled by a container terminal depends on the charge per TEU in the container terminal. The relationship between xi
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and pi is shown in Eq. (6). Hence, xi and pi are dependent variables. Therefore, 0OUC
p

( )i
i

and for the same reason, 0e
p

( )Uj

i
. By this simplification,

they derived a simple equation system: =p h Q( )i i i , for all terminal i, which can be solved by a numerical method. The size of the errors from this
simplification by Saeed and Larsen (2010a, 2013) are evaluated by numerical experiments in Section 5.3.
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