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This paper addresses the pickup hub location problem in rural areas, considering dynamic changes in prospective customers 

and optimizing equity. The problem involves selecting optimal pickup hub locations from candidate hubs while minimizing 

transportation costs, measured as the distance between a set of determined customers and pickup hubs. A nonlinear fractional 

integer programming model is developed to formulate the problem. A scenario-based Dinkelbach’s algorithm combined with 

a mathematical reformulation approach is proposed to solve the problem efficiently. The effectiveness of the proposed method 

is demonstrated through a case study on the location selection of smart cigarette delivery lockers. The results highlight the 

method’s ability to balance equity, offering a practical solution for logistics planning in rural areas. The key contributions of 

this study are: (1) a novel pickup hub location model that accounts for dynamic customer changes and (2) validation of the 

approach through a real-world case study, showcasing its applicability and effectiveness. 
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1. BACKGROUND 
 

Doorstep delivery service, which is widespread in cities, involves delivering products to customers (Shi et al., 2023; Brunetti 

et al., 2024; Zhou et al., 2025). A pickup hub location, also known as a pickup point, is a facility that distributes products 

ordered online by customers. In cities, pickup stations are typically located very close to customers. These locations are often 

conveniently located in retail stores, shopping centers, or designated pickup points. A study by Lee et al. (2023) found that 

doorstep delivery services could help communities improve health conditions, reducing hospital visits and lowering medical 

expenses compared to communities without doorstep public service. Accessing the pickup hub location is increasingly 

important for governments and companies providing equity services. 

According to the news reported by Luo (2023), approximately 95 % of Chinese villages now have access to pickup 

stations. However, in rural areas, the distance between the pickup station and the customer’s home is much farther than that 

of metropolitan pickup stations. To promise more doorstep delivery services in rural areas, the national and local governments 

plan to invest vast capital to expand the rural delivery network. As highlighted in previous studies, cost is a critical factor 

when selecting pickup hubs. The local government requires logistics companies to provide last-mile delivery services in rural 

areas to ensure equitable last-mile delivery services. Three or four villages share at least one pickup hub. Figure 1 shows an 

example of a pickup hub servicing three villages. In this example, we can find that the pickup hub is located in village 1. 
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Customers located in villages 2 and 3 should go to village 1 to get their orders. Due to the customers being randomly 

distributed and simply for the calculation, we could use the candidate pickup hubs among different villages to represent the 

distance between customers and the pickup hubs. Equity has been widely studied in relief routing problems by many previous 

studies (Huang et al., 2012b; Gu et al., 2018; Zhou and Lee, 2020). In rural China, customers get their orders by themselves. 

Hence, equality in accessing their orders needs to be considered when determining the pickup hubs. 

 

 
 

Figure 1. An example of a pickup hub serving three villages: illustration of location and customer access. 

 

In previous studies of pickup hub location problems, there was a set of candidate pickup hub locations and a fixed 

number of customers. Many logistics companies provide the service of joining a courier franchise to open a pickup hub. 

Usually, convenience stores are selected as candidate pickup hubs. The total cost of opening a pickup hub is the same in such 

a case. The customers in rural areas may change over a specific period. Despite the growing importance of pickup hubs in 

rural areas, existing models for facility location problems often fail to account for prospective customers—those whose 

demand may emerge or change over time. Most studies assume a fixed set of customer locations and demands, which does 

not reflect the dynamic nature of rural communities. For example, customer distribution and demand patterns in rural areas 

can change due to population migration, economic development, or seasonal variations. Ignoring these dynamics can lead to 

suboptimal hub placement, inefficient resource allocation, and reduced service quality. Considering the above limitation in 

the current pickup hub location problem, the contributions of this paper are summarized as follows: In this paper, we study 

the pickup hub location problem considering the prospective customers by minimizing the maximum average distances from 

the pickup hub to customers among all the setup pickup hubs. A discrete scenario-based nonlinear fractional integer model 

is developed to formulate the studied problem. To solve the discrete scenario-based nonlinear fractional integer model, 

Dinkelbach’s algorithm and reformulation method are proposed to solve the studied problem. A case study is conducted to 

illustrate the studied problem. 

The positioning of this paper within the existing research framework is as follows： 

Hub Location Models: Our study departs from traditional hub location models. While past models often focus on static 

customer bases and cost-only optimization, we account for the dynamic nature of rural customer populations. For example, 

existing models like the p-median model (Hakimi, 1964) optimize location based on a fixed set of demand points, which is 

ill-suited for rural areas with changing customer demands. Our model incorporates prospective customers, thus adapting to 

the evolving rural environment. 

Equity-Based Optimization: In the context of equity-based optimization, prior research has mainly focused on urban-

centric applications or simple resource-sharing scenarios. Our study extends this to rural last-mile delivery, where equity in 

access to pickup hubs is crucial due to the self-collection nature of rural customers. By minimizing the maximum average 

distance from pickup hubs to customers, we ensure fair access across different villages in rural delivery equity optimization. 
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Scenario-Based Decision-Making: Existing scenario-based decision-making in facility locations often uses static 

scenarios. In contrast, our discrete scenario-based model accounts for various dynamic factors in rural areas, such as 

population migration and economic development. These scenarios are integrated into our model to make more robust 

decisions regarding pickup hub locations. 

The remainder of this paper is organized as follows. Section 2 summarizes the previous studies related to this paper. 

Section 3 presents the pickup hub location problem model considering equity efficiency. Section 4 gives methods for solving 

the studied problem. A case study is provided in section 5. Finally, the conclusions are presented in Section 6. 

 

2. LITERATURE REVIEW 
 

The literature has extensively studied facility location problems, with various models proposed to address different objectives 

and constraints. These problems are widely applied in determining the optimal locations of facilities such as hospitals, 

warehouses, emergency response facilities, and fire stations. Existing models can be broadly categorized into classical models 

and extended models, each focusing on different optimization objectives and constraints. Classical facility location models 

primarily focus on optimizing single objectives, such as cost minimization or coverage maximization. Some of the most 

widely studied classical models include the p-median problem, p-center problem, maximum covering location problem, etc. 

The min-max facility location problem is a classical p-center model that has been studied for a long time. The location 

problem is usually used to determine the location of facilities, such as hospitals, warehouses, emergency response facilities, 

and fire stations. Alumur and Kara (2008) conducted a systematic review of network hub location research, focusing on 

optimizing traffic transmission between source and destination by selecting hub locations and allocating demand nodes. They 

highlighted the significant growth of this field in recent years. They pointed out that although the research on the P-hub 

median problem is mature, other problems, such as the hub center and coverage problem, still need more theoretical and 

algorithmic development. Farahani et al. (2013) comprehensively reviewed hub location problems, discussing models, 

classifications, solutions, and applications. This paper examines the role of hubs as transfer stations for people, goods, or 

information from origin to destination and analyzes the latest progress in this field since 2007. In addition, the research trends 

in this field are pointed out, such as multi-objective optimization, reliability modeling, and design of global logistics networks. 

One of the popular objective functions is to minimize the maximum Euclidean distance between given facilities and 

customers. Such as Min (max
1≤𝑖≤𝑛

{𝑑(𝑣𝑖 , 𝑝𝑗)}) where 𝑣𝑖  represents the demand points and 𝑝𝑗  represents the given facilities. 

𝑑(𝑣𝑖 , 𝑝𝑗) is the Euclidean distance function between 𝑣𝑖 and 𝑝𝑗. This model is used for a facility location problem where a 

single facility serves multiple customers. The problem is locating a single facility or multiple facilities so that the maximum 

distance between the given facility and the demand customer points is minimized. Zhang (2021) proposed two minimax 

models to minimize the maximum distances from the facility location to customers. These models are linear integer 

programming models (Dolu, 2020; Elloumi, 2004). 

Another objective function is to minimize the maximum weighted distance of the one-center location problem or one 

facility min-max location problem. This model is as follows: Min ( max
𝑖=1,…,𝑚

{𝜔𝑖||𝑝𝑖 − 𝑋||}). 𝜔𝑖 is the weight. In the model, 𝑋 

is a new point chosen from a set of given different points. 𝑝𝑖  is the existing facility location, and ||𝑝𝑖 − 𝑋|| is the Euclidean 

distance between 𝑝𝑖  and 𝑋. For example, P.M.Dearing (1974) used this model to minimize the maximum of linear increasing 

functions of distances between the new facility and the existing facilities. Many studies adopted the maximum weighted 

distance as an objective function (Lin, 2010; Chandrasekaran, 1980). 

