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A B S T R A C T

Defect detection and localization are critical for quality control in manufacturing, yet existing algorithms and 
models trained on laboratory datasets often fail in real industrial scenarios due to their static nature, especially in 
non-mass production. Moreover, limited and heterogeneous defective samples, coupled with costly human 
annotation, highlight the need for unsupervised methods relying solely on normal images. To address these 
challenges, we propose the Random Surface Anomaly Detection (RSAD) model, a four-stage one-class anomaly 
detection and localization approach. Initially, leveraging embedding-based techniques, we introduce transfer 
learning with a pretrained ImageNet network in extracting locally aggregated features. Next, adapter tuning is 
applied to transfer these features into the industrial domain, reducing bias towards natural images. Additionally, 
random Gaussian noise is introduced into normal feature representations within the feature space and a 
discriminator then scores feature normality. Finally, experiments on the MPDD dataset and other benchmarks, 
demonstrate the RSAD model’s state-of-the-art (SOTA) performance in anomaly detection, validating its trust
worthiness in real-world manufacturing environments.

1. Introduction

In the context of real-world mechanical manufacturing and produc
tion, maintaining strict product conformity is essential in the workshop. 
Traditionally, defect detection has relied on manual inspection, which is 
both inefficient and costly. The subjectivity of human judgment in
troduces variability that can undermine the entire quality assurance 
process. Furthermore, differences in prior knowledge and skill levels, 
along with fatigue from repetitive tasks, reduce the reliability of human- 
based quality control [1]. To overcome the limitations of manual in
spection, deep learning-driven visual intelligence technology has 
emerged as a transformative solution in quality control. This approach 
uses advanced deep learning techniques to analyze images and data, 
enabling automatic defect detection and ensuring a high level of product 
consistency.

However, the acquisition of labeled defect samples remains chal
lenging in industrial scenarios, making unsupervised deep learning 
methods particularly appealing. Unlike supervised learning [2], unsu
pervised methods rely solely on normal samples for training, which are 
readily available in modern high-optimized production lines. These 
methods follow the principle of one-class novelty detection, where 

detectors trained on a particular known class are tasked with identifying 
whether a query example belongs to this class [3]. In industrial sce
narios, qualified products are designated as the known class, whereas 
defective products in query data are expected to be classified as un
known. Thus, vision intelligence driven by unsupervised learning algo
rithms can autonomously detect a broad range of anomalies without 
requiring explicit defect labels, further enhancing its reliability.

Among unsupervised approaches, embedding-based methods have 
demonstrated strong performance in industrial anomaly detection. 
These methods primarily rely on pretrained networks to extract repre
sentative features from images. After feature extraction, various tech
niques, such as memory banks, one-class classification, normalizing 
flows, and knowledge distillation, are employed to enhance anomaly 
discrimination. However, embedding-based methods often suffer from 
domain bias, as pretrained feature extractors are optimized for natural 
images rather than industrial environments, limiting their generaliza
tion performance in real-world defect detection.

To address this issue, fine-tuning strategies have been explored to 
adapt pretrained feature extractors to industrial visual domains. 
Parameter-efficient fine-tuning (PEFT) updates only a subset of param
eters while keeping most of the pretrained model frozen, achieving 
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remarkable performance in multiple representative visual tasks. Spe
cifically, advanced adapter tuning introduces lightweight adapter 
modules for task-specific optimization. Adapters adjust feature repre
sentations without altering the core parameters, enabling effective 
domain adaptation with minimal computational overhead. In this work, 
we adopt Multi-cognitive Visual Adapter (Mona) tuning [4], which 
freezes the pretrained backbone and trains only small adapter layers 
inserted at strategic positions. This approach preserves pretrained gen
eral knowledge while enabling task-specific customization, making it 
particularly suitable for industrial anomaly detection.

While deep learning has shown promise across various fields, its 
success relies heavily on the quality and diversity of training data [5]. 
Many existing industrial defect detection datasets are collected in 
controlled environments, lacking the variability of practical production 
scenarios. These simplified lab datasets lead to models that struggle with 
real-world complexities like irregular surfaces, varying backgrounds, 
diverse lighting conditions, and motion blur from moving parts. To 
tackle this, our study focuses on the MPDD (Metal Parts Defect Detec
tion) dataset [6], which accurately reflects the challenges faced in 
human-operated production lines. To further validate the model’s 
generalizability, additional evaluations are conducted on three repre
sentative industrial anomaly detection benchmarks.

Thus, we present a novel model, Random Surface Anomaly Detection 
(RSAD), tailored for detecting workpiece defects in industrial images 
captured under real-world conditions. As a one-class classification 
framework, RSAD integrates four stages: Patch Feature Extractor, 
Feature Aligner, Non-deterministic Defect Feature Fuser, and Feature 
Discriminator. Notably, the Feature Aligner adopts an efficient adapter 
tuning strategy to facilitate domain adaptation while preserving the 
pretrained feature extractor. Experimental results demonstrate that 
RSAD achieves SOTA anomaly localization performance with a 98.7 % 
P-AUROC on the MPDD dataset as well as the new SOTA for 4 out of 6 
classes on anomaly detection. Furthermore, Competitive performance 
across multiple industrial anomaly detection benchmarks shows strong 
generalization ability of RSAD.

