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 A B S T R A C T

With the rapid expansion of global trade, the use of LCL(Less than container load) transportation 
in international trade is becoming increasingly widespread. This study explores the application 
of LCL transportation in the context of China Railway Express (CR Express). Addressing the 
challenges of low cargo loading efficiency and complex container scheduling in CR Express 
LCL services, we aim to maximize customer satisfaction and develop a multi-objective mixed-
integer programming model. The model aims to minimize the number of containers used and 
the maximum transportation time. To effectively tackle large-scale instances, we have designed 
an efficient genetic algorithm enhanced with an iterative local search (ILS-GA). Computational 
experiments across small, medium, and large instances reveal that ILS-GA identifies optimal 
solutions in small-scale instances. ILS-GA discovers the optimal solution within an average 
runtime of 5.45 s, which is 95.56% faster than CPLEX’s 180 s, demonstrating its high solution 
efficiency. In medium and large instances, compared to CPLEX and SA, ILS-GA provides better 
solutions with higher computational efficiency, significantly outperforming the SA algorithm 
in terms of global search capability and optimization efficiency. Additionally, we analyze the 
initialization and local iterative search strategies through experiments, verifying the proposed 
strategies’ effectiveness in improving the ILS-GA solutions.

. Introduction

In recent years, with the development of cross-border e-commerce (Wang et al., 2020), transportation problems play an important 
ole in the field of logistics (Wang et al., 2022b). The rapid growth of cross-border e-commerce has made China Railway Express (CR 
xpress) a key facilitator in developing foreign trade (Li et al., 2023). According to China State Railway Group, in 2024, CR Express 
perated 16,145 trains and transported 1,749,000 TEUs of cargo, marking a 7% and 19% year-on-year increase, respectively.1 The 
argo types have expanded to 53 categories, encompassing over 50,000 kinds of commodities, with Less-than-container-load (LCL) 
argoes from small and medium-sized enterprises (SMEs) constituting a growing share. As the LCL cargo customer base grows, CR 
xpress operators have introduced a more diversified service: LCL transportation. Unlike Full-container-load (FCL) transportation, 
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Fig. 1. Example of less-than-container loading (LCL).

LCL transportation allows operators to consolidate cargoes from various shippers into a single container to realize container space 
sharing (as shown in Fig.  1). Consequently, cargo owners are charged only for the space they use, which enhances container space 
utilization and significantly reduces shippers’ transportation costs.

As demand for LCL cargo transportation increases (Tiwari et al., 2021), the LCL business of CR Express is experiencing rapid 
growth. Fig.  2 shows the detailed process of the LCL business of Zhengzhou International Hub Development and Construction Co., 
Ltd.(ZIH). CR Express operators collect LCL cargo from various shippers at the warehouse, where staff categorizes them by shipper 
and destination. After sorting, cargoes with the same owner and destination are palletized, loaded into containers, and scheduled 
for dispatch within a rational cycle. However, as the LCL cargo customer base expands and business volume grows, the reliance 
on manual labor for tasks such as sorting, packing, container loading, and scheduling shipping cycles has become increasingly 
complex and challenging. To enhance the transport efficiency of LCL operations, CR Express operators must solve two core problems. 
Firstly, they must determine how to classify, palletize, and load cargo from various shippers and destinations to maximize loading 
efficiency, which is usually considered the 3D loading problem. Second, given the limited number of LCL containers per dispatch 
cycle, container dispatch cycles must be arranged rationally based on the timeliness requirements of various shippers, which can 
be interpreted as a container scheduling problem. Together, these challenges comprise a comprehensive optimization issue for CR 
Express’s LCL operations. However, whether it is the loading strategy of LCL cargo or the scheduling arrangement of containers, 
achieving the optimal solution for the comprehensive optimization problem among different shippers, destinations, cargo volumes, 
sizes, and timeliness requirements is challenging with current manual experience and intuitive judgment alone. Consequently, there 
is an urgent need for CR Express operators to develop efficient mathematical models and algorithms to enhance the operational 
efficiency of the LCL business.

Currently, in research on the LCL problem, scholars usually pay more attention to enhancing container space utilization (Jamrus 
and Chien, 2016), with scant attention given to the specific application scenarios of LCL and the resolution of issues arising within 
those scenarios. This study focuses on the cargo loading and container scheduling issues within CR Express’s LCL business scenario, 
aiming to enhance the operational efficiency of the CR Express operators’ entire LCL process (including cargo sorting - loading 
- transportation, excluding the distribution stage after arriving at the destination). Specifically, the contribution points of this 
study include the following. (1) New scenario construction and problem definition for LCL problems. Based on the CR Express LCL 
transportation business scenario, this study, for the first time, proposes two core issues railway operators face in the two aspects 
of LCL cargo loading and container scheduling. (2) Construction of a multi-objective mixed integer programming model. A multi-
objective mixed integer programming model that aims to minimize the number of containers used and minimize the maximum 
cargo transportation time was established to decide the specific location of each shipper’s cargo within pallets and containers and 
the container dispatch cycle. (3) Designed and implemented an improved genetic algorithm. A genetic algorithm (ILS-GA) with 
iterative local search was customized for the comprehensive optimization problem of cargo consolidation. A two-stage encoding and 
decoding scheme was tailored for LCL cargo’s pallet loading and container loading. The search efficiency and solution quality were 
significantly improved by designing operators and incorporating iterative local search algorithms to expand the search space. (4) 
2 
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Fig. 2. Operation process of CR Express Zhongyu Train LCL.

Instances analysis of model effectiveness and algorithm performance. The effectiveness of the mixed integer programming model and 
the efficiency of the algorithms developed in this study were verified through small-scale, medium-scale, and large-scale instances. 
The results show that the algorithms outperformed the CPLEX solver and traditional simulated annealing algorithms regarding 
solution efficiency.

The remainder of this paper is organized as follows. Section 2 shows the literature review. Section 3.1 presents the studied 
problem. The mathematical model is presented in Section 3. Section 4 proposes a two-stage LCL loading method and genetic 
algorithm. Section 5 shows the experimental results. Finally, Section 6 concludes this paper.

2. Literature review

2.1. Related research

Due to its flexibility and cost-effectiveness, the Less-than-Container Load (LCL) transportation mode is often favored by small and 
medium-sized enterprises. It has been widely applied in international trade (Wei et al., 2019). Xiao (2011) explored the role of LCL 
transportation in international trade and evaluated the conditions under which foreign trade containers choose LCL transportation. 
Currently, research on LCL business is relatively scarce and mostly focuses on LCL transportation services at ports. For instance, 
addressing the issue of low efficiency in the LCL business process at port container terminals, (Tan et al., 2018) suggested using 
blockchain to establish a LCL export platform (LEP) to optimize the LCL business process. Regarding the problem of low efficiency 
in LCL transshipment at port container intermodal terminals, (Wei et al., 2019) discussed the impact of LCL cargo transshipment 
efficiency on customer satisfaction. This study focuses on the scenario of LCL transportation at inland international land ports, 
providing specific transportation scheduling solutions for the issues of low cargo loading efficiency and container scheduling in the 
LCL business of China Railway Express.

Regarding the bin packing problem, especially the three-dimensional bin packing problem (Wang et al., 2022a), container loading 
is an important subfield (Zhao et al., 2016). For the loading problem of a single container, (Huang and He, 2007) designed a new 
algorithm using the principle of ‘‘maximum collapse’’, which improves the tightness of item placement and achieves an average 
container capacity utilization of 94.6%. Upadhyay et al. (2017) expanded the study to the more complex case of double-deck 
containers, and proposed a mathematical model that takes into account the constraints of containers of different types, weights, and 
heights from the perspective of an exact solution, and conducted a numerical case study on a train operator in India. The results 
showed that their mathematical model could reduce the transportation cost by 3%. For the 3D container loading problem, (Deidson 
Vitorio Kurpel and others, 2020) also proposed a mathematical model considering box orientation, stability, and cargo separation 
constraints from an exact solution point of view and validated it with well-known benchmark instances. The results show that the 
proposed new mathematical model improves the results of the known instances. Similarly, (Junqueira et al., 2012) also proposed 
mixed-integer linear programming models to optimize the container loading rate. However, since the container loading problem 
is a typical high-complexity (NP-hard) problem, the exact solution methods face scalability limitations. Therefore, some scholars 
have investigated the use of heuristic methods to solve these container loading problems (Iwasawa et al., 2016; Zhou and Liu, 2017; 
Alonso et al., 2014). However, the performance and effectiveness of these heuristics are difficult to prove. To solve this problem, this 
study proposes an exact method for solving small and medium-sized instances and customizes the GA, incorporating an iterative local 
search strategy to deal with large-sized instances; at the same time, the exact solution can also verify the validity of the algorithm 
results.
3 
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Currently, in railway transportation, to improve loading and transportation efficiency, pallet loading is a more common 
method (Zhou, 2018; Wu et al., 2022). To address the secondary pallet loading problem, (Moura and Bortfeldt, 2017) considers 
loading goods onto pallets as the first stage and placing pallets into containers as the second stage. These two stages of loading are 
treated as independent processes, each solved using different methods. The research mentioned above treats the two-stage loading 
with pallets as separate entities, which deviates from real-world needs and significantly simplifies the problem. To remedy this 
deficiency, this study designs a two-stage loading model for LCL cargo. It develops customized heuristic methods to optimize the 
entire loading process, resulting in loading solutions that are more aligned with practical requirements.

Unlike the standard container loading problem, LCL loading requires consideration of the different cargo requirements of various 
shippers during the actual loading and transportation process, to optimize the utilization of container space from different shippers. 
There is relatively little research on LCL loading that addresses practical needs. To our knowledge, the only attempt to explore 
this issue is Jamrus and Chien (2016), which aims to maximize the utilization of LCL container space. They designed an extended 
priority-based hybrid genetic algorithm and verified its practical feasibility through instances. However, their research limits the 
problem to LCL loading within a single container. This study further extends the work of Jamrus et al. considering the LCL loading 
problem involving multiple containers.

Multi-container loading aims to load cargoes into the minimum number of containers while satisfying various types of 
constraints (Alonso et al., 2019). In the research on loading multiple containers, (Alonso et al., 2019) established an integer linear 
programming model to minimize the number of containers used. The results from real-world examples indicate that their proposed 
model can obtain optimal solutions in most cases. Similarly, (Alonso et al., 2020) optimized the multi-container loading problem by 
designing a greedy random adaptive search procedure to minimize the number of containers used. Che et al. (2011) transformed the 
objective of minimizing the number of containers used into minimizing the cost of multi-container loading and used a linear integer 
programming method to solve it. However, considering LCL transportation, in addition to the multi-container loading problem, LCL 
transportation often impacts the timeliness of cargo. In the transportation of the China Railway Express, due to the limited number 
of LCL containers available within each dispatch cycle, cargoes from different shippers heading to different destinations will face 
varying waiting times. To improve the service satisfaction of shippers, we introduce another optimization objective: minimizing the 
maximum transportation time of cargoes, thereby controlling the overall transportation time. This study also provides a scheduling 
optimization solution for multiple containers, which further extends the current research on multi-container loading problems.

