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A B S T R A C T

Fresh production packing is very essential in green logistics. A fresh product usually can be parceled up into 
different three-dimensional sizes. This paper studies the hybrid variable of fresh product packing into fixed-size 
bins, where part of the product can be parceled into different three-dimensional sizes. A nonlinear mathematical 
model is proposed to formulate the studied problem, and a piecewise linearization approximation method is used 
to linearize it. A three-phase computational intelligence framework integrated with variable neighbourhood 
search is proposed to solve large-scale studied problems. The proposed computational intelligence framework 
can readily adopt any computational intelligence method. This paper adopts a genetic algorithm and harmony 
search to implement the proposed framework. This paper conducts various experiments to verify the perfor-
mance of the proposed solution framework. The experimental results showed the effectiveness and efficiency of 
the proposed solution framework.

1. Introduction

Fresh products, encompassing perishable goods such as recently 
harvested fruits, vegetables, and freshly processed meats, require 
specialized packaging solutions to maintain quality and integrity. 
Common packaging materials, including plastic bags, corrugated card-
board boxes, molded foam trays, cling films, and vacuum-sealed con-
tainers, protect against physical damage and environmental factors 
during handling, transportation, and storage. Effective packaging design 
plays a critical role in preserving product freshness. For instance, fragile 
items like eggs necessitate customized solutions such as compartmen-
talized pulp cartons that provide individual cushioning to prevent shell 
fractures. The geometric challenges of packaging irregular polyhedral- 
shaped produce (e.g., broccoli, star-fruits) require flexible three- 
dimensional packaging configurations that adapt to product 
morphology while maintaining structural stability.

Fig. 1 demonstrates the dimensional variability in egg packaging 
through different carton designs. This illustrates how identical quanti-
ties of products can be accommodated in varying spatial arrangements 
through strategic container selection. Such flexibility in packaging ge-
ometry enables optimized space utilization during logistics operations 
while ensuring product protection. The choice of appropriate packaging 
configurations must balance protection requirements with 

transportation efficiency and material sustainability considerations.
This paper studies the hybrid variable of the fresh product packing 

into fixed-size bins problem. In the studied problem, there is a set of 
fresh and non-fresh products. Only parts of the fresh product can be 
parceled into variable three-dimensional sizes. The remainder of the 
products are parceled up into fixed three-dimensional sizes. All the 
products need to be packed into a set of three-dimensional bins. The goal 
of the studied problem is to maximize the utilization of three- 
dimensional bins by stratifying the constraints of freshness. The con-
tributions of this paper are summarized as follows. 

(1) This paper first studied the hybrid variable of the fresh product 
packing into fixed-size bins problem that allows part of the fresh 
product to adjust its packing size. This paper adopts living fish 
packing as a case study. A nonlinear integer mathematical model 
is proposed to formulate the fresh fish packing problem, consid-
ering the oxygen requirement of living fish and activity space 
during transportation.

(2) The nonlinear mathematical model is complex to solve by both 
commercial and non-commercial mixed integer programming 
solvers, including Cplex, Gurobi, and SCIP. A piecewise lineari-
zation approximation method makes the nonlinear mathematical 
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model solvable. The developed linear mixed integer program-
ming model provides optimal solutions for small-scale problems.

(3) To solve large-scale problems, this paper decomposes the studied 
problem into three subproblems. A three-phase computational 
intelligence framework is proposed by integrating variable 
neighborhood search methods into the three subproblems. This 
paper adopts genetic algorithms and harmony search algorithms 
as examples of computational intelligence methods to implement 
the proposed framework. This paper conducts various experi-
ments to verify the proposed solution framework. The experiment 
results show the outperformance of the proposed solution 
framework compared with the mathematical models

The remainder of this paper is organized as follows. Section 2 shows 
the literature review. The proposed mathematical models are shown in 
Section 3. Section 4 presents the proposed solution method. The 
experimental results are shown in Section 5. Finally, the conclusions are 
given.

2. Literature review

The Bin packing problem is a classic NP-hard combinatorial opti-
mization problem (Coffman et al., 1980), which is widely used in lo-
gistics, transportation systems, and production systems. The mixed bin 
packing problem of three-dimensional variable-size goods studied in this 
paper is a three-dimensional bin packing problem(3D-BPP). The bin 
packing problem explores how to place a set of strongly or weakly 
heterogeneous goods into one or a group of strongly or weakly hetero-
geneous large containers to maximize the loaded items (or value) or 
minimize the number of containers used. In general, the research can be 
divided into two levels, one of which is the extension of the application 
of the bin packing problem, and the other is the research on the algo-
rithms of the three-dimensional bin packing problem.