2. Literature review

This section reviews unsupervised learning methods commonly used 
in industrial defect detection. Additionally, it discusses adapter tuning, a 
parameter-efficient fine-tuning strategy that preserves pretrained 
knowledge while enhancing task-specific adaptation, achieving SOTA 
performance across multiple visual tasks.

2.1. Unsupervised learning in industrial defect detection

Unsupervised methods model the nominal distribution and detect 
deviations as anomalies, making unsupervised defect detection essen
tially an anomaly detection problem. These approaches can be mainly 
categorized into three types, i.e., the reconstruction-based methods, the 
synthesizing-based methods, and the embedding-based methods.

Reconstruction-based methods aim to reconstruct normal, 
anomaly-free data and use the reconstruction error to detect anomalies. 
They assume that anomalous regions cannot be accurately restored from 
the learned normal patterns. Early approaches typically employed 
Autoencoders [7] or Generative Adversarial Networks (GANs) [8,9] for 
image reconstruction. However, these models often face the identical 
shortcut problem, where abnormal inputs are also well reconstructed, 
limiting their effectiveness.

To overcome these limitations, recent methods combine advanced 
architectures, such as Transformer-based models and Mamba, with 
specialized mechanisms to strengthen representation learning and 
enhance reconstruction adaptability. For instance, MambaAD pioneers 
the application of Mamba to multi-class anomaly detection [10]. 
Building on stronger representations, DMAD introduces a dual memory 
bank to separately store normal and abnormal patterns, explicitly 

enhancing feature discrimination under multi-class conditions [11]. 
Focusing further on reconstruction adaptability, DDAD employs condi
tioned denoising diffusion guided by target inputs to produce 
anomaly-free reconstructions [12], while GLAD integrates global-local 
adaptive diffusion to dynamically refine reconstruction and better 
handle complex anomalies [13].

This trend toward adaptive reconstruction naturally extends to the 
more challenging setting of multi-class anomaly detection (MCAD) [10]. 
MCAD, introduced by Uniad, requires models to identify anomaly across 
multiple object categories [14]. This introduces new challenges, 
including class-aware feature learning, inter-category variability, and 
the risk of identical shortcuts. Recent works have focused on developing 
reconstruction-based approaches tailored for MCAD. Representative 
methods, such as DiAD [15], ViTAD [16] and InvAD [17], incorporate 
advanced mechanisms like diffusion models, transformer-based archi
tectures, and GAN inversion to improve anomaly detection across mul
tiple categories. These efforts highlight the growing trend toward 
adaptive and category-aware reconstruction models for MCAD.

Synthesizing-based methods generate pseudo-anomalies by per
turbing normal samples and train models to restore them to anomaly- 
free versions. Early approaches typically relied on simple data 
augmentation strategies, such as patch rearrangement or basic pertur
bations [18], to synthesize anomalies, but these methods often lack re
alism and diversity [19]. To overcome these limitations, more recent 
methods incorporate advanced synthesis mechanisms and discrimina
tive designs. A representative example, DRAEM, integrates reconstruc
tion and discriminative learning, enabling direct anomaly localization 
without post-processing [20]. Building on this, RealNet addresses the 
challenge of synthesizing realistic and diverse anomalies by introducing 
strength-controllable diffusion-based anomaly generation, coupled with 
adaptive feature and residual selection [21]. Further advancing recon
struction quality, DiffusionAD reformulates the process as a 
noise-to-norm diffusion, applying Gaussian perturbations to anomalous 
regions and restoring them through a fast, single-step denoising [22].

Embedding-based methods have recently achieved SOTA perfor
mance in image anomaly detection and localization tasks. Embedding- 
based approaches leverage pretrained models to extract representative 
features and identify anomalies by analyzing their distribution in the 
embedding space. Typical approaches include feature distribution 
modeling [23], memory-bank techniques, and teacher-student frame
works. Early approaches model normal features using multivariate 
Gaussian assumptions or encoder-decoder structures, but often struggle 
to capture fine-grained patterns and contextual dependencies [24]. 
Recent efforts focus on enhancing feature expressiveness and addressing 
these limitations. For instance, PatchCore focuses on retaining as much 
local patch-level context as possible by constructing a compact yet 
representative memory bank, balancing detection performance and 
inference efficiency [25]. Recognizing the tendency of student models to 
forget typical normal patterns, MemKD introduces a normality recall 
memory within a knowledge distillation framework, explicitly guiding 
feature learning to mitigate this forgetting issue [26]. Complementing 
these memory-based approaches, CFLOW-AD departs from memory 
structures entirely, instead modeling feature likelihoods via conditional 
normalizing flows, which enables real-time anomaly detection with 
significantly reduced computational overhead [27].