2.2. Research gap and contribution

This study focuses on a new research scenario for LCL transportation: the CR Express, further expanding the research issues and 
scenarios in LCL transportation. Specifically, the contributions of this study are as follows:

(1) Addressing the issue of low loading efficiency in LCL cargo operations on the CR Express, optimizes the two-stage loading 
of LCL cargo.

(2) To enhance shippers’ overall satisfaction, a time optimization objective function was introduced. This resulted in the design 
of a multi-container scheduling optimization scheme, filling the gap in research on multi-container scheduling in LCL transportation.

(3) Exact methods for solving small and medium-sized instances and customized heuristic methods for handling large-scale 
instances were designed.

Specifically, the comparison of this study with other current research is shown in Table  1.

3. Mathematical model

3.1. Problem statement

As the name implies, LCL transportation consolidates cargo from various shippers into a single container for shipping. However, 
this process entails numerous business operations. As each CR Express container has a predetermined final destination before 
departure, to maximize container space utilization, it is typically essential to consolidate cargo destined for the same destination into 
one container whenever possible. However, different shippers within the same destination have distinct final distribution points. 
This necessitates cargo from other shippers to be placed on separate pallets to ease distribution. Therefore, once the cargo has 
been collected and centralized at the warehouse, the operator must first direct sorters to categorize the cargo based on the shippers 
and destinations. Upon completion of sorting, cargo destined for the same shipper and destination will be consolidated into one or 
more pallets (this applies to all shippers). Following palletization, cargoes with identical destinations will be loaded into the same or 
multiple containers, thereby completing the LCL cargo loading process (as shown in Fig.  3). However, as cargo volumes increase and 
destination diversification grows, manual completion of these tasks becomes time-consuming, labor-intensive, and efficiency-limited.

Besides cargo loading issues, given the necessity to consolidate with other shippers, LCL also affects the timeliness of cargo 
transportation. In LCL operations, if shipper A’s cargo arrives early at the warehouse, it must wait for other shippers’ cargoes for 
co-packing. If cargoes bound for destination A are not dispatched in the initial departure cycle, they must await the subsequent 
departure cycle. Consequently, cargoes from various shippers to different destinations will experience varying waiting times (as 
shown in Fig.  4). To optimize total cargo transportation time, we first ascertain the maximum transportation duration (comprising 
waiting and transit times) for cargo from a particular owner to a particular destination, then aim to minimize this duration to 
manage overall transportation times, reduce the transportation cycle, and enhance customer satisfaction.
4 
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Fig. 3. Operation process of LCL cargo sorting-palletizing-loading.

Fig. 4. Impact of LCL on the timeliness of different shippers.

Fig. 5. Three-dimensional dimensions of containers, pallets, and LCL cargo.
5 
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Table 1
The differences between this study and the current research.
 Reference Problem studied Objective function Constraint Solution method  
 Minimize 

container usage 
or maximize 
loading rate

Minimize 
maximum 
transportation 
time

Multi 
Container

Two-stage 
loading

 Junqueira et al. (2012) 3D container loading 
problems

✓ A mixed integer linear 
programming models

 Jamrus et al. (2016) A less-than-container 
loading problem

✓ An extended priority-based 
hybrid genetic algorithm

 Moura et al. (2016) The two-stage loading 
problem for containers

✓ ✓ A tree search algorithm

 Kurpel et al. (2020) 3D container loading 
problems

✓ A branch and bound exact 
algorithm

 Gajda et al. (2022) A container loading 
problem

✓ ✓ A randomized constructive 
heuristic

 Alonso et al. (2018) The two-stage loading 
problem for containers

✓ ✓ ✓ An Integer linear 
programming model

 Alonso et al. (2019) The two-stage loading 
problem for containers

✓ ✓ ✓ A Greedy Randomized 
Adaptive Search algorithm

 This study Multi-container two-stage 
LCL loading and 
scheduling

✓ ✓ ✓ ✓ A MILP model and an 
improved genetic algorithm

In this study, we developed a multi-objective mixed-integer programming model to minimize container usage and maximum 
cargo transportation time. The model aims to decide the specific placement of cargoes on pallets and pallets on containers and the 
departure cycle of containers, providing the CR Express operators with a full-process operation plan for LCL business, from cargo 
loading to container dispatching.

We define the set of shippers as 𝑀 , the set of destinations as 𝐷, and the set of cargoes sent by each shipper to each destination 
as 𝑆. Specifically, we divide the process of packing and loading LCL cargoes into two stages: (1) the pallet packing stage of LCL 
cargoes and (2) the container loading stage of pallets. The pallets each shipper sends to each destination are 𝑃  in the first stage, 
while the set of containers used in the second stage is denoted as 𝐶. Given the limited number of LCL containers available per 
departure cycle of the CR Express, we define the set of departure cycles as 𝑇  and plan the departure cycles of loaded containers 
rationally. The related sets are shown in the following table.

 Sets  
 𝑀 The set of shippers (consignors) of LCL cargo  
 𝑆 The set of cargo sent by each shipper to each destination  
 𝐷 The set of destinations of LCL cargo  
 𝑃 The set of pallets sent by each shipper to each destination in the first stage 
 𝐶 The set of containers used in the second stage  
 𝑇 The set of departure cycles  

The 3D loading optimization problem for cargo involves geometric constraints. To illustrate these geometric constraints clearly, we 
establish a 3D coordinate system with the left rear bottom point of the container as the origin 𝑂. The container, pallet, and cargo 
dimensions are annotated as shown in Fig.  5.

Model assumptions
In exploring the issue of LCL transportation on the CR Express, we found that each cargo has a different shipper, and the cargoes 

are of different shapes and sizes. To maintain the general applicability of the study, we assume that:
(1) Multiple consignments of LCL cargoes from different shippers can be consolidated into one full container for transporta-

tion (Jamrus and Chien, 2016).
(2) Irregularly shaped LCL cargoes need to be repacked into regular rectangular shapes. For uniform handling, we consider all 

LCL cargoes standard rectangular shapes.
6 
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3.2. Symbol description

 Indexes  
 𝑚 Index of shippers  
 𝑖 Index of cargo  
 𝑝 Index of pallets  
 𝑐 Index of containers  
 Parameters  
 𝑊 𝑐 The width of the container  
 𝐻𝑐 The height of the container  
 𝐿𝑐 The length of the container  
 𝑊 𝑝 The width of the pallet  
 𝐿𝑝 The length of the pallet  
 𝐻𝑝 The height of the pallet itself  
 𝑤𝑚𝑑𝑖 The width of the cargo 𝑖 sent by shipper 𝑚 to destination 𝑑, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆  
 ℎ𝑚𝑑𝑖 The height of the cargo 𝑖 sent by shipper 𝑚 to destination 𝑑, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆  
 𝑙𝑚𝑑𝑖 The length of the cargo 𝑖 sent by shipper 𝑚 to destination 𝑑, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆  
 𝑇𝐴𝑚𝑑𝑖 Advance arrival time of the cargo 𝑖 sent by shipper 𝑚 to destination 𝑑 at the 

consolidation centre, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆
 

 𝑇𝑆𝑑 Transport time required for cargo to be transported from the consolidation centre to the 
destination 𝑑, 𝑑 ∈ 𝐷

 

 𝑇𝐷𝑡 Waiting time for cargo to be transported in the 𝑡 departure cycles, 𝑡 ∈ 𝑇  
 𝐸 Number of LCL containers dispatched per departure cycle  
 Decision variables  
 (𝑥𝑚𝑑𝑖, 𝑦𝑚𝑑𝑖, 𝑧𝑚𝑑𝑖

)

Packing coordinates of cargo 𝑖 sent by shipper 𝑚 to destination 𝑑 on the pallet, 
𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆

 

 (𝑥𝑚𝑑𝑝, 𝑦𝑚𝑑𝑝, 𝑧𝑚𝑑𝑝
)

Packing coordinates of pallet 𝑝 sent by shipper 𝑚 to destination 𝑑 on the container, 
𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆

 

 𝑙𝑚𝑑𝑖𝑗 Be equal to 1 if cargo 𝑖 sent by shipper 𝑚 to destination 𝑑 is to the left of 𝑗 and 0 
otherwise, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖, 𝑗 ∈ 𝑆

 

 𝑏𝑚𝑑𝑖𝑗 Be equal to 1 if cargo 𝑖 sent by shipper 𝑚 to destination 𝑑 is to the behind of 𝑗 and 0 
otherwise, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖, 𝑗 ∈ 𝑆

 

 𝑢𝑚𝑑𝑖𝑗 Be equal to 1 if cargo 𝑖 sent by shipper 𝑚 to destination 𝑑 is on the top of 𝑗 and 0 
otherwise, 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀, 𝑖, 𝑗 ∈ 𝑆

 

 𝑙𝑑𝑚𝑛𝑝𝑞 Be equal to 1 if at the same destination pallet 𝑝 of shipper 𝑚 is to the left of pallet 𝑞 of 
shipper 𝑛 and 0 otherwise, 𝑑 ∈ 𝐷, 𝑝, 𝑞 ∈ 𝑃 ,𝑚, 𝑛 ∈ 𝑀

 

 𝑏𝑑𝑚𝑛𝑝𝑞 Be equal to 1 if at the same destination pallet 𝑝 of shipper 𝑚 is to the behind of pallet 𝑞
of shipper 𝑛 and 0 otherwise, 𝑑 ∈ 𝐷, 𝑝, 𝑞 ∈ 𝑃 ,𝑚, 𝑛 ∈ 𝑀

 

 𝑢𝑠𝑚𝑛𝑝𝑞 Be equal to 1 if at the same destination pallet 𝑝 of shipper 𝑚 is on the top of pallet 𝑞 of 
shipper 𝑛 and 0 otherwise, 𝑑 ∈ 𝐷, 𝑝, 𝑞 ∈ 𝑃 ,𝑚, 𝑛 ∈ 𝑀

 

 𝑓𝑚𝑑𝑖𝑝 Be equal to 1 if cargo 𝑖 sent by shipper 𝑚 to destination 𝑑 is packed on the pallet 𝑝 and 0 
otherwise, 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃 ,𝑚 ∈ 𝑀, 𝑖 ∈ 𝑆

 

 𝑎𝑑𝑚𝑝𝑐𝑡 Be equal to 1 if pallet 𝑝 sent by shipper 𝑚 to destination 𝑑 is packed on the container 𝑐 at 
the departure cycle 𝑡 and 0 otherwise, 𝑝 ∈ 𝑃 , 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 , 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀

 

 𝑧𝑐𝑡 Be equal to 1 if the container 𝑐 be used at the departure cycle 𝑡, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇  
 Derived variables  
 𝑝ℎ𝑑𝑚𝑝 The height of the pallet 𝑝 sent by shipper 𝑚 to destination 𝑑, 𝑝 ∈ 𝑃 , 𝑑 ∈ 𝐷,𝑚 ∈ 𝑀  

3.3. Mathematical model

3.3.1. Objective function
Considering the challenges in cargo loading and container scheduling within LCL transportation, the model aims to minimize 

container usage and minimize the maximum cargo transportation time. The specific objective functions are as follows.
7 
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Fig. 6. LCL Cargo Location Relationships On the Pallet.