There is another model that minimizes the maximal total length of a vehicle’s tour in a traditional vehicle routing 

problem with a single depot (Albareda-Sarnbola, 2019; Jiang, 2012; Du, 2020), such as Min (max
∀𝑖
{∑ 𝑑𝑖𝑗𝑗∈𝐽 ∗ 𝑥𝑖𝑗}) . 𝑑𝑖𝑗  is the 

length of the depot 𝑗 serviced by vehicle 𝑖 and 𝑥𝑖𝑗  is binary variables, which 𝑥𝑖𝑗 = 1 means depot 𝑗 serviced by vehicle; 

otherwise, 𝑥𝑖𝑗 = 0. Narasimha et al. (2013) applied this model to the multi-depot vehicle routing problem, aiming to minimize 

the maximum distance traveled by any vehicle rather than the total distance. 

In the facility location problem, uncertainty arises in the demand and service time. To address these problems with 

uncertain parameters, the standard method is to optimize the worst-case performance. Wu (2020) optimized the worst 

observation of all scenarios based on the worst-case criterion. Baldomero-Naranjo (2021) proposed a min-max regret model 

for uncertainty with interval estimation. Ataei (2023) considered scenarios where demand point locations may change within 

a region. In this paper, uncertainty arises in the number and location of the prospective customer centers. To solve this 

problem, we consider all the scenarios based on the uncertainty and minimize the worst-case performance of the scenarios. 

Based on previous research results, this paper introduces distance fairness between pickup hubs and their serviced 

customers and further enhances the model’s practical applicability. In addition, the paper subdivides the customers, including 

the determined customer centers and the prospective customer centers. This paper’s model more accurately reflects the actual 

situation and provides more targeted strategies for optimizing the program. These improvements make the model more 
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flexible and efficient in solving practical problems and help to improve the fairness and overall performance of logistics 

network design. This paper minimizes the maximum average distance between pickup hubs and their serviced customers. 

The min-max model primarily addresses geographical equity issues, such as fire, police, and medical ambulance services. 

Min ( max
𝑖∈𝑃,𝑥𝑖=1

{
(∑ 𝑐𝑖𝑗𝑖∈𝑃 ∗𝑦𝑖𝑗)

𝛼+∑ 𝑥𝑖𝑗𝑖∈𝑃
}) is the objective function, which is a nonlinear fractional function. The average distance between 

pickup hubs and their serviced customers is mainly applied in cases where the distance to each point is critical. 0 summarizes 

the related studies. 

 

Table 1. Summary of the related studies. 

 

1UP: Uncertain programming; SOCP: Second order cone programming; IP: Integer programming; LP: Linear programming; GP: Geometric Programming; 
QP: Quadratic programming; DP: Dynamic programming; MILP: Mixed-integer linear programming; NLP: Non-Linear programming FP: Fractional 

programming 
2AHA: A hybrid algorithm MFMM: MISOCP formulation, Minkowski method, PA: Polynomial Algorithm, NSA: new, simple algorithm; GA: Genetic 
algorithm; PBA: Polynomially bounded algorithm, ACO: Ant Colony Optimization, PCM: Projection contraction method, SAA: Sample Average 

Approximation, LIR: Linear integer reformulation, BDC M: Bender’s dual cutting plane method, CCGA: Column-and-constraint generation algorithm, 

PTA: Polynomial-time algorithm, AA: Approximation algorithms, DA: Dinkelbach’s algorithm 
 

Gao (2015) conducted experimental comparisons on several methods for solving fractional programming problems, 

including the proposed Branch-and-Bound algorithm, the parametric algorithm (Dinkelbach’s algorithm), the reformulation-

linearization method, as well as general MINLP solution methods such as DICOPT (outer approximation), SBB (simple 

Branch-and-Bound algorithm), and global optimizers BARON 12 and SCIP 3. The results indicate that the parametric 

algorithm (Dinkelbach’s algorithm) and the reformulation-linearization method outperform other solution methods. 

Therefore, this paper selected Dinkelbach’s algorithm and the reformulation-linearization method for model solving. 

Compared to the reformulation-linearization method, Dinkelbach’s algorithm does not introduce new auxiliary variables, and 

its mathematical structure is straightforward, demonstrating efficiency and convergence in handling fractional optimization 

problems. 

Previous research has primarily focused on efficiency optimization, often neglecting equity issues. In contrast, this paper 

introduces fairness as a core objective based on the traditional min-max model. It proposes a nonlinear fractional integer 

programming model to minimize the maximum average distance between pickup hubs and their serviced customers. 

Additionally, this paper incorporates dynamic customer demands and uncertainties, optimizing worst-case performance 

through scenario analysis, further enhancing the model's practicality and robustness. 
 

Studies Goal 
Model 

type 
Equity 

Location 

Uncertainty 
Solution method 

Zhang (2021) Min-max distance UP ✓  AHA 

Dolu (2020) Min-max distance SOCP ✓  MFMM 

Elloumi (2004) Min-max distance IP ✓  PA 

P.M.DEARING (1974) Min-max weighted distance LP   NSA 

Lin (2010) Min-max weighted distance GP   GA 

Chandrasekaran (1980) Min-max weighted distance AP   PB 

Narasimha et al., (2013) Min max total distance DP   ACO 

Jiang (2012) 
Min-max is the sum of weighted 

distances 
IP   PCM 

Albareda-Sarnbola (2019) 
Min the weighted average  

of the largest distances 
IP   SAA 

Du (2020) 
Min-max the sum  

of weighted distances 
IP   

LIR, BDPM, 

CCGA 

Wu (2020) Min-max total time MILP   HA 

Baldomero-Naranjo (2021) Min-max regret NLP   PTA 

Ataei (2023) Min-max regret NLP  ✓ AA 

This paper Min-max average distance FFP ✓ ✓ DA 
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3. A DISCRETE SCENARIO-BASED MODEL CONSIDERING PROSPECTIVE CUSTOMERS 
 

3.1 Problem Statement 

 

Before introducing details of the studied problem, the notations, parameters, and decision variables are shown in Table 2. 

 

Table 2. Notations, parameters, and decision variables. 

 

Set Meaning 

𝑆 Set of scenarios 

�̃� Set of determined customer centers 

𝐶�̅� Set of prospective customer centers in scenarios 

𝐶𝑠 Set of customer centers in scenario 𝑠, 𝐶𝑠 = �̃� ∪ 𝐶�̅� 

𝐶 Set of customer centers, 𝐶 = �̃� ∪ 𝐶�̅� ∪. . . 𝐶|̅𝑆| 

𝑃 Set of pickup hubs 

Index Meaning 

𝑖 Index of pickup hub 

𝑗 Index of customer center 

𝑠 Index of scenario 

Parameters Meaning 

𝑝 Maximum number of customer centers serviced by a pickup hub 

𝛼 A very small real number 

𝛾 Total number of pickup hubs to be constructed 

𝑀 A very large value 

𝑐𝑖𝑗  The distance between pickup hub 𝑖 and customer 𝑗 

Decision variable Meaning 

𝑥𝑖 If the pickup hub is set up, 𝑥𝑖 = 1. Otherwise, 𝑥𝑖 = 0. 

𝑦𝑖𝑗 If customer center 𝑗 is serviced by pickup hub 𝑖, 𝑦𝑖𝑗 = 1. Otherwise, 𝑦𝑖𝑗 = 0 

 

A local government wants to set up pickup hubs (𝑃) to provide public delivery services in rural areas. In these regions, 

customers are widely distributed, and their loyalty may fluctuate over time. Let 𝐶 denote the set of determined customer 

centers, which means that these customer centers will always use public delivery services for a very long period. Additionally, 

there is a set of prospective customer centers that may adopt public delivery services in the near future. In rural areas, 

customers typically travel to pick-hubs to get their orders. Many companies in rural China do not provide last-mile door-to-

door service. Hence, each pickup hub could only service a certain number of customer centers, and 𝑝 is the maximum number 

of customer centers serviced by a pickup hub. To ensure fairness, the average service distance from each pickup hub to its 

customer centers is minimized as much as possible. Based on the principle of fairness, the objective is to minimize the 

maximum average delivery distance from the pickup hub to the customer centers, considering the prospective customer 

centers. Let 𝑆 denote the set of scenarios and 𝐶�̅�  is the set of prospective customer centers in scenario 𝑠. �̃� is the set of 

determined customer centers in scenario 𝑠 and 𝐶𝑠 = �̃� ∪ 𝐶�̅�. 
Figure 2 shows an example of customer and pickup hub distributions across different scenarios. Figure 2a shows the 

pickup hubs and all the customers, including determined and prospective customers. Rectangles represent pickup hubs, circles 

represent the determined customer centers, and dotted circles represent the prospective customer centers. Figure 2b and Figure 

2c show two distinct scenarios. Meanwhile, Figure 2b illustrates a scenario where a potential customer may appear at the 

location 𝐶1̅, representing a specific hypothetical situation. Figure 2c depicts a scenario where multiple potential customers 

appear at location 𝐶1̅, 𝐶2̅, and 𝐶8̅, further revealing the possible concentration of customers at these sites. These figures help 

visualize the complexity of potential customer distribution and its implications for location decision-making. 