2.2. Adapter tuning in visual model adaptation

Adapter tuning introduces trainable lightweight adapter modules 
while keeping pretrained backbone frozen, which saves plenty of 
training costs. This approach preserves pretrained general knowledge 
while allowing task-specific customization, achieving great success 
across multiple representative visual tasks [28]. In action recognition, 
AdaptFormer integrates a lightweight adaptation module, improving the 
transferability of Vision Transformers with only 1.5 % additional pa
rameters, while still surpassing full fine-tuning [29]. In image 
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classification, KAdaptation optimizes subspace training through Kro
necker [30]. decomposition, achieving a superior accuracy-efficiency 
trade-off [30]. For dense prediction tasks such as object detection and 
segmentation, LoRand applies low-rank adaptation, tuning only 1 %− 3 
% of backbone parameters while maintaining comparable performance 
to full fine-tuning [31]. Extending adapter tuning further, Mona in
troduces multi-scale visual filters and normalization layers, making it 
the first method to outperform full fine-tuning in instance and semantic 
segmentation, achieving a 1 % performance gain on COCO [4].

3. Framework of RSAD model

When focusing solely on anomaly detection, RSAD functions as a 
specialized one-class classification model, distinguishing specific class 
objects within a broader dataset by training exclusively on samples from 
that particular class. As illustrated in Fig. 1(a), RSAD operates through 
four distinct stages: Patch Feature Extractor, Feature Aligner, Non- 
deterministic Defect Feature Fuser and Feature Discriminator, each 
contributing to the model’s overall efficacy.

Furthermore, the pseudo-code detailing both the training and testing 
procedures is shown in Algorithm 1. Specifically, the training process 
involves these four modules mentioned above. The testing process uti
lizes Patch Feature Extractor, Feature Aligner, and Feature Discrimi
nator, while omitting the Defect Feature Fuser.

During the training phase, pretrained Patch Feature Extractor ex
tracts patch features from normal images. Subsequently, Feature 
Aligner, a parameter-efficient fine-tuning strategy, is trained to adjust 
pretrained features for domain adaptation. This approach follows 
adapter tuning, freezing the pretrained backbone and training only 
lightweight adapter layers inserted at strategic positions. The Feature 
Aligner refines feature representations without altering core parameters, 
enabling efficient domain adaptation. Unlike directly synthesizing 
anomalies onto the images, the Non-deterministic Defect Feature Fuser 
takes a unique approach by fusing random Gaussian noise into the 
normal feature space. This process generates stochastic defect features 
that effectively simulate various types of defects found in industrial 
settings. Finally, a simple Feature Discriminator, constructed with a few 
layers of Multi-Layer Perceptron (MLP), evaluates whether a given 

sample meets the qualification criteria, thereby facilitating accurate 
anomaly detection.

During the testing phase, two critical aspects warrant attention. 
Firstly, in contrast to the training phase where only normal data is 
employed, the test dataset comprises diverse defect types, covering a 
broad spectrum of scenarios encountered in real-world industrial ap
plications. Secondly, it is essential to highlight the exclusion of the third 
stage, the Non-deterministic Defect Feature Fuser. By removing this 
stage, the remaining modules can be seamlessly integrated into an end- 
to-end network, thereby enabling the RSAD model to adopt a stream
lined single-stream approach during inference. This streamlined archi
tecture, comprised entirely of conventional neural network blocks, 
facilitates efficient processing and decision-making, allowing for swift 
anomaly detection in real-time industrial environments.

3.1. Stage 1: patch feature extractor

The Patch Feature Extractor operates by taking the original, un
trimmed images as input and performing a series of operations to 
incorporate patch features into the Normalcy LibraryL, which is a 
compact normal feature space with clear boundaries. These operations 
involve analyzing the images at different levels of granularity to identify 
and capture local patch features that are essential for subsequent pro
cessing. Through this process, the Patch Feature Extractor effectively 
transforms the raw input images into a representation within Normalcy 
Library L that encapsulates the key characteristics of the underlying 
data, facilitating further analysis and interpretation downstream.

Specifically, given small-batch samples, we designate the training set 
and test set asχtr andχte, respectively. Initially, the Patch Feature 
Extractor employs a network ψ, pre-trained on ImageNet, for feature 
embedding, typically utilizing a ResNet-like backbone. Specifically, we 
define Z as the subset comprising the indexes of backbone layers. For 
each image xi ∈ RH×W×3 in the setχtr ∪ χte, the Patch Feature Extractor 
firstly extracts feature maps from the corresponding hierarchies z ∈ Z 
denoted as 

ψz,i ∼ ψz(xi) ∈ RHz×Wz×Cz , (1) 