(1) Optimization Objective 1: Minimize the total container usage 𝑈1. 

𝑈1 = min
∑

𝑐∈𝐶

∑

𝑡∈𝑇
𝑧𝑐𝑡 (1)

(2) Optimization Objective 2: Minimize the longest transportation time(comprising waiting and transit times) 𝑈2. 
𝑈2 = min

[

max
(

𝑇𝐴𝑚𝑑𝑖 + 𝑇𝑆𝑑 + 𝑇𝐷𝑡
)

× 𝑓𝑚𝑑𝑖𝑝 × 𝑎𝑑𝑚𝑝𝑐𝑡
]

∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀,∀𝑡 ∈ 𝑇
(2)

Using dynamic programming, the objective function (2) is transformed into the following objective function and constraints: 
𝑈2 = min 𝑇max (3)

𝑇max ≥
(

𝑇𝐴𝑚𝑑𝑖 + 𝑇𝑆𝑑 + 𝑇𝐷𝑡
)

× 𝑓𝑚𝑑𝑖𝑝 × 𝑎𝑑𝑚𝑝𝑐𝑡
∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀,∀𝑡 ∈ 𝑇

(4)

For two objective functions, to streamline the optimization process, we introduce variable 𝛿 as a linear weight, ranging from 
0 to 1, and achieve unified optimization of the two objective functions through linear weighting. However, due to the different 
units of container usage and transportation time, it is necessary to standardize the units of the two objective functions. This can 
be accomplished by calculating the optimal values 𝑈∗

1  and 𝑈∗
2  for each single objective function and eliminating the unit disparity. 

The unified optimization objective is as follows: 

Min𝑈3 = 𝛿 ×
𝑈1
𝑈∗
1
+ (1 − 𝛿) ×

𝑈2
𝑈∗
2

(5)

3.3.2. Constraints
(1) No Overlapping Constraints 

𝑙𝑚𝑑𝑖𝑗 + 𝑙𝑚𝑑𝑗𝑖 + 𝑏𝑚𝑑𝑖𝑗 + 𝑏𝑚𝑑𝑗𝑖 + 𝑢𝑚𝑑𝑖𝑗 + 𝑢𝑚𝑑𝑗𝑖 + 1 − 𝑓𝑚𝑑𝑖𝑝 + 1 − 𝑓𝑚𝑑𝑗𝑝 ≥ 1

∀𝑖, 𝑗 ∈ 𝑆, 𝑖 < 𝑗,∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀
(6)

The Eq. (6) represents the non-overlapping constraint for consolidating LCL cargo during the pallet packing process. Drawing 
inspiration from Pisinger and Sigurd (2005) for handling the non-overlapping constraints, the positional relationships of LCL cargo 
are constrained in the 𝑥, 𝑦, 𝑧 axes. To ensure that LCL cargo within the same pallet does not overlap spatially, it is required that 
cargo 𝑖 are positioned completely above, below, left, right, front, or back of cargo 𝑗, as illustrated in Fig.  6. 

𝑙𝑑𝑚𝑛𝑝𝑞 + 𝑙𝑑𝑚𝑛𝑞𝑝 + 𝑏𝑑𝑚𝑛𝑝𝑞 + 𝑏𝑑𝑚𝑛𝑞𝑝 + 𝑢𝑑𝑚𝑛𝑝𝑞 + 𝑢𝑑𝑚𝑛𝑞𝑝 ≥ 𝑎𝑑𝑚𝑝𝑐𝑡 + 𝑎𝑑𝑛𝑞𝑐𝑡 − 1

∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑚, 𝑛 ∈ 𝑀,𝑚 = 𝑛,∀𝑑 ∈ 𝐷,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇
(7)

𝑙𝑑𝑚𝑛𝑝𝑞 + 𝑙𝑑𝑚𝑛𝑞𝑝 + 𝑏𝑑𝑚𝑛𝑝𝑞 + 𝑏𝑑𝑚𝑛𝑞𝑝 + 𝑢𝑑𝑚𝑛𝑝𝑞 + 𝑢𝑑𝑚𝑛𝑞𝑝 ≥ 𝑎𝑑𝑚𝑝𝑐𝑡 + 𝑎𝑑𝑛𝑞𝑐𝑡 − 1

∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑚, 𝑛 ∈ 𝑀,𝑚 < 𝑛,∀𝑑 ∈ 𝐷,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇
(8)

The Eqs.  (7) and (8) represent the non-overlapping constraint for pallets during the container loading process. Similar to the 
spatial constraints of LCL cargo, it is necessary to ensure that a pallet 𝑝 from shipper 𝑚 is positioned completely above, below, to 
8 
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the left, right, front, or back of a pallet 𝑞 from shipper 𝑛. However, due to the possibility of placing pallets from different shippers 
within the same container, the constraints must ensure non-overlapping placement not only between pallets from the same shipper 
(𝑚 = 𝑛) but also between pallets from different shippers (𝑚 < 𝑛).

(2) Geometric Constraint 
𝑥𝑚𝑑𝑖 − 𝑥𝑚𝑑𝑗 +𝑊 𝑝 × 𝑏𝑚𝑑𝑖𝑗 ≤ 𝑊 𝑝 −𝑤𝑚𝑑𝑖 ∀𝑖, 𝑗 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (9)

𝑥𝑚𝑑𝑖 ≤ 𝑊 𝑝 −𝑤𝑚𝑑𝑖 +
(

1 − 𝑓𝑚𝑑𝑖𝑝
)

×𝑊 𝑝 ∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (10)

𝑥𝑚𝑑𝑝 − 𝑥𝑛𝑑𝑞 +𝑊 𝑐 × 𝑏𝑑𝑚𝑛𝑝𝑞 ≤ 𝑊 𝑐 −𝑊 𝑝 ∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚, 𝑛 ∈ 𝑀 (11)

𝑥𝑚𝑑𝑝 ≤ 𝑊 𝑐 −𝑊 𝑝 +
(

1 − 𝑎𝑑𝑚𝑝𝑐𝑡
)

×𝑊 𝑐 ∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇 (12)

𝑦𝑚𝑑𝑖 − 𝑦𝑚𝑑𝑗 +𝐻𝑐 × 𝑢𝑚𝑑𝑖𝑗 ≤ 𝐻𝑐 − ℎ𝑚𝑑𝑖 ∀𝑖, 𝑗 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑚, 𝑛 ∈ 𝑀 (13)

𝑦𝑚𝑑𝑖 ≤ 𝑝ℎ𝑑𝑚𝑝 − ℎ𝑚𝑑𝑖 −𝐻𝑝 + (1 − 𝑓𝑚𝑑𝑖𝑝) ×𝐻𝑐 ∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (14)

𝑦𝑚𝑑𝑝 − 𝑦𝑛𝑑𝑞 +𝐻𝑐 × 𝑢𝑑𝑚𝑛𝑝𝑞 ≤ 𝐻𝑐 − 𝑝ℎ𝑑𝑚𝑝 ∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚, 𝑛 ∈ 𝑀 (15)

𝑦𝑚𝑑𝑝 ≤ 𝐻𝑐 − 𝑝ℎ𝑑𝑚𝑝 + (1 − 𝑎𝑑𝑚𝑝𝑐𝑡) ×𝐻𝑐 ∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇 (16)

𝑧𝑚𝑑𝑖 − 𝑧𝑚𝑑𝑗 + 𝐿𝑝 × 𝑙𝑚𝑑𝑖𝑗 ≤ 𝐿𝑝 − 𝑙𝑚𝑑𝑖 ∀𝑖, 𝑗 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (17)

𝑧𝑚𝑑𝑖 ≤ 𝐿𝑝 − 𝑙𝑚𝑑𝑖 + (1 − 𝑓𝑚𝑑𝑖𝑝) × 𝐿𝑝 ∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (18)

𝑧𝑚𝑑𝑝 − 𝑧𝑛𝑑𝑞 + 𝐿𝑐 × 𝑙𝑑𝑚𝑣𝑝𝑞 ≤ 𝐿𝑐 − 𝐿𝑝 ∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚, 𝑛 ∈ 𝑀 (19)

𝑧𝑚𝑑𝑝 ≤ 𝐿𝑐 − 𝐿𝑝 + (1 − 𝑎𝑑𝑚𝑝𝑐𝑡) × 𝐿𝑐 ∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇 (20)

Eqs.  (9)–(12) represent the geometric constraints for the loading of LCL cargo onto pallets and the subsequent loading of pallets 
into containers on the x-axis direction. Taking the example of LCL cargo pallet packing, if the shipper 𝑚’s cargo 𝑖 to the same 
destination 𝑑 is behind the cargo 𝑗, indicated by the condition 𝑏𝑚𝑑𝑖𝑗 = 1, then, 𝑥𝑚𝑑𝑖 +𝑤𝑚𝑑𝑖 ⩽ 𝑥𝑚𝑑𝑗 , it is necessary to ensure that the 
total width occupied by the cargo does not exceed the width range of the pallet, as illustrated in Fig.  6(𝑎). The pallet loading width 
range is set to be consistent with the maximum width of the pallet, denoted as 𝑊 𝑝, as shown in Eqs.  (9)–(10). When loading pallets 
into a container, if the shipper 𝑚’s pallet 𝑝 to the same destination 𝑑 is behind the shipper 𝑛’s pallet 𝑞, indicated by the condition 
𝑏𝑑𝑚𝑛𝑝𝑞 = 1, then, 𝑥𝑚𝑑𝑝 +𝑊 𝑝 ⩽ 𝑥𝑛𝑑𝑞 , it is essential to ensure that the total width occupied by the pallets does not exceed the width 
range of the container 𝑊 𝑐 . The container loading width range is set to be consistent with the maximum width of the container.as 
shown in Eqs.  (11)–(12).

Similar to Eqs.  (9)–(12), Eqs.  (13)–(16) represent the geometric constraints for the loading of LCL cargo onto pallets and the 
subsequent loading of pallets into containers on the 𝑦-axis direction. Eqs.  (17)–(20) represent the geometric constraints for the 
loading of LCL cargo onto pallets and the subsequent loading of pallets into containers on the 𝑧-axis direction.