The assumptions used in this paper are summarized as follows: (1) Capacity constraints of pickup hubs are not 

considered. (2) The number of customer centers served by each pickup hub is limited. (3) Customers need to pick up their 

orders from their homes and take them to the pickup hubs by themselves. (4) All pickup hubs have identical construction 

costs. The case study considers smart cigarette delivery lockers as pickup hubs. The smart cigarette delivery lockers are 

homogeneous, and their costs are the same. (5) The model uses spherical distance for calculations. 
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(a) The pickup hubs and all the customers, including determined and prospective customers 

 

 
(b) Scenario 1 (c) Scenario s 

 

Figure 2. Distribution of customers and pickup hubs in different scenarios. 

 

3.2 A Nonlinear Fractional Model 

 

This paper adopts strict robustness to identify a robust solution that applies to all scenarios. The objective function (1) aims 

to minimize the maximum average distance cost for customers serviced by each pickup station, selecting the maximum value 

among the optimal solutions of all scenarios. The objective function (1) is a nonlinear fractional function. 

 

𝑃          Maxs∈S Min max
i∈P

{
 
 

 
 

∑ (cij∗yij)
j∈C

∑ yij
j∈C⏟      

Average distance of pickup hub j}
 
 

 
 

 ⏟                
The maximum average distance between customers and pickup hub⏟                                

Minimize the maximum average distance between customers and pickup hub

  

(1) 

 

subject to 

 

∑𝑦𝑖𝑗
𝑖∈𝑃

= 1 ∀ 𝑗 ∈ 𝐶 (2) 

 

∑𝑥𝑖

𝑛

𝑖∈𝑃

= 𝛾  ∀ 𝑖 ∈ 𝑃 (3) 

 

∑𝑦𝑖𝑗
𝑗∈𝐶

≤ 𝑝 ∀ 𝑖 ∈ 𝑃 (4) 

 
𝑦𝑖𝑗 ≤ 𝑥𝑖      ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶 (5) 

 
𝑥𝑖 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶 (6) 
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𝑦𝑖 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶 (7) 

 

Constraint (2) ensures that each customer center is serviced by only one pickup station. Constraint (3) denotes that the 

total number of opened pickup stations is 𝛾. Constraint (4) represents the upper limit on the number of customer centers that 

a pickup station can serve. Constraint (5) shows that a customer center can only be assigned to an open pickup station. 

Constraints (6) and Constraint (7) represent that 𝑥𝑖 and 𝑦𝑖𝑗 are binary decision variables. 

 

3.3 Sub-Problem 

 

In this subsection, we analyze the mathematical model of each scenario, which is a sub-problem for the studied problem. 

 

3.3.1 Mathematical Model of Each Scenario 

 

𝑃𝑠
0           Min    𝑚𝑎𝑥

𝑖∈𝑃
{
∑ (𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗)𝑗∈𝐶

∑ 𝑦𝑖𝑗𝑗∈𝐶

} (8) 

 

subject to 

 

∑𝑦𝑖𝑗
𝑖∈𝑃

= 1  ∀ 𝑗 ∈ 𝐶𝑠 (9) 

 

∑𝑥𝑖

𝑛

𝑖∈𝑃

= 𝛾  ∀ 𝑖 ∈ 𝑃 (10) 

 

∑𝑦𝑖𝑗
𝑗∈𝐶𝑠

≤ 𝑝  ∀ 𝑖 ∈ 𝑃 (11) 

 

𝑦𝑖𝑗 ≤ 𝑥𝑖  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (12) 

 

𝑥𝑖 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (13) 

 

𝑦𝑖𝑗 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (14) 

 

The constraints of this model are structurally consistent with those of the model P, with the primary difference being in 

the definition of sets. 

Theorem 1.  The objective function (8) of the relaxed problem of the problem 𝑃0  is both pseudoconvex and 

pseudoconcave. 

Proof. See chapter 11.4 of Bazaraa et al. (2013) 

To prevent the denominator of the objective function (8) from being zero, 𝛼 is added to the denominator, where 𝛼 is a 

very small number. The objective function (8) is expressed as the objective function (15). 

 

𝑃𝑠
1           Min    𝑚𝑎𝑥

𝑖∈𝑃
{
∑ (𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗)𝑗∈𝐶

𝛼 +∑ 𝑦𝑖𝑗𝑗∈𝐶

} (15) 

 

Subject to (9)-(13). 

 

3.3.2 Linearization Of The Sub-Problem 

 

Model 𝑃𝑠
1 could not be solved directly using integer programming solvers, such as IBM Cplex, Gurobi, Mosek, and Lingo. 

Inspired by the study of Yue et al. (2013), we convert the nonlinear fractional model 𝑃𝑠
1 to a nonlinear integer programming 

model by introducing two auxiliary variables 𝜇𝑗, ℎ𝑗𝑘, defined as follows. 
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𝜇𝑖 =
1

𝛼 + ∑ 𝑦𝑖𝑗′𝑗′∈𝐶𝑠

  ∀ 𝑖 ∈ 𝑃 (16) 

 

ℎ𝑖𝑗 =
𝑦𝑖𝑗

𝛼 + ∑ 𝑦𝑖𝑗′𝑗′∈𝐶𝑠

  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (17) 

 

Therefore, Min    𝑚𝑎𝑥
𝑖∈𝑃

{
∑ (𝑐𝑖𝑗∗𝑦𝑖𝑗)

𝑗∈𝐶

𝛼+∑ 𝑦𝑖𝑗
𝑗∈𝐶

} = Min    𝑚𝑎𝑥
𝑖∈𝑃

{∑ 𝑐𝑖𝑗𝑗∈𝐶 ∗
𝑦𝑖𝑗

𝛼+∑ 𝑦𝑖𝑗
𝑗∈𝐶

} = Min    𝑚𝑎𝑥
𝑖∈𝑃

{∑ 𝑐𝑖𝑗𝑗∈𝐶 ∗ ℎ𝑖𝑗} , the proposed 

nonlinear integer programming model is presented in 𝑃𝑠
2. 

 

𝑃𝑠
2           Min    (𝑚𝑎𝑥

𝑖∈𝑃
{∑ 𝑐𝑖𝑗 ∗ ℎ𝑖𝑗
𝑗∈𝐶𝑠

}) (18) 

 

subject to (9)-(13) and 

 

ℎ𝑖𝑗 = 𝑦𝑖𝑗 ∗ 𝜇𝑖  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (19) 

 

∑ℎ𝑖𝑗
𝑗∈𝐶𝑠

+ 𝛼 ∗ 𝜇𝑖 = 1  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (20) 

 

𝜇𝑖 ≥ 0  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (21) 

 

ℎ𝑖𝑗 ≥ 0  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (22) 

 

For Constraint (19), ℎ𝑖𝑗 =
𝑦𝑖𝑗

𝛼+∑ 𝑦𝑖jj∈𝐶𝑠

= 𝑦𝑖𝑗 ∗
1

𝛼+∑ 𝑦𝑖jj∈𝐶𝑠

= 𝑦𝑖𝑗 ∗ 𝜇𝑖. We include the Constraint (20) in the reformulation 

to define the variable, 
1

𝛼+∑ 𝑦𝑖𝑗j∈𝐶𝑠

∗ (𝛼 + ∑ 𝑦𝑖𝑗j∈𝐶𝑠 ) =
∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠

𝛼+∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠

+
𝛼

𝛼+∑ 𝑦𝑖j𝑗∈𝐶𝑠

= ∑ ℎ𝑖𝑗𝑗∈𝐶𝑠 + 𝛼𝜇𝑖 = 1. For constraints (21) and 

(22), 𝑦𝑖j is binary variables, therefore, 𝜇𝑖 ≥ 0, and ℎ𝑖𝑗 ≥ 0, ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠. 

The model 𝑃𝑠
2 is a nonlinear integer programming model with a nonlinear ℎ𝑖𝑗 = 𝑦𝑖𝑗 ∗ 𝜇𝑖. To linearize the nonlinear 

Constraint ℎ𝑖𝑗 = 𝑦𝑖𝑗 ∗ 𝜇𝑖, we introduce the following constraints. 

 

ℎ𝑖𝑗 = {
0, if 𝑦𝑖𝑗 = 0

𝜇𝑖 , otherwise
 (23) 

 

ℎ𝑖𝑗 ≤ 𝜇𝑖  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (24) 

 

ℎ𝑖𝑗 ≤ 𝑀𝑦𝑖𝑗  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (25) 

 

ℎ𝑖𝑗 ≥ 𝜇𝑖 −𝑀(1 − 𝑦𝑖𝑗)   ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (26) 

 

Formulation (23) implies that  ℎ𝑖𝑗 = 𝜇𝑖  or 0, in Constraint (25), M is a sufficiently large number, and Constraint (25) 

implies that if 𝑦𝑖𝑗  is zero, then ℎ𝑖𝑗 should be zero; constraints (24) and (26) indicate that if 𝑦𝑖𝑗 is one, then ℎ𝑖𝑗 should be equal 

to 𝜇𝑖. Thus, constraints (24) - (25) are linearization constraints for  ℎ𝑖𝑗 = 𝑦𝑖𝑗 ∗ 𝜇𝑖. 