Fig. 1. (a) The overall pipeline of the proposed RSAD comprises four main stages. (b) The Multi-cognitive Visual Adapter tuning structure. (c) three-layer Multi-Layer 
Perceptron with Sigmoid activation.
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whereHz,Wz and Czrepresent the height, width, and channel size of the 
feature map ψz,i, respectively. Subsequently, we denoteψz,i

a,b ∈ RCz as a 
Cz-dimensional feature slice positioned at (a, b), and its neighborhood 
with a patch size ∂ can be defined as 

N∂
a,b = {(aʹ, bʹ

)|aʹ ∈ [a − ⌊∂ / 2⌋, ..., a+ ⌊∂ / 2⌋]. (2) 

To prevent the extraction of overly generic or biased features that 
may be influenced by ImageNet classification, a specific strategy is 
employed within the Patch Feature Extractor. In this approach, the 
feature maps derived from hierarchy 4 are intentionally discarded, as 
they may not sufficiently capture the nuanced details relevant to the task 
at hand. Through meticulous analysis, it has been determined that the 
intermediate layers of the WideResNet50 model, specifically the 2nd and 
3rd layers, yield optimal results when configured with a neighborhood 
size of δz

a,b∂ = 3. This strategic selection ensures that the extracted fea
tures are well-suited for subsequent processing, maximizing the effec
tiveness of the overall model.

Following the extraction of feature maps from each hierarchy, an 
adaptive average pooling mechanism is employed as the aggregation 
function, denoted asPagg, to generate locally aggregated featureφz,i

a,b in 
each level. Notably, this aggregation process, encompassing a local 
neighborhood, is pivotal for preserving essential spatial context within 
the feature maps. The process can be marked as 

φz,i
a,b = Pagg

(
ψz,i

a,b

⃒
⃒
⃒(aʹ,bʹ

) ∈ N∂
a,b

)
. (3) 

This process serves as a crucial step in the overall Patch Feature 
Extractor, facilitating the extraction of relevant features for subsequent 
stages of processing.

Finally, to effectively integrate locally aggregated features into 
Normal LibraryL, a simple approach is adopted within the feature 
extraction pipeline. Initially, all feature maps undergo linear resizing to 
ensure uniformity in dimensions, with the size set to(a0, b0), corre
sponding to the dimensions of the largest feature map. Subsequently, 
these resized feature maps are concatenated channel-wise to generate 
the integrated patch feature map, denoted asϕi ∈ Ra0×b0×cz ,where ϕi

a,b, 
extracted patch feature at location (a, b) , is included in the Normalcy 
LibraryL. This integration process, represented as 

ϕi = Icat
(
resize

(
φzʹ,i, (a0, b0)

)⃒
⃒ź ∈ Z

)

L = ∪
xi∈χtr

ϕi
a,b

, (4) 

facilitates the seamless combination of features across different levels of 
abstraction, thereby creating a comprehensive representation library 

that encapsulates relevant information from all hierarchical levels.

3.2. Stage 2: feature aligner

Adapter tuning refines pretrained vision models by introducing 
lightweight trainable modules while keeping the backbone frozen, 
ensuring efficient task-specific adaptation. In this work, we incorporate 
Feature Aligner fali(γ) directly after the Feature Extractor, leveraging the 
Multi-Cognitive Visual Adapter tuning to bridge the domain gap be
tween industrial images and natural image datasets like ImageNet. The 
learnable parameter γ enables the model to align pretrained features 
with industrial-specific characteristics while preserving the general 
knowledge of the pretrained network. This alignment process can be 
represented as: 

δi
a,b = faliγ

(
ϕi

a,b

)
(5) 

As illustrated in Fig. 1(b), the Mona-based Feature Aligner adopts a 
structured adaptation framework to refine feature representations while 
maintaining computational efficiency. The process begins with a scaled 
LayerNorm (LN) to normalize feature distributions, ensuring stability 
across varying domains. Subsequently, a down-projection layer reduces 
feature dimensionality, balancing representational capacity and 
computational cost. To enhance domain adaptability, we introduce 
multi-scale cognitive convolutional filters, leveraging depth-wise con
volutions (DWConv) with kernel sizes of 3 × 3, 5 × 5, and 7 × 7. These 
filters extract spatial features at different receptive fields, capturing 
diverse contextual dependencies. The extracted features are then aver
aged and processed through a 1 × 1 convolutional layer for feature 
aggregation, followed by GeLU activation to introduce non-linearity and 
enhance expressiveness. To mitigate information loss and stabilize 
feature transformation, skip connections are incorporated at multiple 
stages. Finally, an up-projection layer restores the original feature 
dimensionality, ensuring seamless integration with downstream anom
aly detection models.

By embedding Mona within the Feature Aligner, the proposed 
approach enables effective domain adaptation while preserving the ef
ficiency and scalability of adapter tuning. This ensures robust feature 
alignment tailored to industrial anomaly detection scenarios.

3.3. Stage 3: non-deterministic defect feature fuser

To train the Feature Discriminator effectively, negative samples 
representing defect features are often synthesized since obtaining suf
ficient real anomalous samples in optimized industrial processes is 
challenging. However, synthetic anomalies may not accurately reflect 

Algorithm 1 
RSAD training and testing pseudo-code.