(3) Logical Constraint 
∑

𝑝∈𝑃
𝑓𝑚𝑑𝑖𝑝 ≥ 1 ∀𝑖 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (21)

𝑓𝑚𝑑𝑖𝑝 ≤
∑

𝑐∈𝐶

∑

𝑡∈𝑇
𝑎𝑑𝑚𝑝𝑐𝑡 ∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (22)

𝑎𝑑𝑚𝑝𝑐𝑡 + 𝑎𝑑′𝑛𝑞𝑐𝑡 ≤ 1 ∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑚, 𝑛 ∈ 𝑀,∀𝑑, 𝑑′ ∈ 𝐷, 𝑑 < 𝑑′,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇 (23)

∑

𝑐∈𝐶

∑

𝑡∈𝑇
𝑎𝑑𝑚𝑝𝑐𝑡 ≤ 1 ∀𝑝 ∈ 𝑃 ,∀𝑚 ∈ 𝑀,∀𝑑 ∈ 𝐷 (24)

𝑎𝑑𝑚𝑝𝑐𝑡 ≤ 𝑧𝑐𝑡 ∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇 ,∀𝑚 ∈ 𝑀 (25)

∑

𝑐∈𝐶
𝑧𝑐𝑡 ≤ 𝐸∀𝑡 ∈ 𝑇 (26)

∑

𝑡∈𝑇
𝑧𝑐𝑡 ≤ 1∀𝑐 ∈ 𝐶 (27)

𝑓 , 𝑧 , 𝑎 ∈ {0, 1} ∀𝑖 ∈ 𝑆,∀𝑝 ∈ 𝑃 ,∀𝑚 ∈ 𝑀,∀𝑑 ∈ 𝐷,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇 (28)
𝑚𝑑𝑖𝑝 𝑐𝑡 𝑑𝑚𝑝𝑐𝑡
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Fig. 7. Encoding the Loading Sequence of LCL Cargoes.

𝑙𝑚𝑑𝑖𝑗 , 𝑏𝑚𝑑𝑖𝑗 , 𝑢𝑚𝑑𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (29)

𝑙𝑑𝑚𝑛𝑝𝑞 , 𝑏𝑑𝑚𝑛𝑝𝑞 , 𝑢𝑑𝑚𝑛𝑝𝑞 ∈ {0, 1} ∀𝑝, 𝑞 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚, 𝑛 ∈ 𝑀 (30)

𝑝ℎ𝑑𝑚𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (31)

𝑥𝑚𝑑𝑝, 𝑦𝑚𝑑𝑝, 𝑧𝑚𝑑𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 ,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (32)

𝑥𝑚𝑑𝑖, 𝑦𝑚𝑑𝑖, 𝑧𝑚𝑑𝑖 ≥ 0 ∀𝑖 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑚 ∈ 𝑀 (33)

Eq. (21) ensures that cargo 𝑖 destined for destination 𝑑 shipper 𝑚 must be loaded onto a pallet. Eq. (22) ensures that pallet 𝑝
must be loaded into a container 𝑐 with departure cycle 𝑡 if pallet 𝑝 to destination 𝑑 shipper 𝑚 is loaded with cargo. Eq. (23) ensures 
that only pallets with the same destination can be packed into the same container. Eq. (24) ensures that a pallet 𝑝 destined for 
destination 𝑑 shipper 𝑚 can be loaded into at most one container 𝑐 with departure cycle 𝑡. Eq. (25) ensures that a container is used 
if it contains a pallet. Eq. (26) ensures that the number of containers per departure cycle does not exceed 𝐸. Eq. (27) ensures that 
each container can only depart in a single departure cycle. Eqs.  (28)–(33) are decision variable constraints, including 0–1 variables 
and integer variables.

4. Iterative local search based genetic algorithm

This study addresses the LCL cargo loading problem and optimizes container scheduling concurrently. From an operations 
research optimization standpoint, this problem is classified as NP-hard. Considering the challenge of obtaining precise solutions 
for large-scale instances, this study introduces an iterative local search strategy, leveraging a genetic algorithm to enhance the 
entire LCL business process.

4.1. Encoding

The loading process of LCL cargo involves two critical phases: palletization of cargoes and containerization of pallets. This study 
proposes a two-stage coding strategy for these phases. In the first stage, we focus on coding the loading sequence for LCL cargoes. 
In the second stage, we focus on the loading sequence for pallets. The coding strategy for both phases employs an integer coding 
method.

We established a loading order for LCL cargoes in the first stage (as shown in Fig.  7). This process accounts for varying 
destinations and shippers, and we generate a coding scheme for each destination and shipper. For instance, let us consider five LCL 
cargoes destined for destination A and shipper a. a sample sequence might be 3-5-4-2-1, this method is applied uniformly across 
different destinations and shippers. Proceeding to the second stage (as shown in Fig.  8), we refine the pallet loading sequence from 
the first stage. Once the first loading stage is concluded, Pallet 1 might contain shipments coded 1, 2, and 3, whereas Pallet 2 contains 
a shipment coded 4, and so forth, 12 consolidated shipments are distributed across 7 pallets. Subsequently, the pallets are sorted 
and coded based on destination. For instance, we assigned a random sequence like 3-2-1 to three pallets headed for Destination A. 
This coding approach was also applied to pallets bound for other destinations.

4.2. Decoding

Based on the two stages encoding strategy, the corresponding decoding process is detailed below: In the first phase, as shown in 
Fig.  7, we decode the LCL cargo’s loading sequence. We begin by loading cargo coded 1, shipped by cargo owner A to destination A, 
onto the pallet, and then update the loadable points before proceeding to cargo coded 2. If the loading height exceeds the container’s 
height, the loading of the current pallet is completed, and a new pallet is opened. Continuing this process, cargoes shipped by shipper 
b will be loaded to destination B, and cargoes shipped by shipper c will be loaded to destination B until all are palletized, recording 
each pallet’s height and destination data. We decode the pallet loading sequence in the second stage, as shown in Fig.  8. the pallet 
with destination A, coded 1, is loaded first, and then the loadable points and container destinations are. Next, pallet coded as 2 is 
loaded, if it cannot fit in the current container, a new one is opened. Then, proceed with pallets for destination B until all destination 
pallets are loaded.
10 
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Fig. 8. Encoding the Loading Sequence of Pallets.

Fig. 9. Single-point Crossover.

4.3. Population initialization

According to the actual loading practices of CR Express’s LCL operations, this study designs various sorting methods to generate an 
initial population, including random order, volume, length, height, width, and arrival time arrangements. Specifically, in a random 
order arrangement, once cargoes are categorized by destination and shipper, the loading sequence is randomly assigned using the 
Rand function for cargoes belonging to the same shipper and destined for the same destination.

4.4. Fitness function

The objective of this study is to minimize the number of containers and minimize the maximum shipping time, which is a 
minimization problem. Therefore, the fitness function should assign higher fitness to individuals with smaller objective function 
values, indicating better performance. This study reverses the objective function values by converting the reciprocal into fitness 
values. The specific fitness function is described in Eq.  (34). 

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 = 1
𝑈3

(34)

4.5. Crossover operation

In this study, we utilize single-point and two-point crossover methods for genetic crossover operations on the coding of LCL 
cargo for the same destination and the same shipper.

(1) Single-point Crossover. Two highly fit individuals are randomly selected from the population to serve as Parent 1 and Parent 
2, and a crossover point is randomly determined. The gene fragments preceding the crossover point are inherited unchanged by 
Offspring 1 and Offspring 2. Subsequently, genes in Parent 2 identical to those in Parent 1 pre-crossover are removed, and the 
remaining genes form the post-crossover gene fragments for Offspring 1, Offspring 2’s gene fragments are created using the same 
approach. As shown in Fig.  9, this crossover strategy is also applied to the cargo coding sequences of other shippers.

(2) Two-point Crossover. Two highly fit individuals are randomly selected from the population to serve as Parent 1 and Parent 2, 
and two crossover points are randomly determined. The genes between the crossover points are inherited unchanged by Offspring 1 
11 
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Fig. 10. Two-point Crossover.

Fig. 11. Two-point Swap.

Fig. 12. Interval Reversal.

and Offspring 2. Subsequently, gene fragments in Parent 2 identical to those between the crossover points in Parent 1 are removed, 
and the remaining genes are sequentially allocated to Offspring 1. Offspring 2’s gene fragments are created using the same approach. 
As shown in Fig.  10, this crossover strategy is also applied to the cargo coding sequences of other shippers.

4.6. Mutation operation

This study introduces two mutation strategies, two-point swapping, and interval reversal, to encode cargoes with the same 
destination for the same shipper. These strategies efficiently search the solution space and prevent reliance on crossover operations 
that may result in gene duplication and entrapment in local optima.

(1) Two-point Swap. For the gene sequence of cargo with the same destination and shipper, two swap points are randomly 
generated, and the genes between the two points are exchanged, refer to Fig.  11.

(2) Interval Reversal. For the gene sequence of cargo with the same destination and shipper, two intervals are randomly generated, 
and the gene segments within the two intervals are reversed as a whole, refer to Fig.  12.
12 
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Fig. 13. Double-bridge Move Disturbance Strategy.

4.7. Iterative local search

Local search algorithms aim to find better solutions near a given solution. Techniques like variable neighborhood search, Tabu 
search, Beam search, and simulated annealing are recognized as effective local search methods for 3D bin packing problems (Anibal 
Tavares de Azevedo and others, 2014; Bi-Chao Bang, 2011). The performance of these algorithms is influenced by factors including 
algorithm design, neighborhood size, and search strategy. Hence, designing a local search strategy for the specific solution structure 
is essential to achieve high-quality solutions.

This study introduces a local search mechanism to enhance the quality of the initial population and the new offspring solutions. 
Various local search strategies are developed from the initial solution by applying a disturbance strategy to perturb it, aiming to 
discover better solutions in the solution’s neighborhood. Additionally, a termination condition is established to halt the search upon 
meeting specific criteria and to output the optimal solution identified thus far. Continuous iteration of this method increases search 
diversity, aiding in escaping local optima and approaching the global optimal solution. The pseudo-code of the algorithm is shown 
in Algorithm 1.
Algorithm 1: Iterative Local Search Algorithm.
1 Function ILSA():
2 𝑖 = 0;
3 𝑆∗ = 𝑆0; // Initialize the initial solution to the optimal solution 
4 while 𝑖 < 𝐿 do
5 𝑆1 = 𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑆∗); // Disturbing the current solution 
6 𝑆2 = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆1); // Local search for the Disturbed solution 

// if find a better solution, set it as the current optimal solution
7 if (𝐹 𝑖𝑡𝐹𝑢𝑛(𝑆2) > 𝐹 𝑖𝑡𝐹𝑢𝑛(𝑆∗)) then
8 𝑆∗ = 𝑆2;
9 end 
10 𝑖 = 𝑖 + 1; // Increase the number of iterations 𝑖 + 1
11 end 
12 return 𝑆∗ ; // return the optimal solution

4.7.1. Disturbance strategy
During the iterative local search process, a disturbance strategy must be incorporated to prevent the solution from getting stuck 

in local optima. However, the magnitude of the disturbance applied to the solution should be manageable. When the disturbance 
is too small, it is prone to getting trapped in local optima. When the disturbance is too large, the randomness introduced to the 
troubled solution is too significant, resulting in lower solution quality.

This study adopts the classic double-bridge move disturbance strategy, commonly used in the Traveling Salesman Problem. The 
strategy perturbs the cargo of the same shipper with the same destination. The basic idea is randomly selecting four nodes: 𝑎, 
𝑏, 𝑐, and 𝑑. Then, the connections between (𝑎, 𝑎 + 1), (𝑏, 𝑏 + 1), (𝑐, 𝑐 + 1), and (𝑑, 𝑑 + 1) are severed, and new connections between 
(𝑎, 𝑐 + 1), (𝑐, 𝑎 + 1), (𝑏, 𝑑 + 1), and ((𝑑, 𝑏 + 1) are made. To illustrate, consider five cargoes with the encoding order of 35421, destined 
for destination A and belonging to shipper 𝑎. The connections (3, 5), (5, 4), (4, 2), and (2, 1) are cut, and connections (3, 2), (4, 5), (5, 1), 
and (2, 4) are made. As a result, the perturbed encoding order becomes 3 2 4 5 1, as shown in Fig.  13.