Theorem 2.  The optimal solution (𝑋∗, 𝑌∗) of the problem 𝑃𝑠
1 is an optimal solution of the 𝑃𝑠

0. 

Proof. (A) (𝑋∗, 𝑌∗) is a feasible of the problem 𝑃𝑠
0. (B) (𝑋∗, 𝑌∗) is the optimal of the problem 𝑃𝑠

0,. See Li (1994) 
 
3.3.3 An Example 

 

This section is a computational study of a small example. The test case is that a tobacco company has an order for 8 cigarette 

demand points in a certain area. To fulfill this order, the company plans to build 2 smart cigarette delivery lockers in the area. 
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The objective is to minimize the maximum average distance from the smart cigarette delivery locker to customers, ensuring 

equitable access to the delivery services. This example assumes 4 candidate pickup hub locations, as shown in Figure 3. 

 

 
 

Figure 3. Distribution of customers and candidate pickup hubs in a Tobacco company's order. 

 

Figure 3 shows the distribution of customers and smart cigarette delivery lockers. The solid squares represent the 

candidate smart cigarette delivery locker locations, and the circles represent customers. 

 

Table 3. The distance between customers and smart cigarette delivery lockers. 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 

𝑃1 4 2 3 6 18 14 20 24 

𝑃2 12 10 4 5 12 2 30 12 

𝑃3 20 25 16 9 7 4 2 6 

𝑃4 6 10 14 2 3 9 11 22 

 

Table 3 shows the distance between customers and the candidate smart cigarette delivery lockers; 𝑃 represents candidate 

smart cigarette delivery lockers, and 𝐶 represents customers. 

 

Table 4. Optimal solutions for the example. 

 

Smart Warehouse Demand Point 

𝑃1 𝐶1, 𝐶2, 𝐶3, 𝐶4 

𝑃3 𝐶5, 𝐶6, 𝐶7, 𝐶8 

optimal value 4.749 

 

We used the model 𝑃𝑠
2 to formulate the studied problem, and it is solved by the IBM CPLEX solver. The obtained 

optimal solution is shown in the following table. 

From Table 3 and Figure 4, the optimal smart cigarette delivery lockers are determined to be 𝑃1 and 𝑃3. The smart 

cigarette delivery locker 𝑃1  services customers 𝐶1 ,𝐶2 ,𝐶3  and 𝐶4 , while the smart cigarette delivery locker 𝑃3  services 

𝐶5,𝐶6,𝐶7 and 𝐶8. The optimal solution achieves a value of 4.749. 

 

 
 

Figure 4. Visualization of the smart cigarette delivery lockers' location and allocation of the example. 
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3.4 Reformulation Of The Studied Problem  

 

By using the linearized model of 𝑃𝑠
2 presented in section 3.3.2, the nonlinear fractional model 𝑃 can be reformulated as 𝑃𝑅, 

which is a linear integer programming model that can be solved by solvers, such as IBM CPLEX. 

 

𝑃𝑅            Max𝑠∈𝑆     

(

 
 
Min    (𝑚𝑎𝑥

𝑖∈𝑃
(∑ 𝑐𝑖𝑗 ∗ ℎ𝑖𝑗
𝑗∈𝐶𝑠

))

)

 
 

 (27) 

 

subject to 

 

ℎ𝑖𝑗 ≤ 𝜇𝑖  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (28) 

 

ℎ𝑖𝑗 ≤ 𝑀𝑦𝑖𝑗  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (29) 

 

ℎ𝑖𝑗 ≥ 𝜇𝑖 −𝑀(1 − 𝑦𝑖𝑗)   ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (30) 

 

∑ ℎ𝑖𝑗𝑗∈𝐶𝑠 + 𝛼𝜇𝑖 = 1  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠  (31) 

 
∑ 𝑦𝑖𝑗𝑖∈𝑃 = 1  ∀ 𝑗 ∈ 𝐶𝑠  (32) 

 
∑ 𝑥𝑖
𝑛
𝑖∈𝑃 = 𝛾  ∀ 𝑖 ∈ 𝑃  (33) 

 

𝑦𝑖𝑗 ≤ 𝑥𝑖  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (34) 

 
∑ ℎ𝑖𝑗𝑗∈𝐶𝑠 ≤ 𝑝 ∗ 𝜇𝑖  ∀ 𝑖 ∈ 𝑃  (35) 

 

𝜇𝑖 ≥ 0  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (36) 

 

ℎ𝑖𝑗 ≥ 0  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (37) 

 

𝑥𝑖 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (38) 

 

𝑦𝑖𝑗 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (39) 

 

4. SOLUTION METHODS 
 

Robust optimization is very important in facility location and routing problems (Shi et al., 2020). Subsection 4.1 presents 

Dinkelbach’s algorithm for finding the optimal solution for each scenario. This paper introduces two methods for obtaining 

the strict robustness solution. Subsection 4.2 introduces the scenario based on Dinkelbach’s algorithm, and Subsection 4.  

presents the scenario based on the mathematical formulation algorithm, respectively. 

 

4.1 Dinkelbach’s Algorithm For Solving Model 𝑷𝒔
𝟎 

 

𝑃𝑠
0 is a multiple ratio nonlinear integer model, which can not be solved by solvers such as Cplex, CBC, Gurobi, LINGO, or 

Mosek. After linearization 𝑃𝑠
0, the resulting model 𝑃𝑠

2 becomes a linear mixed integer programming model, which can be 

solved by these solvers. However, the linearization process requires additional constraints, which makes the model 𝑃𝑠
2 time-

consuming. In this section, we try to directly solve 𝑃𝑠
0 using Dinkelbach’s algorithm, originally proposed by Dinkelbach 

(1967), for solving single ratio nonlinear fractional models. Ferland and  otvin   985  extended Dinkelbach’s algorithm for 

solving multiple ratio nonlinear fractional models. R´odenas et al. ( 999  extended Dinkelbach’s algorithm for solving integer 

fractional models. 
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𝑁𝑖(𝑦𝑖) = ∑ 𝑐𝑖𝑗𝑗∈𝐶𝑠
∗ 𝑦𝑖𝑗 , 𝐷𝑖(𝑦𝑖) = 𝛼 + ∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠

, where 𝑦𝑖 = (𝑦𝑖1, ⋯ , 𝑦𝑖𝑗 , ⋯ , 𝑦𝑖|𝐶𝑠|). 

 

The model 𝑃1  is a nonlinear fractional programming model. We define 𝑁𝑖(𝑦𝑖) = ∑ 𝑐𝑖𝑗𝑗∈𝐶𝑠 ∗ 𝑦𝑖𝑗  and 𝐷𝑖(𝑦𝑖) = 𝛼 +

∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠 , where 𝑦𝑖 = (𝑦𝑖1, ⋯ , 𝑦𝑖𝑗 , ⋯ , 𝑦𝑖|𝐶𝑠|). By using 𝑁𝑖(𝑦𝑖) and 𝐷𝑖(𝑦𝑖), we convert model 𝑃𝑠
1 to an integer programming 

model 𝑃𝑠
2. Note that model 𝑃𝑠

1 and model 𝑃𝑠
2 are not equivalent. By using Dinkelbach’s Algorithm, the original problem can 

be transformed into the following problem. Model 𝑃𝑠
𝐷𝐴 is defined as follows. 

 

𝑃𝑠
𝐷𝐴           Min    (𝑚𝑎𝑥

𝑖∈𝑃
{𝑁𝑖(𝑦𝑖) − λ ∗ 𝐷𝑖(𝑦𝑖)}) (40) 

 

subject to 

 

𝑁𝑖(𝑦𝑖) = ∑ 𝑐𝑖𝑗𝑗∈𝐶 ∗ 𝑦𝑖𝑗  ∀ 𝑖 ∈ 𝑃  (41) 

 

𝐷𝑖(𝑦𝑖) = 𝛼 + ∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠   ∀ 𝑖 ∈ 𝑃  (42) 

 

∑ 𝑦𝑖𝑗𝑖∈𝑃 = 1  ∀ 𝑗 ∈ 𝐶𝑠  (43) 

 
∑ 𝑥𝑖
𝑛
𝑖∈𝑃 = 𝛾  ∀ 𝑖 ∈ 𝑃  (44) 

 
∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠 ≤ 𝑝  ∀ 𝑖 ∈ 𝑃  (45) 

 

𝑦𝑖𝑗 ≤ 𝑥𝑖  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (46) 

 

𝑥𝑖 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (47) 

 

𝑦𝑖𝑗 ∈ {0,1}  ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐶𝑠 (48) 

 

The model 𝑃𝑠
𝐷𝐴 has the same constraints as the original model but a different objective function, which is formulation 

(49). When 𝐹(𝜆) = 0, this problem has a unique optimal solution, which is exactly consistent with the global optimal solution 

of the original model  𝑃𝑠
2 (You et al., (2009)). Therefore, solving the model 𝑃𝑠

2 is equivalent to finding the root of the equation 

𝐹(𝜆) = 0. The Dinkelbach algorithm’s steps are as follows. Firstly, we set 𝛿 = 10−6. 