1: Input: pretrained Patch Feature Extractor ψ, Feature AlignerAγ , Defect Feature FuserN, Feature Discriminator Dε 

2: Training Stage: ψ,Aγ ,N,Dε 

3: Initialization:N←i.i.d.Gaussiannoise 
γ,ε←randominitial 
4: Training sample xtrain←normalsamples 
5: Pre-trained feature ftrain←ψ(xtrain)

6: Aligned feature ϕtrain←Aγ
(
ftrain

)

7: Pseudo-anomalies panomaly←ϕtrain + N 

8: Normal confidence SAL ,S−
AL←Dε

(
ϕtrain ,panomaly

)

9: L ←truncatedl1 + focallosslfoc 

10: L .backward()
11: γ∗, ε∗←γ, ε # update parameters of A and D 
12: Testing Stage: ψ,Aγ∗ ,Dε∗

13: Initialization:Aγ∗ ,Dε∗ ←trainedweightsγ∗,ε∗

14: test sample xtest←testdataset 
15: Pre-trained feature ftest←ψ(xtest)

16: Aligned feature ϕtest←Aγ∗
(
ftest

)

17: Normal confidence SAL←Dε∗ (ϕtest)

18: Output: anomaly heatmap SAL
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real defects, and the variability of actual anomalies limits the compre
hensiveness of generated samples.

Thus, we introduce the Non-deterministic Defect Feature Fuser, 
which synthesizes negative samples by fusing simple noise onto normal 
samples within the feature space. Defect features are generated by fusing 
Gaussian noise with the normal features, denoted as δi

a,b ∈ RC. Formally, 
a noise vectorλ ∈ RCis sampled, with each entry following an indepen
dent identically distributed Gaussian distribution N

(
μ,σ2). The scale of 

the noise, represented by σ, determines the extent to which the syn
thesized abnormal features deviate from the normal ones. We posit that 
by appropriately calibrating the scale of the noise, a tightly bounded 
normal feature space can be attained.

The resulting defect feature can be denoted as 

δi−
a,b = δi

a,b + λ, (6) 

whereδi
a,bindicates the original normal feature. Non-deterministic Defect 

Feature Fuser provides a comprehensive representation that in
corporates both normal and abnormal characteristics. It enables the 
Feature Discriminator to effectively discern between normal and 
anomalous samples, facilitating accurate anomaly detection in real- 
world industrial settings.

3.4. Stage 4: feature discriminator

Following the synthesis process in stage 3, the resulting defect fea
tureδi−

a,band the normal aligned features 
{

δi⃒⃒xi ∈ χtr
}

are utilized as 
negative and positive samples, respectively, to train the final Feature 
Discriminator. This Feature DiscriminatorDε is designed to output pos
itive values for normal features and negative values for anomalous 
features.

Drawing inspiration from [32], we design the Feature Discriminator 
as a three-layer MLP with a Sigmoid activation function, as shown in 
Fig. 1(c). Each layer consists of fully connected transformations, pro
gressively refining feature representations. The final Sigmoid activation 
constrains the output within the range (0,1), providing an estimation of 
the normality of each location(a,b)through its outputDε

(
δa,b ∈ R

)
. For a 

given imagexi ∈ χtr ∪ χte, the anomaly score for a feature at location (a,
b) is represented assi

a,b whereas the anomaly map can be denoted 
asSAL(xi).

Considering that the most responsive point exists regardless of the 
size of the anomalous region, it is logical to evaluate the normalcy of 
samples by examining the maximum score on the anomaly map. 
Consequently, by providing a comprehensive measure of anomaly 
detection efficacy, the anomaly detection score SAD(xi) for each image xi 
can be calculated.

3.5. Loss function and optimizer

To enhance anomaly detection, we employ a combination of seg
mentation and classification losses. The segmentation loss refines 
anomaly localization, while the classification loss mitigates class 
imbalance and improves detection robustness.

For segmentation, we employ a truncated l1 loss to restrict the in
fluence of extreme values while preserving anomaly localization sensi
tivity. Specifically, the segmentation loss is computed as: 

L seg =
∑

xi∈χtr

∑

a,b

lia,b
a0 ∗ b0

,

lia,b = max
(

0, th+ − Dε

(
δi

a,b

))
+ max

(
0, − th− + Dε

(
δi−

a,b

))
(7) 

where th+ and th− are respectively set to 0.5 and − 0.5 by default to 
prevent overfitting.

For anomaly detection, the Focal loss lfoc is employed to address the 

imbalance issue in binary classification. For each image xi ∈ χtrain with 
ground truthMxi , the L clsis given by the Focal loss between the 
maximum score SAD(xi)and Mxi . The classification loss is defined as: 

L cls =
∑

xi∈χtr

lfoc
(
SAD(xi),Mxi

)
(8) 

The final loss is the sum of the segmentation and classification loss. 