4.7.2. Local search strategy
In the local search phase, this study designs five local search methods for the encoding of pallets, encoding of cargo within 

pallets, and encoding of the shipping cycle of containers.
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Fig. 14. Gene Transposition Between Two Pallets.

Fig. 15. Gene Transposition of Cargo Within the Same Pallet and Container.

Fig. 16. Gene Transposition of Cargo Between Two Pallets.

(1) Exchange the loading sequence between pallets. The loading sequence of pallets with the same destination is changed through 
a transposition method. As shown in Fig.  14, the pallets with codes 3 and 1 destined for destination A are exchanged, and the pallets 
with codes 5 and 7 destined for destination B are exchanged.

(2) Exchange the order of cargo within the same pallet. As shown in Fig.  15 (𝑎), the cargo order with codes 1 and 3 within pallet 
1 is exchanged.

(3) Exchange the cargo order between two pallets for the same destination and shipper. As shown in Fig.  16, taking the cargo 
for destination A and shipper a as an example, the cargo with code 2 in pallet 1 is exchanged with the cargo with code 4 in pallet 
2.

(4) Transfer cargo from one pallet to another pallet for the same destination and shipper. As shown in Fig.  16, the cargo with 
code 2 in pallet 1 is placed at the beginning of the cargo in pallet 2.
14 
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Fig. 17. Infeasible Solution due to Rearrangement.

Fig. 18. Schematic of the Repair Strategy.

(5) Exchange the shipping cycle of containers, as shown in Fig.  15(𝑏).

4.8. Repair strategy

During the local search process, partially infeasible new solutions may be generated. For example, for cargo destined for the 
same destination and the same shipper, the pallet will repack these cargo when the loading sequence of the cargo within the same 
pallet or between two pallets is exchanged. However, the repackaging process may not satisfy the loading constraints, resulting in 
infeasible solutions.

Taking Fig.  17 as an example, pallet 1 initially loaded cargo with the numbers 1, 2, and 3; after rearrangement, the desired 
loading sequence for pallet 1 becomes 3, 2, 1, and the change in sequence causes cargo 1 to be unable to load into the pallet. In 
such cases, it is necessary to develop a repair strategy to transform these infeasible solutions into feasible ones. In this study, we 
consider allocating the unloaded cargo to other unfilled pallets destined for the same destination and the same shipper. A new pallet 
will be opened if there is remaining cargo, as shown in Fig.  18.
15 
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Taking the loading of cargo in pallet 1, if cargo with the number 1 cannot be loaded into pallet 1 due to the rearrangement, 
it will be allocated to unfilled pallet 2. If it cannot be loaded into pallet 2, a new pallet will be opened. The pseudo-code for the 
specific repair strategy can be found in 2.
Algorithm 2: Repair Strategy.
1 Function RS():
2 𝑆 = 𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑐𝑎𝑟𝑔𝑜𝑠; // Generate the set 𝑆 of unloaded cargos
3 while 𝑖 ∈ 𝑆 do
4 while 𝑝 ∈ 𝑃  do
5 𝐷𝐵𝐿𝐹 (𝑖, 𝑝); // Loading of cargo 𝑖 onto a pallet 𝑝 with completed loading
6 if (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐿𝑜𝑎𝑑𝑖𝑛𝑔) then
7 𝑏𝑟𝑒𝑎𝑘;
8 end 
9 if (𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑁𝑜𝑡𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑) then
10 𝐷𝐵𝐿𝐹 (𝑖,𝑁𝑒𝑤𝑃𝑎𝑙𝑙𝑒𝑡); // Open a new pallet
11 end 
12 end 
13 end 
14 return 𝑇ℎ𝑒𝐻𝑒𝑖𝑔ℎ𝑡𝑠𝑂𝑓𝑃𝑎𝑙𝑙𝑒𝑡𝑠 ; // return the heights of pallets

4.9. ILS-GA algorithm

This study introduces an Iterative Local Search Genetic Algorithm (ILS-GA) for a two-stage Less than Container Load (LCL) 
cargo loading process. The algorithm begins by inputting detailed specifications of containers and pallets and the dimensions and 
information about the cargo to be loaded. It then configures key parameters of the genetic algorithm, such as population size, 
crossover rate, mutation rate, and the number of iterations. Once the initial population is generated, the algorithm enters the main 
loop. Within this loop, the fitness of the population is assessed, and each individual undergoes crossover and mutation operations 
to enhance genetic diversity. Subsequently, the Iterative Local Search Algorithm (ILSA) is applied to each individual to refine the 
quality of the solutions. If the ILSA identifies a solution with higher fitness than the current individual, it replaces the original, 
facilitating the continuous evolution of the population. The population is then selected for the next generation based on fitness, and 
the cycle repeats until a termination condition is met. At this point, the algorithm concludes and returns the optimal loading plan. 
The specific pseudo code is as follows:
Algorithm 3: ILS-GA Algorithm.
1 Function ILS-GA():
2 𝐼𝑛𝑝𝑢𝑡 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠, 𝑝𝑎𝑙𝑙𝑒𝑡𝑠, 𝑐𝑎𝑟𝑔𝑜𝑒𝑠
3 𝐼𝑛𝑝𝑢𝑡 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠; // Setting algorithm-related parameters
4 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃 ); // Generating the initial population
5 while 𝑛𝑜𝑡 𝑇 𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 do
6 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃 ); // Calculate the fitness function
7 while 𝑖 ∈ 𝑃  do
8 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝐴𝑛𝑑𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑖); // crossover, mutation operations
9 𝑆∗ = 𝐼𝐿𝑆𝐴(𝑖); // local search strategy
10 if (𝐹 𝑖𝑡𝐹𝑢𝑛(𝑆∗) > 𝐹 𝑖𝑡𝐹𝑢𝑛(𝑖)) then
11 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑖, 𝑆∗);
12 end 
13 end 
14 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃 ); // Selection of a new generation of populations
15 end 
16 return 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑃 ) ; // Return the optimal loading scheme

To present the key steps and the overall process of the ILS-GA, we divide the overall process of the algorithm into five parts: the 
setting of algorithm parameters, population initialization, the main loop of the algorithm, the iterative local search algorithm, and 
the repair strategy, and have drawn a detailed flowchart(as shown in Fig.  19). The flowchart clearly shows the logical relationships 
among these parts. It intuitively displays how the local search mechanism is integrated into the genetic algorithm framework in 
each iteration, which is also one of the leading innovative points of our algorithm research.

5. Experimental result

5.1. Benchmark data set

In this study, we take the core route of ‘‘Zhengzhou-Hamburg’’ of CR Express Zhongyu Train as an example. We calculate three 
kinds of scales, small, medium, and large instances, to validate the model and algorithm’s correctness, validity, and optimization.
16 



Y. Zhou et al. Transportation Research Part E 197 (2025) 104066 
Fig. 19. Flowchart of ILS-GA.

The ‘‘Zhengzhou - Hamburg’’ train starts from Zhengzhou Putian Station, exits from Alashankou, and passes through 4 stations 
in Almaty, Moscow, Klaipeda, and Hamburg in turn, with a departure cycle of 1 day, a full journey of 10,245 kilometers, and a 
total running time of about 16 days (the specific arrival time at each station is shown in Table  2).

The standards of pallet and container specifications used in the CR Express are shown in Table  3, and this study is based on the 
20-foot container specifications, for example, analysis. Table  4 shows the range of sizes and quantities for three scale instances of 
LCL cargo (the specific sizes of LCL cargo were obtained through on-site investigation and collation).
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Table 2
Arrival time of the ‘‘Zhengzhou-Hamburg’’ at each station.
 The origin Stations Time of arrival/Day 
 
Zhengzhou

Almaty 6  
 Moscow 11  
 Klaipeda 13  
 Hamburg 16  

Table 3
Pallet and container size.
 Types Length/cm Width/cm Height/cm 
 Pallet 120 80 14  
 Container 20 ft. 569 213 218  
 40 ft. 1180 213 218  

Table 4
The range of sizes and quantities for three instances LCL cargo.
 Length/cm Width/cm Height/cm Quantity∕𝑝𝑐 
 Small scale [80, 120] [60, 80] [100, 200] [12, 20]  
 Medium scale [50, 100] [40, 80] [80, 150] [25, 45]  
 Large scale [30, 120] [30, 80] [90, 200] [80, 120]  

Table 5
Influence factor levels values.
 Levels Influencing factor
 𝑃 𝑃𝑐 𝑃𝑚 𝐼𝑡𝑒𝑟 𝑁  
 1 40 0.5 0.05 50 10 
 2 50 0.6 0.1 70 15 
 3 60 0.7 0.15 90 20 
 4 80 0.8 0.2 110 25 

5.2. Experimental environment

The following instances are conducted on a computer with an Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz, the 
operating system Windows 10 Enterprise, and 8.0G of RAM. The proposed mixed-integer planning model is solved by the IBM ILOG 
CPLEX 12.8. The proposed genetic algorithm is implemented in C++ programming language with the GCC compiler.

5.3. Parameter tuning

This study is based on Taguchi’s experimental design method to set the parameter combination of the genetic algorithm. Taguchi 
experiment is a quality engineering method of cost reduction. It has been used in many optimization problems (Xin et al., 2024; 
Zhou and Lee, 2020), and its core idea is that the performance of the algorithm is affected by the controllable factors and noise 
factors. The combination of the levels of the controllable factors is selected to reduce the sensitivity to the noise factors and reduce 
the fluctuation of the algorithm’s performance. Taguchi’s instances utilize the signal-to-noise ratio (𝑆∕𝑁) to measure the algorithm’s 
robustness. The larger the signal-to-noise ratio for problems with ‘larger the better’ quality characteristics, the better the robustness, 
and the smaller the signal-to-noise ratio for issues with ‘smaller the better’ quality characteristics, the better the robustness. The 
method does not require instances on all combinations of parameter configurations; only specific parameter combinations are set 
by orthogonal tables.