2.1. Application research on the three-dimensional bin packing problem

Many scholars have proposed different detailed loading scenarios for 
the Loading-related constraints based on the actual cargo loading pro-
cess. Alonso et al., 2019a propose a two-stage pallet loading problem 
that considers multiple constraints such as geometry, weight, and pro-
hibition of gaps between pallets (to prevent goods from moving). 
Considering the above, stability constraints and periodic constraints for 

loading are considered (Alonso et al., 2019b). Sheng et al. (2017) and 
Ekici (2021) explore different forms of full loading constraints. Ac-
cording to the machine loading scenario, Zhao et al. (2021) study the 
online 3D-BPP. The above researches provide a comprehensive theo-
retical framework for different actual loading scenarios, focusing on the 
industrial field and route arrangement, simplifying cargo loading 
planning.

Regarding the goods-related constraints, Ren et al. (2011) consid-
ered the cargo loading priority. A 3D-BPP with time windows is studied 
by Liu et al. (2021). A complex 3D-BPP involving multiple goods is 
proposed by Ceschia and Schaerf (2011). Zhao et al. (2022) take into 
account the effect of deformation of compressible cargo, but it is only 
considered a weak constraint in the loading process. Regarding the 
packaging and loading of a single type of goods, Kilincci and Medinoglu 
(2021) study the packaging and loading of a single type of cargo. 
However, few studies focus on the impact of changing cargo size on 
improving loading rate and the mixed loading of variable-size and fixed- 
size goods.

Regarding container-related constraints, Paquay et al. (2014) pro-
pose a loading problem for boxes with special shapes based on air 
transportation to meet the special needs of air transportation. Que et al. 
(2023) discuss the 3D-BPP with adjustable container height, providing 
new ideas for packing optimization in scenarios with variable container 
sizes. Ananno and Ribeiro (2024) focus on the 3D-BPP of multiple 
containers, take into account constraints such as container-full-shipment 
to minimize the total number of containers used, and finally achieve the 
complete palletizing of the order. However, no in-depth research has 
been conducted on the compatibility of containers of different sizes with 
various types of goods.

Regarding the study of multi-objective 3D-BPP, Gendreau et al. 
(2006) were the first to combine the 3D-BPP and path planning prob-
lems. Ceschia and Schaerf (2013) propose a multi-objective function 
with four parts and assigned weights. Erbayrak et al. (2021) study the 
multi-objective 3D-BPP, aiming to minimize the number of containers 
used and maximize the family unity ratio, providing a new direction for 
the study of cargo correlation in the packing problem. However, there is 
a lack of targeted research on the needs of special fields, such as fresh 
food, in terms of multi-objective trade-offs.

2.2. Algorithm of the three-dimensional bin packing problem

In the literature on using exact algorithms to solve the 3D-BPP, 

Fig. 1. An example of fresh egg packing into different types of cartons.
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usually, a mathematical model for the 3D-BPP is built first, and then the 
solver (e. g., CPLEX, LINGO, etc.) will be used to solve the model. 
Junqueira et al. (2012) construct a mixed integer linear programming 
model and solve it with the CPLEX solver. Chen et al. (1995) propose a 
zero-one mixed integer programming model. Nascimento et al. (2021)
model common constraints. Fleszar (2022) proposes the branch and 
bound method. Zhang et al. (2020) introduce the branch and price al-
gorithm. Hifi et al. (2010) improve the model relaxation lower bound 
through effective inequalities. However, the exact algorithm is ineffi-
cient for solving large-scale problems, and it isn’t easy to fully meet the 
strict assumptions of the model in actual application scenarios.

The constructive heuristic algorithm can quickly provide an 
approximate solution to the problem through the designed placement 
rules. The placement rules are designed with concepts such as “wall- 
building”(George & Robinson, 1980; Kang et al., 2024), “layer-building” 
(Saraiva et al., 2015), “block-building” (Zhu et al., 2012), and “tower- 
building”. There are also extreme point methods (Crainic et al., 2008) 
and Deep Bottom Left with Fill strategy (Korhan & Mustafa, 2004). The 
construction heuristic algorithm can quickly provide approximate so-
lutions, improving the packing efficiency and solution quality, but its 
adaptability to complex constraints is limited.

Deep reinforcement learning algorithms (Jiang et al., 2021; Que 
et al., 2023; Wang et al., 2025) and local search algorithms (T. et al., 
2003; Faroe et al., 2003) are common meta-heuristic algorithms. The 
calculation time for meta-heuristic algorithms is relatively long, and it is 
often combined with a construction heuristic algorithm to form a hybrid 
heuristic algorithm to improve the overall performance and increase the 
convergence speed and performance of the algorithm. Moon et al. 
(2013) combine multiple algorithms to solve the 3D-BPP, considering 
load balance, effectively combining the convergence advantage of the 
greedy algorithm with the optimization advantage of the ant colony 
algorithm. Zhang et al. (2024) propose a method combining a generative 
adversarial network and a genetic algorithm to solve the 3D-BPP, which 
proves to generate high-quality solutions and has excellent robustness 
and effectiveness in 3D-BPP solving, but the method relies upon the 
quality of the initial solution.