L = L seg + L cls, (9) 

For updating the parameters of the Feature Aligner and Feature 
Discriminator, we employ the Adam optimizer. The initial learning rates 
are set to 0.0001 and 0.0002, respectively, with a weight decay of 
0.00001.

4. Experiment setup

This section comprises a description of the dataset employed in the 
experiments, evaluation metrics, and comprehensive details of the 
experimental settings.

4.1. Datasets

MPDD: The Metal Parts Defect Detection dataset serves as a robust 
benchmark for evaluating anomaly detection methods for painted metal 
parts [6]. Curated to simulate real-world scenarios, it consists of 1346 
images across six classes of metal parts, each meticulously labeled for 
accurate comparison of the proposed RSAD model with other algo
rithms. As shown in Table 1, the dataset is divided into nominal-only 
training data and test sets containing both normal and anomalous 
samples, with each sample accompanied by ground truth anomaly 
masks for precise assessment. The training set includes 888 normal 
samples, while the test set has 176 normal and 282 abnormal samples, 
ensuring a balanced representation of conditions in painted metal parts 
manufacturing.

Unlike other industrial anomaly detection datasets, the MPDD em
phasizes variability, featuring samples with multiple objects in different 
positions and rotations against diverse backgrounds. Some samples also 
show components in motion, potentially introducing motion blur. This 
diversity captures a wide range of scenarios typical in the metal fabri
cation and painting industry, enhancing the dataset’s relevance for real- 
world anomaly detection challenges.

Beyond MPDD, we evaluate our model on three industrial anomaly 
detection benchmarks: MVTec-AD [33], VisA [34], and PCB-Bank [13], 
each posing unique challenges. MVTec-AD consists of 10 object and 5 
texture classes, with 3629 normal training and 1725 test images, 
including pixel-wise annotations for defects. VisA spans 12 categories 
with 9621 normal and 1200 anomalous high-resolution images, 
featuring complex structures, multiple objects, and diverse anomalies 
like scratches, dents, and structural defects. PCB-Bank integrates seven 
PCB categories, containing 4214 normal training and 2253 test samples, 
with anomalies including scratches, structural defects, and bending 
deformations, while also exhibiting variations in resolution, clarity, and 
viewing angles.

Table 1 
The overall of MPDD dataset.

Class Train Test norm. Test defect.

Bracket Black 289 32 47
Bracket Brown 185 26 51
Bracket White 110 30 30
Connector 128 30 14
Metal Plate 54 26 71
Tubes 122 32 69
Total 888 176 282
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4.2. Evaluation metrics and baseline

In the anomaly detection task, the Feature Discriminator produces 
continuous outputs (SAD(xi) and SAL(xi))for image- level and pixel-level 
anomaly detection, respectively. To classify samples as normal or 
anomalous, a specific threshold is applied to these outputs. If SAD(xi) is 
greater than the threshold ω, the image is labeled as normal; otherwise, 
it is classified as abnormal. Misclassifying a normal image as abnormal 
results in a false positive, indicating an erroneous decision.

Following established practices [35], AUROC (Area Under the ROC 
Curve) is selected as the primary metric for evaluating the RSAD model’s 
performance. The ROC curve, plotting FPR against TPR, facilitates an 
assessment of the model’s ability to discriminate between normal and 
anomalous samples. AUROC is particularly suitable for real-world ap
plications, as it remains unaffected by class distributions, even in sce
narios with class skew or significant changes.

For image-level evaluation (I-AUROC), SAD(xi) is employed to 
compute AUROC, focusing on the overall accuracy of image classifica
tion. To achieve fine-grained anomaly localization, pixel-wise AUROC 
(P-AUROC) is calculated using SAL(xi) to estimate the normality of each 
pixel and generate an anomaly map. In line with prior research, we 
compute on MPDD the class-average AUROC and mean AUROC across 
all categories for both detection and localization tasks.

The comparative baselines consist of recent SOTA methods, 
including reconstruction-based approaches (DMAD [11], DDAD [12], 
GLAD [13]), embedding-based techniques (MemKD [26], CFLOW [27], 
PatchCore [25]), and synthesizing-based models (Draem [20], RealNet 
[21], DiffusionAD [22]).

4.3. Experimental setup

All experiments were conducted using PyTorch on an NVIDIA 
GeForce GTX 2080Ti. Training was performed for 160 epochs with a 
batch size of 4. All images were resized to 256 × 256 and center-cropped 
to 224 × 224. The Adam optimizer was employed to train the Feature 
Aligner and Feature Discriminator, with initial learning rates of 0.0001 
and 0.0002, respectively, and a weight decay of 0.00001. Our proposed 
RSAD framework comprises four stages. For feature extraction, we 
adopted WideResNet50 pretrained on ImageNet as the backbone ψ, 
extracting features from the 2nd and 3rd final outputs. The neighbor
hood patch size for feature aggregation was set to 3, and after reshaping 
and concatenation, the final feature dimension was 1536. For domain 
adaptation, we employed Multi-cognitive Visual Adapter tuning. Mona 
compresses pre-trained features into a low-dimensional space, with the 
intermediate dimension set to 64, ensuring optimal performance while 
maintaining efficiency. Subsequently, the Non-deterministic Defect 
Feature Fuser introduced independent Gaussian noise into normal 
feature embeddings. The scale of noise σis set to 0.015 to achieve 
optimal performance. The final Feature Discriminator was implemented 
as a three-layer Multi-Layer Perceptron with Sigmoid activation.