Factors affecting the performance of genetic algorithms include population size (𝑃 ) - a small population size will lead to 
insufficient gene diversity and poor quality initial solutions, while a large population size will generate more poor quality genes and 
reduce the operational efficiency of the algorithm; crossover probability (𝑃𝑐) and mutation probability (𝑃𝑚) - when the crossover 
and mutation probabilities are small, the algorithm will not be able to effectively update the population, easy to fall into the local 
optimum, and when the probability is larger, easy to destroy high-quality genes; the number of iterations (𝐼𝑡𝑒𝑟), - too few iterations 
will lead to the algorithm cannot converge, the number of times too much will reduce the operating efficiency of the algorithm; 
the number of iterative local search (𝑁) - for the initial solution and the new solution for the iterative local search, the number of 
times too much will increase the running time, and too few times lead to poor quality of the searched solution. Based on this, the 
experimental data was tested by setting multiple influencing factor level values as shown in Table  5. Four levels were set for each 
influencing factor, and an orthogonal matrix table was set up to design the experiment using Taguchi’s method, as shown in Table 
6.
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Table 6
Influence factor levels values.
 No. 𝑃 𝑃𝑐 𝑃𝑚 𝐼𝑡𝑒𝑟 𝑁  
 1 40 0.5 0.05 50 10 
 2 40 0.6 0.1 70 15 
 3 40 0.7 0.15 90 20 
 4 40 0.8 0.2 110 25 
 5 50 0.5 0.1 90 25 
 6 50 0.6 0.05 110 20 
 7 50 0.7 0.2 50 15 
 8 50 0.8 0.15 70 10 
 9 60 0.5 0.15 110 15 
 10 60 0.6 0.2 90 10 
 11 60 0.7 0.05 70 25 
 12 60 0.8 0.1 50 20 
 13 80 0.5 0.2 70 20 
 14 80 0.6 0.15 50 25 
 15 80 0.7 0.1 110 10 
 16 80 0.8 0.05 90 15 

Fig. 20. Main Effect Plot for Signal-to-Noise Ratio.

Different combinations of parameters affect the performance of the algorithm, to select the optimal combination of parameters 
so that the algorithm calculates the optimal target value in a shorter time, this study uses two indicators: the objective value (𝑂𝐵𝐽 )
and the running time (𝐶𝑇 ), to express the performance of the algorithm. The smaller the objective value and the running time 
are, the better. Based on the large-scale arithmetic data set, 16 parameter combinations are experimented with. The performance 
function of the algorithm is constructed as in Eq. (35) (due to the different units of the objective value and the running time, 
they are respectively divided by the average value of each of their respective values to eliminate the units). The’smaller the better’ 
signal-to-noise ratio (𝑆∕𝑁) in Taguchi’s method (as in Eq. (36)) is utilized for calculation, and the main effect plot of the (𝑆∕𝑁)
ratio is plotted (shown in Fig.  20). 

𝑈𝐹 = 𝑂𝐵𝐽
(
∑

𝑂𝐵𝐽 )∕𝑛
+ 𝐶𝑇

(
∑

𝐶𝑇 )∕𝑛
(35)

S∕N = −10𝑙𝑜𝑔10(
∑

𝑈𝐹 2

𝑛
) (36)

The problem of this study is a problem with’smaller the better’ quality characteristics, so the parameters are taken as the minimum 
value at each level. Finally, the parameters of the genetic algorithm are set as shown in Table  7.
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Table 7
Genetic algorithm parameter setting.
 The parameters of genetic algorithm Values 
 Population size (𝑃 ) 60  
 Crossover probability (𝑃𝑐 ) 0.8  
 Mutation probability (𝑃𝑚) 0.1  
 the number of iterations (𝐼𝑡𝑒𝑟) 110  
 The number of iterative local search (𝑁) 15  

Table 8
Data information of the small-scale instance.
 Cargo ID Destination Shipper Length/cm Width/cm Height/cm Advance arrival 

time ∕𝑑𝑎𝑦
 

 1 Moscow 1 103 78 194 9  
 2 Moscow 1 117 77 200 9  
 3 Moscow 1 104 62 187 9  
 4 Moscow 1 112 69 183 9  
 5 Moscow 2 115 79 187 5  
 6 Moscow 2 110 72 190 5  
 7 Moscow 2 114 74 143 5  
 8 Moscow 2 102 76 203 5  
 9 Hamburg 3 119 60 199 8  
 10 Hamburg 3 112 74 174 8  
 11 Hamburg 3 108 61 152 8  
 12 Hamburg 3 104 73 188 8  
 13 Hamburg 4 114 79 83 7  
 14 Hamburg 4 106 67 112 7  
 15 Hamburg 4 106 62 189 7  
 16 Hamburg 4 112 70 179 7  

Table 9
LCL loading scheme (small-scale).
 Container ID Pallet ID Cargo ID Length of pallet /cm Departure cycle 
 

1

1 3 201

1

 
 2 1 208  
 3 4 197  
 4 2 214  
 5 6 204  
 6 5 201  
 7 7 157  
 8 8 217  
 

2

9 12 202  
 10 11 166  
 11 10 188  
 12 9 213  
 13 13 and 14 209  
 14 15 203  
 15 16 193  

5.4. Comparison between mathematical model and proposed algorithm

5.4.1. Small-scale instances
To verify the correctness of the mixed integer programming model, this study is based on a small-scale instance, which is solved 

accurately by using the Cplex solver. 4 shippers with a total of 16 LCL cargoes need to be shipped to Moscow and Hamburg, the 
number of containers allowed to be LCL transportation in each cycle is set to be 2. The corresponding data information of the 
instance is shown in Table  8.

Solving for the single objectives of container usage and transportation time, respectively, 𝑈∗
1 = 2, 𝑈∗

2 = 24. A total of 15 pallets 
are used to load all LCL cargoes, and a total of 2 containers are used to load all pallets, all of which are transported in departure 
cycle 1. Table  9 shows the specific loading scheme.

To validate the effectiveness of the genetic algorithm with iterative local search(ILS-GA), 20 small-scale instances were 
considered. First, the instances were solved using CPLEX to obtain exact solutions. Then, the ILS-GA was independently run 10 
times for each experiment. The usage of containers 𝑈1, transportation time 𝑈2, and objective values 𝑈3 were recorded for both 
CPLEX and ILS-GA solutions. The optimal solutions obtained from the ILS-GA were compared with the exact solutions obtained 
from CPLEX, considering the 𝐺𝑎𝑝1 of objective and 𝐺𝑎𝑝2 runtime. 𝐺𝑎𝑝1 =

(

𝑙1 − 𝑙2
)

∕𝑙1 ⋅ 100% Let 𝑙1 and 𝑙2 represent the objective 
values obtained by CPLEX and ILS-GA, respectively. 𝐺𝑎𝑝 =

(

𝑡 − 𝑡
)

∕𝑡 ⋅ 100% Let 𝑡  and 𝑡  represent the runtime values obtained 
2 1 2 1 1 2

20 



Y. Zhou et al. Transportation Research Part E 197 (2025) 104066 
Table 10
Comparison of Cplex and ILS-GA solving performance for small-scale instances.
 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
𝑁𝑜.

𝐶𝑃𝐿𝐸𝑋 𝐼𝐿𝑆 − 𝐺𝐴
𝐺𝑎𝑝1/% 𝐺𝑎𝑝2/%

 
 𝐶 ∕𝑝𝑐 𝑇 𝑇 ∕𝑑𝑎𝑦 𝑅𝑇 ∕𝑠 𝐶 ∕𝑝𝑐 𝑇 𝑇 ∕𝑑𝑎𝑦 𝑅𝑇 ∕𝑠 𝑆𝑉  
 1 2 26 36 2 26 4 0 0 89.26  
 2 3 22 95 3 22 3 0 0 96.41  
 3 3 24 17 3 24 4 0 0 74.85  
 4 2 26 74 2 26 5 0 0 92.84  
 5 2 28 89 2 28 6 0 0 93.82  
 6 2 24 95 2 24 4 0 0 95.79  
 7 3 24 120 3 24 6 0 0 95.25  
 8 3 26 260 3 26 8 0 0 96.92  
 9 3 24 246 3 24 5 0 0 98.09  
 10 3 25 175 3 25 7 0 0 96.12  
 11 2 28 225 2 28 7 0 0 97.11  
 12 2 27 150 2 27 6 0 0 96.00  
 13 3 26 205 3 26 5 0 0 97.56  
 14 3 28 303 3 28 5 0 0 98.42  
 15 3 24 263 3 24 7 0 0 97.34  
 16 2 26 217 2 26 5 0 0 97.74  
 17 2 23 260 2 23 5 0 0 98.27  
 18 3 25 278 3 25 6 0 0 97.70  
 19 2 25 226 2 25 6 0 0 97.57  
 20 3 26 265 3 26 5 0 0 98.19  

by CPLEX and ILS-GA, respectively. The standard deviation (SV) of the objective values obtained by the ILS-GA for the 10 runs was 
also calculated. The analysis results are presented in Table  10 (𝐶 − 𝑡ℎ𝑒𝑈𝑠𝑎𝑔𝑒𝑂𝑓𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠; 𝑇𝑇 − 𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒;𝑅𝑇 −𝑅𝑢𝑛𝑡𝑖𝑚𝑒).

From Table  10, it can be observed that the ILS-GA discovered the optimal solutions within a certain time limit, as the objective 
values obtained by ILS-GA matched the exact solutions obtained by CPLEX (𝐺𝑎𝑝1 with a value of 0). This indicates that the genetic 
algorithm designed in this study is correct and effective in solving the problem. Furthermore, the 𝑆𝑉  of the objective values obtained 
by ILS-GA for each experiment was 0, indicating that the algorithm found the optimal solution in all 10 runs for each experiment. 
It is further demonstrated that the algorithm has cargo stability and robustness. The average runtime of CPLEX was 180 𝑠, while 
the average runtime of ILS-GA was only 5.45 𝑠, which is approximately 95.56% lower. This significant difference suggests that, 
compared to exact solutions, the ILS-GA algorithm achieves better optimization efficiency in terms of runtime.

5.4.2. Medium-scale instances
To verify the convergence of the ILS-GA in solving medium-scale instances, Table  11 presents the information on the medium-

scale LCL cargoes. There are 10 shippers with a total of 25 LCL cargoes that need to be transported to Almaty, Moscow, Klaipeda, 
and Hamburg. The maximum number of containers allowed for LCL Transportation per cycle is set to 2. The ILS-GA algorithm 
is repeatedly used to solve the single-objective problems of container utilization and transportation time, resulting in a value of 
𝑈∗
1 = 4, 𝑈∗

2 = 25, respectively. A total of 20 pallets are used to load all the LCL cargo, and 4 containers are used to load all the 
pallets. In the first cycle, containers with sequence numbers 3 and 4 are transported; in the second cycle, containers with sequences 
1 and 2 are transported. The specific loading program is shown in Table  12.

To analyze the changes in the population’s worst, average, and best objective values with the number of iterations, the iteration 
curve of the ILS-GA for solving this instance is plotted in Fig.  21. It can be observed that during the iteration process, the worst 
objective value stabilizes around the 35𝑡ℎ generation, and the best objective value stabilizes around the 17𝑡ℎ generation. When the 
worst individual is completely replaced by the best individuals, the average objective value stabilizes, and all three curves converge 
to the global optimum, verifying the cargo convergence of the algorithm.