 

Step 1: 
 Choose arbitrary (�̅�𝑘, �̅�𝑘) and set 𝜆𝑘 =

𝑚𝑎𝑥
1 ≤ 𝑖 ∈ |𝑃| {

𝑁𝑖(�̅�𝑖
𝑘)

𝐷𝑖(�̅�𝑖
𝑘)
} (or set 𝜆𝑘 = 0), initialize 𝑘 by setting 𝑘 =  0. 

Step 2:  Solve the problem 𝐹(𝜆𝑘) = Min (max
𝑖∈𝑃

{𝑁𝑖(𝑦𝑖
𝑘∗) − 𝜆𝑘 ∗ (𝐷𝑖(𝑦𝑖

𝑘∗)}), and denote the optimal solution as 𝑦𝑖
𝑘∗ 

Step 3:  If |𝐹(𝜆𝑘)| < 𝛿 (optimality tolerance), stop and output 𝑦𝑖
𝑘∗  as the optimal solution; If |𝐹(𝜆𝑛)| < 𝛿 , let 𝜆𝑘+1 =

𝑚𝑎𝑥
1 ≤ 𝑖 ∈ |𝑃| {

𝑁𝑖(𝑦𝑖
𝑘∗)

𝐷𝑖(𝑦𝑖
𝑘∗)
} and go to Step2 to replace k with k+1 and 𝜆𝑘 with 𝜆𝑘+1. 

 

Through the above major steps of Dinkelbach’s algorithm, this problem can be solved by finding the original problem’s 

optimal solution by iteration and an updating procedure. This paper adopted general Dinkelbach’s algorithm for solving the 

model 𝑃𝑠
2, which is summarized in Algorithm 1. 

 

Algorithm 1: General Dinkelbach’s algorithm for solving model 𝑃𝑠
0 

1 Function  𝐆𝐃𝐀（𝐶𝑠） 

2   𝑘 = 1; 
3         Initialize 𝜆𝑛 by using (a) or (b); 

4         (a)𝜆𝑘 = 0; 

5         (b) Choose a feasible solution(�̅�𝑘 , �̅�𝑘)， and 𝜆𝑘 =
𝑚𝑎𝑥

1 ≤ 𝑖 ∈ |𝑃| {
𝑁𝑖(�̅�𝑖

𝑘)

𝐷𝑖(�̅�𝑖
𝑘)
}; 

6         while 𝐹(𝜆𝑘) ≤ 𝛽 do 

7                    (𝑋𝑘
∗, 𝑌𝑘

∗) = 𝐼𝑃𝑆𝑜𝑙𝑣𝑒𝑟(𝑁𝑖(𝑦𝑖) − 𝜆𝑘 ∗ 𝐷𝑖(𝑦𝑖))  / /solving model𝑃𝑠
𝐷𝐴 
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Algorithm 1: General Dinkelbach’s algorithm for solving model 𝑃𝑠
0 

8                    𝜆k+1 =
𝑚𝑎𝑥

1 ≤ 𝑖 ∈ |𝑃| {
𝑁𝑖(𝑦𝑖

𝑘∗)

𝐷𝑖(𝑦𝑖
𝑘∗)
}; 

9                      𝑘 = 𝑘 + 1 

10         end 

11         return Optimum Solution; 

 

Line 3 of Algorithm 1 initializes the 𝜆𝑘. There are two methods for initializing 𝜆𝑘. Method (a) in line 4 set 𝜆𝑘 = 0. In 

method (B) of line 5, a feasible solution is given and 𝜆𝑘 is initialized by using the feasible solution. 𝐹(𝜆𝑘) is defined in 

equation (49). When 𝐹(𝜆𝑘) = 0, the model is optimized. 

 

𝐹(𝜆𝑘) = Min (max
𝑖∈𝑃

{𝑁𝑖(𝑦𝑖
𝑘∗) − 𝜆 ∗ (𝐷𝑖(𝑦𝑖

𝑘∗)}) (49) 

 

𝛽 is a very small number in line 6 of Algorithm 1. In this paper, we set 𝛽 = 10−6. IPSolver() is an arbitrary integer 

programming solver, such as Cplex, CBC, Gurobi, LINGO, or Mosek. We can obtain the optimal solution (𝑋𝑘
∗, 𝑌𝑘

∗), where 

𝑋𝑘
∗ = (𝑥1

𝑘∗, ⋯ , 𝑥|𝑝|
𝑘∗) , 𝑌𝑘

∗ = (𝑦1
𝑘∗, ⋯ , 𝑦|𝑝|

𝑘∗) , and 𝑦𝑖
𝑘∗ = (𝑦𝑖1

𝑘∗, ⋯ , 𝑦𝑖𝑗
𝑘∗, ⋯ , 𝑦𝑖|𝐶𝑠|

𝑘∗ )  by using an arbitrary integer programming 

solver to solving the model 𝑃𝑠
2. By using equation (50) we can update the 𝜆𝑘+1. This updating procedure is the key of the 

Dinkelbach’s algorithm for solving model 𝑃𝑠
𝐷𝐴. 

 

𝜆𝑘+1 = max
𝑖∈𝑃

{
𝑁𝑖(𝑦𝑖

𝑘∗)

𝐷𝑖(𝑦𝑖
𝑘∗)
} (50) 

 

4.2 Scenario-based Dinkelbach’s Algorithm 

 

Strict robustness is a mathematical concept in robust optimization that aims to find the worst-case solution among all the 

possible scenarios. For each scenario, we can apply Dinkelbach’s algorithm to obtain the optimal solution, as described in 

section 4.1. After obtaining the optimal solutions for all scenarios, we compare them to find the worst solution, which is the 

strict robustness of the studied problem. By using the above process, we introduce the scenario based on Dinkelbach’s 

algorithm, which is shown in Algorithm 2. 

In algorithm 2, 𝑠 represents the scenario 𝑠. In line 3, 𝑅𝑜𝑏𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 represents the current obtained strict robustness 

solution. The while loop in line 5 iterates through all scenarios. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in line 6 is the optimal solution of the scenario 𝑠. 
In line 7, if the optimal solution is worse than the current obtained strict robustness solution, we update the 𝑅𝑜𝑏𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

 

Algorithm 2: Scenario-based Dinkelbach’s algorithm 

1  Function  𝐒𝐃𝐀（ ） 

2   𝑠 = 1; 
3             𝑅𝑜𝑏𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  ∅ ; / / The worst solution among all the Scenario 

4          1: 𝑅𝑜𝑏𝑢𝑠𝑂𝑏𝑗 =  −∞;  / / Init the robust solution 

5          1: while   𝑠 <=  |𝑆| do 

6                     1: S𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝐺𝐷𝐴(𝐶𝑠); / / the optimal solution of scenario   𝑠 
             / / If find a worse solution, set it as the current robust solution 

7                      if (𝑂𝑏𝑗𝐹𝑢𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝐶𝑠)  >  𝑅𝑜𝑏𝑢𝑠𝑂𝑏𝑗) then 

8                      1:     𝑅𝑜𝑏𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛; 

9              2:     𝑅𝑜𝑏𝑢𝑠𝑂𝑏𝑗 =  𝑂𝑏𝑗𝐹𝑢𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐶𝑠); 
10                end 

11              s= 𝑠 + 1; / / visit next scenario  𝑠 +  1 

12          End 

13          return Optimum Solution;  / / return the robust solution 

 

4.3 Scenario-based Mathematical Formulation Algorithm 

 

The basic idea of the scenario-based mathematical formulation algorithm is similar to scenario-based Dinkelbach’s algorithm. 

The key difference is that the scenario-based mathematical formulation algorithm uses a mathematical formulation to obtain 
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the optimal solution for each scenario 𝑠. In line 6, the 𝑀𝑖𝑝𝑆𝑙𝑜𝑣𝑒𝑟() is a mixed integer solver, such as CPLEX. 𝑃𝑠
2 is the 

mathematical model of scenario 𝑠 that could be directly solved by the 𝑀𝑖𝑝𝑆𝑙𝑜𝑣𝑒𝑟(). The remaining parts of Algorithm 3 are 

the same as those of Algorithm 2. 