5. Experiment result and analysis

The experiment results encompass two aspects: anomaly detection 
and anomaly localization.

5.1. Anomaly detection on MPDD

We conducted a comprehensive comparison of our proposed RSAD 
model with representative methods on the MPDD dataset, encompassing 
reconstruction-based, synthesizing-based and embedding-based 
methods. Table 2 presents the anomaly detection results on MPDD, 
where the image-level anomaly score is determined by the maximum 
score of the anomaly map, as defined as SAD(xi). Notably, our RSAD 
model achieves a SOTA average I-AUROC of 98.3 %, outperforming 
previous methods and ranking first on 4 out of 6 classes. Especially 
noteworthy are the Connector and Metal Plate categories, where our 
model achieves perfect classification accuracy. In contrast, only an I- 
AUROC of 94.3 % is achieved for Bracket Black anomaly detection task, 
where defects contain scratches and holes.

5.2. Anomaly localization on MPDD

The anomaly localization performance is evaluated using pixel-wise 
AUROC (P-AUROC), as detailed in Table 3. Notably, our RSAD model 
achieves a SOTA average P-AUROC of 98.7 %, setting new benchmarks 
particularly for Connector and Tubes, with P-AUROC scores of 99.6 % 
and 99.2 %, respectively. Imperfectly, RSAD still seems relatively 
weaker at localizing bend and part defects on Bracket Brown, achieving 
a P-AUROC of 96.2 %, while performance on Bracket Black and Metal 
Plate remains strong, approaching 99.0 % (98.9 % and 98.8 %, respec
tively). To provide further insight, we illustrate representative samples 
for anomaly localization in Fig. 2.

5.3. Anomaly detection on other benchmarks

To evaluate the generalization of RSAD, we test it on three industrial 
anomaly detection benchmarks: MVTec-AD, VisA, and PCB-Bank, using 
image-level and pixel-level AUROC scores. The results are summarized 
in Table 4. On MVTec-AD, which includes both object and texture 
anomalies with pixel-wise annotations, RSAD achieves 96.1 % and 93.6 
% AUROC, respectively, demonstrating strong performance in detecting 
and localizing industrial defects. On VisA, a high-resolution dataset with 
multi-object scenes and diverse anomaly types, RSAD achieves 93.8 % 
and 92.5 % AUROC, with a slight drop due to object occlusion and inter- 
class variations. On PCB-Bank, a dataset focused on printed circuit board 
defects with variations in resolution and viewing angles, RSAD achieves 
97.4 % and 96.4 % AUROC, highlighting its effectiveness in structured 
industrial applications. Overall, RSAD attains an average AUROC of 95.8 
% (image-level) and 94.2 % (pixel-level), confirming its robustness 
across diverse industrial scenarios.

Table 2 
Comparison of image-level AUROC (I-AUROC%) for anomaly detection task on MPDD dataset. Best results are highlighted in bold.

Type Reconstruction-based Embedding-based Synthesizing-based Ours

Model DMAD DDAD GLAD MemKD CFLOW PatchCore Draem RealNet DiffusionAD RSAD

Bracket Black 80.5 98.7 98.0 95.7 72.7 81.9 91.8 94.9 97.5 94.3
Bracket Brown 94.5 92.7 90.7 98.9 88.8 78.4 90.3 96.8 93.8 99.7
Bracket White 82.9 96.6 98.3 98.3 87.8 76.0 88.8 88.8 88.7 96.1
Connector 99.0 96.2 100.0 100.0 94.8 96.7 100.0 100.0 97.4 100
Metal Plate 100.0 100.0 99.9 100.0 99.5 100.0 100.0 100.0 100.0 100
Tubes 93.4 99.2 98.1 95.6 73.1 59.7 94.7 97.5 99.7 99.7
Avg. 91.7 97.2 97.5 98.1 86.1 82.1 94.3 96.4 96.2 98.3

P. Li et al.                                                                                                                                                                                                                                        Pattern Recognition Letters 194 (2025) 32–40 