To validate the optimality of the ILS-GA, this study compares the high-quality solutions obtained by CPLEX with those obtained 
by the ILS-GA based on a dataset of 20 medium-scale instances. Due to the large number of LCL cargoes, it is challenging for 
the CPLEX solver to achieve an exact solution within a reasonable time. Therefore, a runtime of 2 h is set for CPLEX to compute 
high-quality approximate solutions. The genetic algorithm is run independently ten times for each instance, and usage of containers 
𝑈1, transportation time 𝑈2, and objective values 𝑈3 obtained by ILS-GA are recorded. The objective values 𝐺𝑎𝑝1 and runtime values 
𝐺𝑎𝑝2 of CPLEX and ILS-GA are calculated separately, 𝐺𝑎𝑝1 =

(

𝑙1 − 𝑙2
)

∕𝑙1 ⋅100% Let 𝑙1 and 𝑙2 represent the objective values obtained 
by CPLEX and ILS-GA, respectively. 𝐺𝑎𝑝2 =

(

𝑡1 − 𝑡2
)

∕𝑡1 ⋅ 100% Let 𝑡1 and 𝑡2 represent the runtime values obtained by CPLEX and 
ILS-GA, respectively. The results are shown in Table  13 (𝐶 − 𝑡ℎ𝑒𝑈𝑠𝑎𝑔𝑒𝑂𝑓𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠; 𝑇𝑇 − 𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒;𝑅𝑇 − 𝑅𝑢𝑛𝑡𝑖𝑚𝑒).

From Table  13, it can be observed that regarding the optimization objectives, for objective 1 (container utilization), ILS-GA has 
the same number of containers as CPLEX in 13 instances, outperforming CPLEX in 7 instances. For objective 2 (transportation time), 
the transportation time obtained by ILS-GA is less than or equal to that obtained by CPLEX in all instances. The average objective 
values of CPLEX and GA are 6.78% apart, indicating that ILS-GA provides better solutions. In terms of runtime, the runtime of CPLEX 
exceeds 2 h for all instances, while the average runtime of GA is only 27.25 s, demonstrating higher computational efficiency.
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Table 11
Data information of the medium-scale instance.
 Cargo ID Destination Shipper Length/cm Width/cm Height/cm Advance arrival 

time ∕𝑑𝑎𝑦
 

 1 Almaty 1 67 64 97 5  
 2 Almaty 1 58 76 86 5  
 3 Almaty 2 96 70 85 6  
 4 Almaty 2 67 68 88 6  
 5 Almaty 2 83 54 96 6  
 6 Moscow 3 40 78 84 7  
 7 Moscow 3 82 62 83 7  
 8 Moscow 3 99 65 82 7  
 9 Hamburg 4 91 71 87 10  
 10 Hamburg 4 100 78 144 10  
 11 Hamburg 5 81 62 93 5  
 12 Hamburg 5 72 63 99 5  
 13 Klaipeda 6 63 50 94 11  
 14 Klaipeda 6 50 60 86 11  
 15 Klaipeda 6 98 58 83 11  
 16 Klaipeda 7 100 50 148 7  
 17 Klaipeda 7 92 51 95 7  
 18 Klaipeda 7 94 76 135 7  
 19 Hamburg 8 97 79 145 9  
 20 Hamburg 8 61 66 107 9  
 21 Hamburg 8 88 65 137 9  
 22 Hamburg 9 92 73 145 8  
 23 Hamburg 9 63 50 137 8  
 24 Hamburg 10 82 74 123 7  
 25 Hamburg 10 93 74 107 7  

Fig. 21. Plot of Iteration Curves for Medium-Scale instances using ILS-GA.

5.4.3. Large-scale instances
If faced with a large-scale demand for LCL containers on the CR Express, the CPLEX solver cannot obtain high-quality approximate 

optimal solutions within a reasonable time. To verify the optimality of the algorithm in solving large-scale instances, this study refers 
to the loading algorithm designed by Liao et al. (2023) and based on a two-stage loading strategy, design a Simulated Annealing 
(SA) algorithm for solving the problem. The approximate optimal solutions obtained by the SA algorithm are compared with those 
obtained by the ILS-GA. The 𝐺𝑎𝑝1 of objective 1 (container quantity) and 𝐺𝑎𝑝2 of objective 2 (transportation time) values obtained 
by ILS-GA and SA are calculated, respectively. The results are shown in Table  14.

The GAP values of the two optimization objectives are plotted in a bar chart, as shown in Fig.  22. For objective 1 (container 
quantity), the ILS-GA algorithm has eight instances with fewer containers than the SA solution, and the rest are equal to SA, 
indicating that ILS-GA achieves a higher loading rate. For objective 2 (transportation time), SA outperforms ILS-GA in only 4 
instances, demonstrating that ILS-GA has better optimization effects on transportation time.

Due to the different optimization processes of the genetic algorithm (GA) and the simulated annealing (SA) algorithm, GA 
optimizes the population, while SA optimizes individual solutions. To compare the convergence and optimization performance of the 
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Table 12
LCL loading scheme (medium-scale).
 Container ID Pallet ID Cargo ID Length of pallet /cm Departure cycle 
 
1

1 1 and 2 197

2

 
 2 3 99  
 3 4 and 5 198  
 

2

4 6 and 8 180  
 5 7 97  
 6 9 101  
 7 10 158  
 8 11 and 12 206  
 
3

9 13 108

1

 
 10 14 and 15 183  
 11 16 162  
 12 17 209  
 

4

13 18 149  
 14 19 159  
 15 20 121  
 16 21 151  
 17 22 159  
 18 23 151  
 19 24 137  
 20 25 121  

Table 13
Comparison of Cplex and ILS-GA solving performance for medium-scale instances. 

 

 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
𝑁𝑜.

𝐶𝑃𝐿𝐸𝑋 𝐼𝐿𝑆 − 𝐺𝐴 𝐺𝑎𝑝1/% 𝐺𝑎𝑝2/% 
 𝐶 ∕𝑝𝑐 𝑇 𝑇 ∕𝑑𝑎𝑦 𝑅𝑇 ∕𝑠 𝐶 ∕𝑝𝑐 𝑇 𝑇 ∕𝑑𝑎𝑦 𝑅𝑇 ∕𝑠  
 1 5 28 7231 5 26 31 3.70 99.57  
 2 4 29 7232 4 25 23 7.41 99.68  
 3 6 26 7222 5 26 26 9.09 99.64  
 4 5 23 7230 5 22 26 2.22 99.64  
 5 5 28 7219 4 25 32 15.61 99.56  
 6 5 25 7230 5 25 35 0 99.52  
 7 5 23 7224 4 22 27 12.87 99.63  
 8 4 30 7258 4 28 21 3.45 99.71  
 9 6 26 7235 6 24 35 4 99.52  
 10 6 32 7230 5 28 32 14.63 99.56  
 11 6 27 7225 6 24 23 5.88 99.68  
 12 4 26 7244 4 26 28 0 99.61  
 13 4 27 7257 4 24 21 5.88 99.71  
 14 5 31 7225 5 28 30 5.08 99.58  
 15 5 27 7218 4 27 23 11.11 99.68  
 16 5 25 7218 5 22 35 6.38 99.52  
 17 4 23 7217 4 23 27 0 99.63  
 18 6 32 7242 5 29 27 13.17 99.63  
 19 5 25 7224 5 23 22 4.17 99.70  
 20 6 23 7222 5 22 21 10.93 99.71  

two optimization algorithms during the iterative process, this study uses the fitness evaluation times as the x-axis and the optimal 
objective value as the y-axis to plot the iteration curves of ILS-GA and SA, The iterative curves for the first five instances are shown 
in Figs.  23 (as shown in Appendix  A).

Based on the information provided in Figs.  23(a), 23(b), and 23(d), The SA algorithm converges to the optimal solution around 
950, 1100, and 2164 evaluation times, respectively, but gets trapped in local optima. In contrast, after more evaluation times, 
the ILS-GA converges to the optimal solution, but the convergent objective values are better than those of the SA algorithm. This 
indicates that during the iterative process, the SA algorithm prematurely converges without searching for the global optimum, while 
the ILS-GA can search for and find higher-quality optimal solutions within a certain time frame, demonstrating better optimization 
performance. In Figs.  23(c) and 23(e), both the SA and ILS-GA converge to the same optimal solution, but the ILS-GA achieves this 
with fewer evaluation times, showing higher optimization efficiency. In summary, the results suggest that the ILS-GA outperforms 
the SA algorithm regarding global search capability and optimization efficiency, even though the SA algorithm may converge faster 
in some cases.
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Fig. 22. GAP histogram of ILS-GA vs. SA objective values.

Table 14
Comparison of SA and ILS-GA solving performance for large-scale instances. 

 

 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
𝑁𝑜.

𝐼𝐿𝑆 − 𝐺𝐴 𝑆𝐴 𝐺𝑎𝑝1/% 𝐺𝑎𝑝2/% 
 𝐶 ∕𝑝𝑐 𝑇 𝑇 ∕𝑑𝑎𝑦 𝐶 ∕𝑝𝑐 𝑇 𝑇 ∕𝑑𝑎𝑦  
 1 9 26 9 27 0 −3.85  
 2 10 30 10 32 0 −6.67  
 3 10 31 10 31 0 0  
 4 9 27 10 28 −11.11 −3.70  
 5 9 29 10 29 −11.11 0  
 6 8 28 8 29 0 −3.75  
 7 10 28 10 28 0 0  
 8 9 28 10 27 −11.11 3.57  
 9 10 27 10 29 0 −7.41  
 10 10 30 11 28 −10 6.67  
 11 10 27 10 28 0 −3.70  
 12 9 28 10 27 −11.11 3.57  
 13 9 28 10 28 −11.11 0  
 14 11 28 12 29 −9.09 −3.57  
 15 10 30 11 28 −10 6.67  
 16 12 28 12 28 0 0  
 17 10 28 10 28 0 0  
 18 11 27 11 28 0 −3.70  
 19 13 28 13 30 0 −7.14  
 20 11 28 11 29 0 −3.57  

5.5. Algorithm analysis

5.5.1. Initialization strategies analysis
To verify the improvement in the solving ability of the ILS-GA with different initialization strategies, this paper conducted a 

comparative study based on 12 instances, using six initialization strategies and a completely random initialization strategy. The 
calculation of the objective value GAP before and after adding the various initialization strategies is as follows: Gap = (𝑙1−𝑙2)∕𝑙1⋅100%, 
Where 𝑙1 and 𝑙2 represent the objective values obtained by the ILS-GA with the completely random initialization strategy and the 
ILS-GA with the added initialization strategies, respectively. The solving results are shown in Table  15. The average objective value 
obtained by the ILS-GA using the completely random initialization strategy is 1.138. The average objective value obtained by the 
ILS-GA using the various initialization strategies is 1.088. The average GAP (objective value gap) between the random and different 
initialization strategies is 4.27%. These results indicate that adding the various initialization strategies has enriched the diversity 
of the initial population, which in turn has improved the quality of the solutions obtained. Compared with the ILS-GA using the 
random initialization method, the ILS-GA with the initialization strategy can find more optimal solutions and improve performance.

This study designed six different initialization strategies for the genetic algorithm: Sorting items by volume, length, width, height, 
arrival order, and random order. To validate which initialization strategy provides the best improvement in solution quality, we 
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Table 15
Initialization strategy and random strategy for GA solution values.
  Instance 
𝑁𝑜.