 

Algorithm 3: Scenario-based mathematical formulation algorithm. 
1  Function  𝐒𝐌𝐅𝐀（ ） 

2   𝑠 = 1; 
3             𝑅𝑜𝑏𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  ∅ ; 
4          3: 𝑅𝑜𝑏𝑢𝑠𝑂𝑏𝑗 =  −∞; 
5          4: while   𝑠 <=  |𝑆| do 

6                     
5: (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑂𝑏𝑗𝑠)  =  𝑀𝑖𝑝𝑆𝑙𝑜𝑣𝑒𝑟(𝑃 𝑠

2
 ); // MipSlover is a mixed integer solver 

6: / / if find a worse solution, set it as the current robust solution 
7                      if (𝑂𝑏𝑗𝐹𝑢𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝐶𝑠)  >  𝑅𝑜𝑏𝑢𝑠𝑂𝑏𝑗) then 

8                      7:     𝑅𝑜𝑏𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛; 

9              8:     𝑅𝑜𝑏𝑢𝑠𝑂𝑏𝑗 =  𝑂𝑏𝑗𝐹𝑢𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐶𝑠); 
10                end 

11              s= 𝑠 + 1; 

12          End 

13          return Optimum Solution; 

 

4.4 Implementation Environment 

 

All the mathematical models proposed in this paper are solved by using IBM ILOG CPLEX Optimization Studio (version 

12.9) with a Python interface to the CPLEX callable library. The Dinkelbach algorithm is implemented in the Python language 

(version 3.8.8). Both the models and algorithms are tested on a Windows 11 operating system with AMD Ryzen 5 5500U 

with Radeon Graphics 2.10 GHz and 16 GB of RAM. 

 

5. A CASE STUDY 
 

This section introduces a case study and compares the two proposed methods. Sensitive analysis and management insights 

are also provided. The details are shown as follows. 

 

5.1 Cigarette Delivery Locker 

 

In this section, the cigarette delivery locker is considered the pickup hub. The cigarette is franchised in China. A Local 

Tobacco Monopoly Bureau will distribute cigarettes to retail customer stores in the last mile of the cigarette distribution 

service. The quality of the 'last mile' delivery service significantly impacts customer satisfaction. If customers are dissatisfied 

with the service, their cigarette ordering frequency may decrease. Cigarette sales endpoint has dispersion characteristics, a 

large number, a wide distribution, and a large demand. To enhance distribution efficiency and meet the timeliness of cigarette 

products, tobacco companies further integrate logistics resources and accelerate the development of logistics systems. 

Tobacco companies have actively constructed smart cigarette delivery lockers to meet diverse customer needs and improve 

distribution efficiency. Smart cigarette delivery lockers are strategically placed in secure locations such as township 

governments, village service centers, and post offices. To complete self-service pickup, remote customers can confirm their 

identities through facial recognition and SMS verification codes. Figure 5 shows an example of a smart cigarette delivery 

locker. 

The introduction of smart cigarette delivery lockers has dramatically improved the efficiency of cigarette distribution. 

These lockers enable retail customers to independently complete pickup and expand distribution service methods. It 

effectively prevents the occurrence of irregular business practices caused by inadequate Management of entrusted pickup 

points and pickup households, provides effective data support for standardized Management, and opens up the last mile of 

digital closed-loop management. 

When selecting the location of the smart cigarette delivery locker, if some customers have to travel farther than other 

customers, it is considered an unfair service of the smart cigarette delivery locker. This paper’s Goal is to ensure fairness in 

the distances between customers and smart cigarette delivery lockers. 
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Figure 5. A smart cigarette delivery locker. 

 

5.2 Data Of The Case Study 

 

This case study selects the districts and villages in Xiaopu Town, Jiangyong County, Hunan Province. Using the web service 

API provided by the Baidu Map open API, the longitude and latitude information of the villages in Xiaopu Town is crawled 

using the Python toolkit. We obtained 24 villages. Figure 6 shows the distribution of the cigarette demand in the villages of 

Xiaopu Town. The longitude and latitude of all the customers are shown in Table 10. 

 

  
 

Figure 6. Distribution of cigarette demand in villages and smart candidate cigarette delivery lockers of Xiaopu Town. 

 

This study considers 19 determined districts and villages as candidates for smart cigarette delivery locker locations and 

cigarette demand points, with an additional five villages designated as prospective cigarette demand points. Eight smart 

cigarette delivery lockers were selected from these candidates to serve other villages with high cigarette demand. Among 

them, the demand points serviced by each smart cigarette delivery locker do not exceed three cigarette demand points, which 

means 𝑝 = 3. 

There are five prospective villages that could be used as cigarette demand points. As shown in Figure 6, red circles 

represent the determined cigarette demand villages, and the blue circles represent the prospective cigarette demand villages. 

As shown in Figure 7, there are 32 scenarios. 

determined cigarette demand village

prospective cigarette demand village
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(a) Scenario 1 (b) Scenario 2 

  

(c) Scenario 3 (d) Scenario 4 

  

(e) Scenario 5 (f) Scenario 6 
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(g) Scenario 7 (h) Scenario 8 

  

(i) Scenario 9 (j) Scenario 10 

  

(k) Scenario 11 (l) Scenario 12 
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(m) Scenario 13 (n) Scenario 14 

  

(o) Scenario 15 (p) Scenario 16 

  

(q) Scenario 17 (r) Scenario 18 
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(s) Scenario 19 (t) Scenario 20 

  

(u) Scenario 21 (v) Scenario 22 

  

(w) Scenario 23 (x) Scenario 24 
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(y) Scenario 25 (z) Scenario 26 

  

(aa) Scenario 27 (ab) Scenario 28 

  

(ac) Scenario 29 (ad) Scenario 30 
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(ae) Scenario 31 (af) Scenario 32 

 

Figure 7. The distribution of determined and prospective customers for all scenarios. 

 

5.3 A Scenario 

 

In this section, we assume that there are no prospective customers and consider scenario one as the case based on the data of 

Xiaopu town. This section analyses the result of the model with no prospective customers. The computational result is shown 

in Figure 8 and Table 5. 

 

 
 

Figure 8. The distribution solution for the smart lockers is based on Scenario 1. 

 

smart cigarette delivery locker

cigarette demand village
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From Table 5 and Figure 8, we set smart cigarette delivery lockers in Phoenix Community, Kirin Community, Pipajing 

Village, Xiajietou Village, Chetian Village, Shijiao Village, Gongyeyuanshe Village, and Bauhinia Village. The maximum 

average distance from cigarette demand villages to each smart cigarette delivery locker is 1511.516, and the smart cigarette 

delivery locker location is Xiajietou Village, which services Xiajietou Village, Tuanjie Village, and Hexing Village. 

 

Table 5. The distribution results of the smart lockers based on Scenario 1 

 

Smart Cigarette Delivery Locker Cigarette Demand Village 

Phoenix Community Sifangjing Community, Phoenix Community, JieLongqiao 

Kirin Community Kirin Community, Yongxin Community 

Pipajing Village Yunshan Community, Huigang Village, Pipajing Village 

Xiajietou Village Xiajietou Village, Tuanjie Village, Hexing Village 

Chetian Village Chetian Village, Guzhaixin Village 

Shijiao Village Xiangguang Village, Shijiao Village, Tangbei Village 

Gongyeyuanshe Village Gongyeyuanshe Village 

Bauhinia Village Hejiawan Village, Bauhinia Village 

Optimal Solution 1511.516 

 

5.4 Comparison Between Dinkelbach’s Algorithm And Mathematical Modeling Method 

 

This subsection compares the solutions obtained by different methods in terms of solution quality and computational time for 

different scenarios. In the above cases, this paper uses Dinkelbach’s Algorithm  DA  and Reformulation-Linearization (RL) 

method to obtain the optimal solution. Table 6 shows the number of variables, constraints, objective values, and CPUs 

(computational time in seconds). 

 

Table 6. Comparison of DA and RL methods for all scenarios. 