37 



6. Ablation studies on feature aligner

To validate the effectiveness of the Feature Aligner in anomaly 
detection, we designed an ablation study comparing different alignment 
strategies. The Feature Aligner essentially functions as adapter tuning, 
incorporating a lightweight trainable module that enables effective 
domain adaptation without modifying the core parameters. Our pre
trained backbone, WideResNet-50, consists of 25.5 million parameters, 
and full fine-tuning the model for each task would be computationally 
expensive and prevent the utilization of pretrained general knowledge. 
In contrast, Feature Aligner preserves the efficiency and scalability of 
the pre-trained network, as well as adapting pretrained features with 

industrial-specific characteristics
Without performing full fine-tuning, we designed three experimental 

setups: (1) a baseline without an adapter, (2) tuning with a bias-free 
fully connected (FC) layer, and (3) tuning with Mona. To evaluate the 
trade-off between performance improvement and parameter efficiency, 
we analyzed the additional parameter overhead introduced by each 
approach. For the FC Layer, with both input and output dimensions set 
to 1536, the additional parameters amount to 2.36 million (1536 ×
1536). For Mona, with an input dimension of m = 1536 and an inter
mediate down-projected dimension of n = 64, the total trainable pa
rameters are [4]: 

2 × ((2n + 3)m + n2 + 84n + 2) = 0.42million (10) 

Both approaches introduce minimal parameter overhead relative to 
the pretrained WideResNet-50 backbone (25.5 M parameters), particu
larly Mona, which is significantly more lightweight.

To assess the impact of adapter tuning, we compare the anomaly 
detection performance using I-AUROC and P-AUROC on the MPDD 
dataset. As shown in Table 5, the FC Layer improves I-AUROC by 2.3 % 
and P-AUROC by 3.2 %, but requires 2.36 M additional parameters (9.2 

Table 3 
Comparison of pixel-level AUROC (P-AUROC%) for anomaly localization task on MPDD dataset. Best results are highlighted in bold.

Type Reconstruction-based Embedding-based Synthesizing-based Ours

Model DMAD DDAD GLAD MemKD CFLOW PatchCore Draem RealNet DiffusionAD RSAD

Bracket Black 91.1 96.7 99.4 97.8 96.9 98.4 98.2 99.3 98.3 98.9
Bracket Brown 81.6 97.2 97.5 96.3 97.8 91.5 63.7 97.8 93.1 96.2
Bracket White 93.2 91.8 99.7 98.8 98.6 97.4 98.9 97.4 93.5 99.4
Connector 97.7 98.6 98.2 99.4 98.4 95.0 91.2 97.5 94.5 99.6
Metal Plate 95.6 98.1 99.4 99.1 98.2 96.6 96.6 99.3 94.7 98.8
Tubes 96.5 99.0 97.8 99.2 96.4 95.1 95.9 97.9 97.8 99.2
Avg. 92.6 96.9 98.7 98.4 97.7 95.7 90.7 98.2 95.3 98.7

Fig. 2. Qualitative results, where sampled image (left), ground truth (middle), and anomaly map (right) are shown for each class in MPDD dataset.

Table 4 
Generalization performance of RSAD across industrial benchmarks (Image-level 
and Pixel-level AUROC %).

Benchmarks MVTec-AD Visa PCB-Bank Avg

I- AUROC 96.1 93.8 97.4 95.8
P-AUROC 93.6 92.5 96.4 94.2
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% of the backbone parameters). Mona introduces only 0.42 M additional 
parameters (1.65 % of the backbone) yet achieves further gains of +0.7 
% I-AUROC and +1.0 % P-AUROC over the FC Layer, using just 17.9 % 
of its parameter count.

These findings demonstrate that Mona provides a superior balance 
between anomaly detection accuracy and parameter efficiency, vali
dating adapter tuning as an effective domain adaptation strategy for 
industrial anomaly detection.

7. Conclusion

The proposed RSAD model is a four-stage unsupervised anomaly 
detection framework designed to address real-world challenges in me
chanical manufacturing. It detects random surface defects without 
requiring labeled anomaly samples and adapts to data distribution shifts 
in complex industrial environments, ensuring consistent product 
quality.

At the heart of the RSAD model lies a series of simple neural network 
modules designed to extract locally aggregated, mid-level features from 
the 2nd and 3rd final outputs of a WideResNet50 model pretrained on 
ImageNet. Subsequently, we incorporate a Feature Aligner directly after 
the Feature Extractor, leveraging the Multi-Cognitive Visual Adapter 
tuning to bridge the domain gap between industrial images and pre- 
trained datasets. This approach adds only 1.65 % of the backbone’s 
parameters yet improves I-AUROC by 3.0 % and P-AUROC by 4.2 %. In 
the third stage, synthesizing-based methods fuse Gaussian noise with 
normal features in the feature space, generating non-deterministic, 
anomalous samples. Finally, Feature Discriminator serves as a 
normality scorer, estimating the likelihood of samples being normal.

Extensive experiments on the MPDD dataset and other representative 
benchmarks demonstrate the RSAD model’s SOTA performance in 
anomaly detection and localization. This model is a significant 
advancement in visual intelligence for quality inspection across diverse 
product surfaces, enhancing the reliability of quality control processes in 
mechanical manufacturing.
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