Objective Values Gap% 
 Random strategy Initialization strategy  
 1 1.156 1.023 11.51 
 2 1.123 1.082 3.65  
 3 1.116 1.083 2.96  
 4 1.158 1.125 2.85  
 5 1.094 1.077 1.55  
 6 1.126 1.103 2.04  
 7 1.187 1.109 6.57  
 8 1.096 1.048 4.38  
 9 1.188 1.142 3.87  
 10 1.109 1.064 4.06  
 11 1.187 1.126 5.14  
 12 1.11 1.08 2.70  
 Average Value 1.138 1.088 4.27  

added the six strategies to an instance and ran it five times. Then the iteration curves were plotted as shown in Fig.  24 (as shown 
in Appendix  B). Among these strategies, sorting items by arrival order emerged as the most effective, achieving the best mean 
objective value. This outcome is attributed to organizing items based on their arrival sequence adhering to the first-come-first-served 
principle, thereby reducing the waiting time for items that arrive earlier. This approach directly contributes to the optimization of 
transportation time, which is the study’s primary objective.

5.5.2. Local search strategies analysis
To verify the improvement effect of the designed iterative local search (ILS) algorithm on the genetic algorithm (GA) solution, 

based on 12 instances, this study compares the objective function values of GA before and after adding ILS. The GA without ILS is 
referred to as the traditional GA, and the GA combined with the simulated annealing algorithm is called the hybrid GA, where the 
annealing strategy of simulated annealing is used as the local search strategy of GA, as shown in the pseudo-code in Algorithm 4.

To verify the performance of the ILS-GA algorithm proposed in this study compared to the traditional genetic algorithm (GA) 
and the hybrid genetic algorithm (Hybrid GA), The following three GAP indicators were calculated: 𝐺𝑎𝑝1 = (𝑙1 − 𝑙2)∕𝑙1 ⋅ 100% (the 
GAP of the objective values between the traditional GA and the Hybrid GA), 𝐺𝑎𝑝2 = (𝑙1 − 𝑙3)∕𝑙1 ⋅ 100% (the GAP of the objective 
values between the traditional GA and the ILS-GA), 𝐺𝑎𝑝3 = (𝑙2 − 𝑙3)∕𝑙2 ⋅ 100% (the GAP of the objective values between the Hybrid 
GA and the ILS-GA). Where 𝑙1, 𝑙2 and 𝑙3 represent the objective values of the traditional GA, Hybrid GA, and the ILS-GA proposed 
in this study, respectively. As shown in Table  16, the average objective value of the ILS-GA is 1.063, which is better than the results 
of 1.1 for the GA and 1.078 for the Hybrid GA. The average 𝐺𝑎𝑝1 between the GA and the Hybrid GA is 1.99%, and the average 
𝐺𝑎𝑝2 between the GA and the ILS-GA is 3.39%, indicating that ILS has an improving effect on the GA solution. The average 𝐺𝑎𝑝3
between the Hybrid GA and the ILS-GA is 1.42%, showing that this study’s ILS strategy has better optimization performance than 
the simulated annealing-based local search strategy.
Algorithm 4: Simulated Annealing Local Search.
1 Function SALS():
2 𝑆∗ = 𝑆0; // Initialize the initial solution to the optimal solution 
3 while 𝑇0 > 𝑇𝑚𝑖𝑛 do
4 𝑆1 = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆0); // Local search for the current solution 
5 𝑑𝑜𝑢𝑏𝑙𝑒𝐷𝐸 = 𝑆0 − 𝑆1

// Determine if a neighborhood solution is accepted
6 if (𝐷𝐸 < 0)||(𝑒𝑥𝑝 − (𝐷𝐸∕𝑠𝑡𝑎𝑟𝑡𝑇 ) > 𝑟𝑎𝑛𝑑(0, 1)) then
7 𝑆∗ = 𝑆1;
8 end 
9 if (𝑁𝑜𝐶ℎ𝑎𝑛𝑔𝑒𝐼𝑛𝑆𝑒𝑣𝑒𝑟𝑎𝑙𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑉 𝑎𝑙𝑢𝑒𝑠) then
10 break;
11 end 
12 𝑇0 = 𝑇0 ⋅ 𝛿
13 end 
14 return 𝑆∗ ; // return the optimal solution

The iteration curves of the best individual values of the three algorithm populations were plotted to verify the convergence and 
optimization performance of the three optimization algorithms.
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Table 16
Comparison of objective values of three genetic algorithms.
  Instance 
𝑁𝑜.

Objective Values 𝐺𝑎𝑝1% 𝐺𝑎𝑝2% 𝐺𝑎𝑝3% 
 GA Hybrid GA ILS-GA  
 1 1.065 1.032 1.032 3.1 3.1 0  
 2 1.123 1.123 1.107 0 1.42 1.42  
 3 1.114 1.102 1.065 1.08 4.40 3.36  
 4 1.114 1.097 1.08 1.53 3.05 1.55  
 5 1.086 1.016 1.006 6.45 7.37 0.98  
 6 1.12 1.097 1.097 2.05 2.05 0  
 7 1.069 1.069 1.069 0 0 0  
 8 1.145 1.112 1.112 2.88 2.88 0  
 9 1.094 1.083 1.078 1.01 1.46 0.46  
 10 1.103 1.086 1.033 1.54 6.35 4.88  
 11 1.042 1.033 1.028 0.86 1.34 0.48  
 12 1.125 1.086 1.043 3.47 7.29 3.96  
 Average Value 1.1 1.078 1.063 1.99 3.39 1.42  

Since the Hybrid GA and the ILS-GA added local search strategies, the iteration time for each initial solution and new offspring 
population in each generation is longer than the traditional genetic algorithm. Therefore, comparing the number of iterations to the 
x-axis is relatively unfair. Instead, the x-axis represents the fitness evaluation times, and the y-axis represents the objective value, The 
iterative curves for the first five instances are shown in Fig.  25 (as shown in Appendix  C), the ILS-GA was able to obtain the optimal 
solution in each group, compared to the GA and the Hybrid genetic algorithm. The GA and the Hybrid GA both exhibited premature 
convergence to local optimal solutions. When the GA or the Hybrid GA converged to the same objective value as the ILS-GA in this 
study, they required more computational iterations. This indicates that the ILS strategy designed in this study expanded the search 
range and improved the search quality of the solutions, demonstrating better optimization performance and convergence.

5.6. Management insights

This study focuses on optimizing the LCL loading process for LCL cargoes on the CR Express, providing multifaceted and valuable 
practical guidance for its operation and management.

(1) With the LCL cargo loading scheme provided by this study, the operating enterprises of CR Express can accurately plan the 
palletizing and container-loading process of cargoes. Based on information such as the size, weight, and destination of the cargoes, 
they can reasonably arrange the layout of the cargoes on pallets and in containers, improve the space utilization rate of containers, 
and achieve economic benefit growth.

(2) This study’s optimization scheme for the departure cycle of LCL cargo containers allows enterprises to flexibly adjust the 
issuance quantity of LCL containers and the departure cycle of containers in each period according to the actual cargo volume and 
transportation demand, maximizing shippers overall satisfaction.

(3) With this study’s algorithm design, CR Express’s operating enterprises can integrate the algorithm into the logistics 
management information system, realizing the automatic generation and optimization of loading schemes, reducing the risks of 
low-efficiency and error-prone traditional manual loading planning methods, and achieving digital and intelligent operation.

6. Conclusions and discussions

6.1. Conclusions

Focusing on the LCL transportation scenario of CR Express, this study tackles two key challenges that railway operators face 
regarding LCL cargo loading and container scheduling. The study incorporates a time-optimization objective function to enhance 
shipper satisfaction into a multi-objective mixed-integer programming model. This model aims to minimize the number of containers 
used and the longest cargo transportation time. The model determines the specific loading plans for pallets and containers in LCL 
cargo and the scheduling plans for containers. The accuracy and effectiveness were confirmed through validation using small-
scale instances. An improved genetic algorithm was designed and implemented to address large-scale problems. Additionally, a 
customized genetic algorithm with an iterative local search (ILS-GA) was developed to optimize cargo LCL comprehensively. A 
two-stage encoding and decoding scheme was tailored for LCL cargo’s pallet and container loading. By designing operators and 
integrating iterative local search algorithms to expand the search space, this approach demonstrated higher solution efficiency and 
quality in medium and large-scale instances compared to solvers and traditional simulated annealing algorithms. Experiments were 
also conducted to analyze initialization and local iterative search strategies, verifying the improvement effects of the proposed 
strategies on ILS-GA solutions in this study.
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In summary, with the development of information technology, the logistics industry is moving in the direction of intelli-
gence (Wang et al., 2024). This study develops mathematical models and optimization algorithms to overcome the limitations of 
manual LCL cargo loading and scheduling in CR Express, providing operators with an integrated solution throughout the process. 
This approach achieves high efficiency in LCL cargo and container scheduling, enhances customer satisfaction, and promotes the 
digital and intelligent development of CR Express’s LCL business.

6.2. Discussions

Compared to existing research, this study addresses the limitations of manual loading and planning scheduling for LCL cargo on 
the CR Express. Designing a mixed-integer programming model and heuristic algorithms greatly improves cargo loading efficiency 
and customer satisfaction, enabling intelligent transportation of LCL cargo on the CR Express and filling the research gap in 
intelligent LCL cargo consolidation.

However, this study still has some limitations. In establishing the two-stage mixed-integer programming model for LCL cargo 
loading, the model only considers the geometric constraints of non-overlapping and placement of cargo to improve loading efficiency. 
However, in reality, the balance of container weight is also a crucial factor that CR Express operators pay close attention to, as it 
affects the stability of cargo transportation and is closely related to cargo damage and transport safety. In future research, we will 
focus on the following aspects: Firstly, considering that the balance of cargo during transportation is crucial for reducing cargo 
damage and ensuring transportation safety, and is a significant concern for operators, we will incorporate cargo balance constraints 
into our mathematical modeling in future studies. Secondly, in the context of the less-than-container-load (LCL) problem, each 
piece of cargo comes from different shippers and varies in shape and size. To maintain the general applicability of our research, 
we have assumed cargo to be of regular shapes. Moving forward, to better align with actual LCL situations, we plan to explore the 
consolidation of irregularly shaped cargo in future studies.
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Appendix A

In large-scale instance experiments, To compare the convergence and optimization performance of the two optimization 
algorithms during the iterative process, this study uses the fitness evaluation times as the x-axis and the optimal objective value as 
the y-axis to plot the iteration curves of GA and SA, as shown in Fig.  23. 

Appendix B

Regarding the initialization strategies of the algorithm, six strategies were designed in this study: sorting by volume, length, 
width, height, arrival order, and random order. To verify which initialization strategy has the best effect on improving the solution 
quality, five instances of each strategy were analyzed, and the iteration curves were plotted, as shown in Fig.  24. 

Appendix C

To explore the effect of the iterative local search strategy on the algorithms’ performance, the performance of the traditional 
genetic algorithm, the simulated annealing algorithm, and the ILS-GA algorithm proposed in this study are compared. The iteration 
curves of the best individual values of the three algorithm populations were plotted, as shown in Fig.  25.
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Fig. 23. Iterative Plot of GA vs. SA Solving Instances.
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Fig. 24. Multiple Initialization Strategy GA Iteration Curve.
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Fig. 25. Convergence and Optimization Performance of Three Optimization Algorithms.
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