 

Scenario Algorithm 
Variables 

Constraints 
Objective 

value 
CPUs 

Discrete Continuous 

1 
DA 380 0 400 1511.516 1.824 

RL 380 380 1882 1511.516 2.328 

2 
DA 399 0 419 1595.774 2.626 

RL 399 399 1901 1595.774 1.310 

3 
DA 399 0 419 1511.515 1.803 

RL 399 399 1901 1511.515 2.314 

4 
DA 399 0 419 1511.515 3.020 

RL 399 399 1901 1511.515 3.041 

5 
DA 399 0 419 1595.774 3.495 

RL 399 399 1901 1595.774 1.820 

6 
DA 399 0 419 1687.919 1.967 

RL 399 399 1901 1687.919 3.331 

7 
DA 418 0 439 1595.774 2.503 

RL 418 418 2073 1595.774 2.182 

8 
DA 418 0 439 1595.774 2.982 

RL 418 418 2073 1595.774 2.624 

9 
DA 418 0 439 1613.393 2.347 

RL 418 418 2073 1613.393 1.640 

10 
DA 418 0 439 1687.919 2.332 

RL 418 418 2073 1687.919 1.672 

11 
DA 418 0 439 1511.515 1.957 

RL 418 418 2073 1511.515 3.961 

12 
DA 418 0 439 1595.774 2.712 

RL 418 418 2073 1595.774 3.327 

13 DA 418 0 439 1687.919 3.281 
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Scenario Algorithm 
Variables 

Constraints 
Objective 

value 
CPUs 

Discrete Continuous 

RL 418 418 2073 1687.919 3.004 

14 
DA 418 0 439 1595.774 2.826 

RL 418 418 2073 1595.774 2.186 

15 
DA 418 0 439 1687.919 2.579 

RL 418 418 2073 1687.919 2.218 

16 
DA 418 0 439 1702.281 2.631 

RL 418 418 2073 1702.281 2.209 

17 
DA 437 0 459 1595.774 3.683 

RL 437 437 2169 1595.774 2.621 

18 
DA 437 0 459 1613.393 3.414 

RL 437 437 2169 1613.393 2.233 

19 
DA 437 0 459 1687.919 1.646 

RL 437 437 2169 1687.919 3.051 

20 
DA 437 0 459 1702.281 1.959 

RL 437 437 2169 1702.281 2.342 

21 
DA 437 0 459 1717.813 1.959 

RL 437 437 2169 1717.813 3.331 

22 
DA 437 0 459 1702.281 2.963 

RL 437 437 2169 1702.281 4.256 

23 
DA 437 0 459 1595.774 3.204 

RL 437 437 2169 1595.774 2.151 

24 
DA 437 0 459 1687.919 2.836 

RL 437 437 2169 1687.919 2.511 

25 
DA 437 0 459 1710.927 2.808 

RL 437 437 2169 1710.927 2.394 

26 
DA 437 0 459 1702.281 2.808 

RL 437 437 2169 1702.281 2.292 

27 
DA 456 0 479 1919.174 3.257 

RL 456 456 2265 1919.174 4.889 

28 
DA 456 0 479 1919.174 2.249 

RL 456 456 2265 1919.174 2.548 

29 
DA 456 0 479 1919.174 2.062 

RL 456 456 2265 1919.174 3.519 

30 
DA 456 0 479 1919.174 2.033 

RL 456 456 2265 1919.174 2.462 

31 
DA 456 0 479 1919.174 2.371 

RL 456 456 2265 1919.174 2.085 

32 
DA 475 0 499 1919.174 1.143 

RL 457 475 2361 1919.174 4.431 

 

From the above table, we can find that DA and RL could obtain the same optimal solutions for all the different scenarios. 

Both DA and RL could obtain the optimal solutions. Figure 9 shows the comparison of computational time for DA and RL. 

The computational results of Figure 9 indicate that DA’s is more robust than the RL method in terms of computational 

time. In many mathematical models, we need to set a "Big 𝑀" (Rubin, 2011). Different 𝑀 values will incur different rounding 

errors and running times. In this paper, we also need the "Big 𝑀" to solve RL. Determining an appropriate value of 𝑀 is also 

time-consuming. In this paper, we used the same 𝑀 = 50000 for all the cases. 
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Figure 9. Comparison of computational time for DA and RL. 

 

5.5 Comparison With Different Objective Functions 

 

Inspired by this study of Huang et al. (2012a), in this section, we compare two different goals for the above-studied problem 

in terms of efficiency and fairness. 

This paper’s Goal is to minimize the maximum average distance between customers (cigarette demand villages) and the 

corresponding smart cigarette delivery locker. The objective function is Min (max
𝑖∈𝑃

{
∑ (𝑐𝑖𝑗∗𝑦𝑖𝑗)𝑗∈𝐶𝑠

∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠

}). The other Goal considered 

by the previous studies is to minimize the maximum total distance between cigarette demand villages and the corresponding 

smart cigarette delivery lockers. The objective function is Min (max
𝑖∈𝑃

{∑ 𝑐𝑖𝑗𝑗∈𝐶𝑠 ∗ 𝑦𝑖𝑗}) based on efficiency. Another goal 

considered by previous studies is to minimize the maximum distance between each cigarette demand village and the 

corresponding smart cigarette delivery locker. The objective function is Min (max
𝑖∈𝑃

{𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗}) based on fairness. 

To compare these goals, in this section, we define Goal (𝑍𝑓 ) as the model and set 𝑍𝑓  as the metric. Let 𝑍1 =

max
𝑖∈𝑃

{
∑ (𝑐𝑖𝑗∗𝑦𝑖𝑗)𝑗∈𝐶𝑠

∑ 𝑦𝑖𝑗𝑗∈𝐶𝑠

} , 𝑍2 = max
𝑖∈𝑃

{∑ 𝑐𝑖𝑗𝑗∈𝐶𝑠 ∗ 𝑦𝑖𝑗}  and 𝑍3 = max
𝑖∈𝑃

{𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗} . Note that 𝑍1  is the objective considered by this 

paper. The models are summarized as follows. 

 

Min 𝑍𝑓 (51) 

 

Subject to constraints (9)-(13). 

 

Table 7. Comparison of the optimal solutions of different objective functions. 

 

Optimal solution 
Model 

Total distance 
𝑍1 𝑍2 𝑍3 

𝑍1
∗ 1511.515∗ 4534.695 3362.366 23880.844 

𝑍2
∗ 1627.538 3810.277∗ 3255.238 23979.462 

𝑍3
∗ 2393.859 7181.815 3009.267∗ 29554.176 

*denotes the optimal solution for each row. 

 

Table 7 compares three different models in terms of different objective functions related to smart cigarette delivery 

lockers and corresponding cigarette demand villages with the same constraints. In each row of Table 7, we optimize 𝑍1, 𝑍2 

and 𝑍3, respectively. The red colored font denotes the optimal 𝑍𝑓. By using the optimal 𝑍𝑓
∗, we calculate other 𝑍𝑓′ in each 
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row, where 𝑓 ≠ 𝑓′. From Table 7, when optimizing the 𝑍1, we obtain the minimum total distance. To compare each column 

of Table 7, we define 𝐺𝑎𝑝𝑓, which is shown as follows. 

 

𝐺𝑎𝑝𝑓 =
𝑍𝑓 − 𝑍𝑓

∗

𝑍𝑓
∗ ∗ 100% (52) 

 

Table 8 shows the between 𝑍𝑓 and 𝑍𝑓
∗. From Table 8, we can find that there are two zeros in row one. 

For Table 8, compared to the objective function in this paper, the maximum distance of Z_2 and Z_3 is increased by 

19.01% and 11.73%, respectively. 

Figure 10 shows the average distance between each pickup hub and customers for different goals. The blue markers 

denote the selected pickup hub. From Figure 10, we can find that the distribution of the first column is more compact. The 

red cube in Figure 10 represents the average distance between all the pickup hubs and customers. This paper aims to have the 

minimum average value between all the pickup hubs and customers. We can find that the red marker of 𝑍1
∗ is the minimum 

among these three different goals. Figure 11 shows the optimal solutions for 𝑍1,𝑍2, and 𝑍3. 

 

Table 8. The gap value between 𝑍𝑓 and 𝑍𝑓
∗. 

 

Optimal 

solution 

𝐺𝑎𝑝𝑓 The gap in total 

distance 𝑓 = 1 𝑓 = 2 𝑓 = 3 

𝑍1
∗ 0 19.01% 11.73% 0 

𝑍2
∗ 7.68% 0 8.17% 0.41% 

𝑍3
∗ 58.37% 88.49% 0 23.76% 

 

 
 

Figure 10. Average distance between each pickup hub and customers for different goals. 
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(a)𝑍1 (b)𝑍2 

 
(c)𝑍2 

 

Figure 11. The distribution results correspond to the optimal solutions of 𝑍1,𝑍2, and 𝑍3. 
 

5.6 Comparison With the P-Median Model 

 

To validate the effectiveness of our proposed model, we compared it with the classical p-median model. The p-median model 

is one of the most widely used approaches in facility location problems, focusing on minimizing the total cost between 

facilities and demand points. However, the p-median model typically cannot handle fairness constraints directly. Therefore, 

through comparative experiments, we demonstrate the advantages of our model in terms of fairness. 

We conducted the comparative experiments using the scenario 1 dataset. The experimental evaluation metrics were set as 

follows: 

Total Cost: The sum of distances between pickup hubs and demand points. 

Fairness Index: The maximum value of the average of the distances between pickup hubs and demand points.  

Table 9 compares our proposed model and the p-median model in terms of total cost and fairness index.  

 

Table 9. The optimal solutions of this paper and the p-median model 

 

Evaluation Metrics This paper Model p-median Model Gap 

Total Cost 23880.844 20203.383 18.20% 

Fairness Index 1511.515 1912.525 26.53% 

 

  

smart cigarette delivery locker

cigarette demand village

smart cigarette delivery locker

cigarette demand village

smart cigarette delivery locker

cigarette demand village
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From Table 9, we observe the following:  

(1) Regarding total cost, the p-median model slightly outperforms our proposed model because it is specifically designed 

to achieve cost minimization. The total distance is reduced by 18.20% compared to our model. 

(2) Regarding fairness, our proposed model outperforms the p-median model, with the maximum average distance 

reduced by 26.53%. 

 

5.7 Sensitive Analysis of 𝝀 

 

The key to the Dinkelbach algorithm is to iterate and update the value of 𝜆. 𝐹(𝜆) is continuous and strictly decreasing, and 

the sequence 𝜆𝑘 is monotone decreasing (See pages 305-306 of Lev (2006)). In this section, we analyze the different values 

of 𝜆 in terms of the computational time for the Dinkelbach algorithm. Since the algorithm requires an initial 𝜆, its choice 

significantly affects the algorithm's convergence. In the following experiments, we set 𝜆 varying from 0 to 2000, using 

Scenario 1 for evaluation. Figure    shows the convergence analysis of Dinkelbach’s algorithm with different 𝜆. The gray 

line is the optimal 𝜆. 

From Figure 12, we observe that 𝜆 decreases over iterations, and the convergence rate accelerates as 𝜆  approaches the 

global optimum. Therefore, we can set the initial value of 𝜆 to improve the solution efficiency of Dinkelbach’s algorithm. 

For example, we can analyze the data by the k-means clustering algorithm to obtain an initial solution and get a 𝜆, which is 

close to the optimum. 

 
 

Figure 12. Convergence analysis of Dinkelbach’s algorithm with different 𝜆. 

 

Figure 12 shows the computational time and maximum iterations for each 𝜆. From Figure 12, we can find that 𝜆 closing 

to the optimal 𝜆 has less number of maximum iterations. 

Figure 13 visually shows the effect of 𝜆 on operating efficiency. It shows the initial value of lambda as the horizontal 

axis (0-1000), the number of iterations (0-16 times), and the running time (0-10 seconds) as the vertical axis. The bar chart 

indicates the running time, and the line chart reflects the operational efficiency. 
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Figure 13. Computational time and maximum iterations for each λ. 

 

5.8 Analysis Of The Number Of Pickup Stations 

 

To illustrate the impacts of different numbers of demand points each pickup station served, this section compares 

different numbers of pickup stations for computational results. As shown in Table 10, the optimal solution becomes better 

with the value of 𝑝 increasing, which demonstrates the advantages of more pickup stations. However, the optimal solutions 

are the same when p equals 4, 5, 6, 7, and 8. 

 

Table 10. Optimal solutions for different numbers of pickup stations. 

 

Number of pickup stations 

(𝑝) 
3 4 5 6 7 8 

Optimal solution 1511.515 1430.041 1430.041 1430.041 1430.041 1430.041 

 

Figure 14 shows the distribution results of different numbers of pickup stations for scenario 1. The dotted polygon 

denotes the maximum average distance between customers and pickup hubs in Figure 14. From Figure 14, we can find that 

the maximum average distance between customers and pickup hubs is the same for 𝑝, equaling 4, 5, 6, 7, and 8. 

 

   
(a) Number 3 (b) Number 4 

smart cigarette delivery locker

cigarette demand village

smart cigarette delivery locker

cigarette demand village
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(c) Number 5 (d) Number 6 

   
(e) Number 7 (f) Number 8 

 

Figure 14. The distribution results of the different numbers of pickup stations for scenario 1. 

 

5.9 Optimal Solutions For All Scenarios 

 

This section compares the optimal solutions for all scenarios. Figure 15 shows the optimal solution for each scenario. Due to 

the random prospective cigarette demand villages, this paper chooses the maximum of the optimal solution of all scenarios 

instead of one scenario. From Figure 15, the worst solution is 1919.174 with corresponding scenarios 27, 28, 29, 30, 31, and 

32. 

Furthermore, to illustrate the details of different scenarios, this paper calculates the average distance of each pickup 

station for all Scenarios. As shown in  Figure 16, with the prospective cigarette demand villages changing, the average 

distance of each pickup station is changing. 

 

smart cigarette delivery locker

cigarette demand village

smart cigarette delivery locker

cigarette demand village

smart cigarette delivery locker

cigarette demand village

smart cigarette delivery locker

cigarette demand village
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Figure 15. The optimal solution for each scenario. 

 

 
 

Figure 16. The average distance of each pickup station for all scenarios. 

 

5.10 Management Insights 

 

This paper investigates the pickup hub location problem considering prospective customers. Two scenario-based solution 

methods are proposed for the studied problem. Even though providing doorstep service will increase convenience for 
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customers, it will increase the transportation cost for logistics companies. If the logistics companies increase the delivery fee, 

they will experience customer loss. The rural areas have lower average incomes, and the local government wants to promote 

the rural economy. To provide doorstep delivery service in rural areas, the local government will provide subsidies to the 

logistics companies that provide doorstep delivery service at the specified pickup hubs in rural areas. To ensure equality in 

accessing pickup hubs, the local government could adopt the model proposed by this paper. This paper could help the local 

government determine the pickup hub’s location. 

 

6. CONCLUSIONS 
 

In rural areas of China, most logistics companies do not provide doorstep delivery services, with the exception of  China 

Postal Express & Logistics. Without using this service, customers need to go to the nearest pickup hub to get their orders 

when they buy goods online. Now, even the nearest pickup hub is very far away from the customer’s home in rural areas. To 

improve delivery efficiency, postal services could install pickup hubs near villages in rural areas. Popular local facilities, such 

as florists, coffee shops, clothing boutiques, gas stations, plumbers, and hair salons, can be considered as the candidate pickup 

hubs. With the limited budget, the local government could set up pickup hubs for all the villages in rural areas. To ensure the 

equality of accessing the pickup hubs for customers to pick up their orders, at most three Villages must share a pickup hub. 

Under the above background and assumptions, this paper studied the pickup hub location problem with prospective customers 

considering equality and efficiency. A nonlinear fractional programming model is developed to formulate the studied 

problem, and a linearization model is also introduced to ensure that mixed integer solvers, such as CPLEX, can solve the 

studied problem. A scenario-based Dinkelbach’s algorithm and scenario-based mathematical formulation methods are 

proposed to solve the problem being studied. A case study is conducted to illustrate the proposed model and verify the 

efficiency of the proposed solution methods. 

Through case analysis, this paper’s location selection scheme can significantly reduce the service gaps between different 

villages. The case study shows that the maximum distance for this paper’s fairness goal is minimal compared to other 

objectives. Therefore, the pickup hub location optimization based on distance equity in this paper not only improves the 

accessibility of services in rural areas but also promotes the reasonable allocation of social resources. This paper’s conclusion 

highlights the importance of equity in policy-making and service delivery, especially when it comes to underserving 

vulnerable groups. This paper ensures that every village has equal access to essential services, which effectively reduces 

regional disparities and improves overall social well-being. In addition, the study provides a practical reference for local 

governments and related agencies to help them achieve a more balanced service layout in the context of limited resources. 

Future research could explore the following directions: (1) We can design meta-heuristic methods for solving very large-

scale problems.     The customer’s demand could be considered when formulating a model with demand uncertainty. (3) 

This paper could also be extended to the last-mile distribution network design. 
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APPENDIX A: Geographic location of pickup hubs  
 

Table 11. Geographic location information of the determined and prospective customers. 

 

 Pickup hub Longitude Latitude 

Determined location 

Sifangjing Community 111.352199 25.27868 

Phoenix Community 111.353295 25.284436 

Kirin Community 111.351517 25.273855 

Yongxin Community 111.36571 25.26968 

Yunshan Community 111.294742 25.275575 

Huigang Village 111.306678 25.24259 

Pipajing 111.882707 26.466784 

Xiangguang Village 111.297086 25.291244 

Xiajietou Village 111.268837 25.229324 

Hejiawan Village 111.27729 25.223439 

Chetian Village 111.268834 25.283844 

Guzhaixin Village 111.256331 25.259256 

Shijiao Village 111.314336 25.295974 

Tangbei Village 111.314213 25.311471 

Gongyeyuanshe Village 111.380074 25.233668 

Tuanjie Village 111.281848 25.243394 

Jielongqiao 111.319993 25.281673 

Bauhinia Village 111.303632 25.213593 

Hexing Village 111.250185 25.214534 

Prospective location 

Eshi Village 111.294376 25.232156 

Wuai Village 111.329015 25.244968 

Shangyang Village 111.278135 25.209797 

Liandong Village 111.259235 25.279671 

Tangzixia Village 111.256073 25.240392 

 