This paper takes the packaging and loading of live fish in fresh cold 
chain logistics as a scenario and proposes a three-dimensional variable- 
size mixed cargo packing problem. A linear mixed integer programming 
model is constructed, and a variable-size optimization algorithm is 
designed. The algorithm contains three stages: construction, search, and 
improvement. The article is dedicated to providing logistics companies 
with reasonable solutions to improve container loading rates and pro-
mote digital development.

3. Mathematical model

This section introduces the problem description and mathematical 
model.

3.1. Problem descriptions

Given a set of cargo I and I =
{

Ĩ, I
}

, ̃I denotes the set of cargo with 

variable size and I denotes the set of cargo with fixed size, where |I| = k, 
⃒
⃒
⃒̃I
⃒
⃒
⃒ = n and |I| = k − n. (wi, hi, di) represents the width, height, and height 

of the cargo i, respectively. vi denotes the volume of cargo i. If i ∈ I, wi, hi 

and di are constant value. If i ∈ Ĩ, hi and di are variable with the con-
straints that hLB

i ≤ hi ≤ hUB
i and dLB

i ≤ di ≤ dUB
i are hold. All the cargo 

will be packed into a container C with a length of W, a width of H, a 
height of D. VC denotes the volume of container C. This paper aims to 
maximize the utilization of container space, taking into account many 
constraints in the actual loading process, and aims to provide logistics 
companies with an optimized cargo transportation packaging and 
container loading solution. The parameters and decision variables are 

shown in Table 1.
The assumptions used in this paper are summarized as follows: 

1) All cargo to be loaded is packed as regular cuboids. The shape of the 
cargo is divided into two types: regular and irregular. Living fish 
were originally irregularly shaped cargo, but they became regular 
blocks after packaging. A subset of cargo is variable.

2) In this paper, the packing for transporting live fish was adjusted to 
increase the container loading rate, without considering the impact 
of different transport packaging schemes on the survival rate of live 
fish. Therefore, it is assumed that if the live fish have a certain 
amount of space to move around in the bag, the impact of the 
transportation packaging scheme on the survival rate of the fish is 
not considered in this paper.

3) In the actual packaging process of live fish, the size of the packaging 
bag is usually chosen according to the length of the fish. Therefore, 
the length of the transport package changes less than the width and 
height. Thus, when adjusting the transport package of live fish, this 
paper assumes that the length of the goods is fixed, and only changes 
the height and width of the cargo. Fig. 2 shows the Living fish 
packing process.

4) The container and the cargo both have a certain weight-bearing ca-
pacity. This article assumes that the total weight of the cargo placed 
in the container is within its bearing range and that no squeezing or 
deformation occurs between the cargo. Regardless of the weight limit 
constraints, cargo weight-bearing constraints during loading are not 
considered.

5) The cost of customized packaging and packaging materials is not 
considered. Due to the scale effect, this article assumes that the lo-
gistics company’s live fish packing cost is lower than that of the 
shipper; the cost of customized packaging is not considered.

Table 1 
Symbols and decision variables.

Type Symbol The meaning of the parameters

Parameter C Container
I A set of cargo I,whereI =

{
Ĩ, I

}
and |I| = k

Ĩ The set of cargo with variable size, where 
⃒
⃒
⃒̃I
⃒
⃒
⃒ = n

I The set of cargo with fixed size, where |I| = k − n
i Index of cargo, where i ∈ I
j Index of cargo, where j ∈ I
(W,H,D) The length, width and height of the container
(wi,hi,

di)

The length, width and height of the cargo i

VC The volume of container C
vi The volume of the cargo i
n Number of variable-size goods to be loaded
k Total quantity of goods to be loaded
hLB

i ,hUB
i The lower and upper limits of the height dimensional 

changes of cargo i
dLB

i ,dUB
i The lower and upper limits of the width dimensional 

changes of cargo i
m The number of function segment intervals

Decision 
variables

(xi,yi,zi) The coordinates of the lower left rear corner of cargo i 
in the coordinate system

hʹ
i Width after the size of cargo i changes

dʹ
i Height after the size of cargo i changes

si 1 If cargo i is placed in the container, then it is 1; 
0 otherwise.

lij 1 if cargo i is to the left of cargo j; 0 otherwise
rij 1 if cargo i is to the right of cargo j; 0 otherwise
uij 1 if cargo i is below cargo j; 0 otherwise
oij 1 if cargo i is above cargo j; 0 otherwise
bij 1 if cargo i is behind cargo j; 0 otherwise
fij 1 if cargo i is in front of cargo j; 0 otherwise
αij The jth breakpoint of the continuous variable pi

βij The jth breakpoint of the continuous variable qi
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3.2. Nonlinear mixed integer programming model

This paper aims to maximize the utilization of container space, and 
the corresponding objective function can be expressed as: 

PNMax
∑n

i=1visi

VC
(1) 

3.2.1. Cargo geometric constraints
Obviously, the cargo cannot exceed or overlap with the container, so 

the cargo location coordinates must satisfy the following constraints: 
⎧
⎨

⎩

0 ≤ xi ≤ W − wi
0 ≤ yi ≤ H − hi
0 ≤ zi ≤ D − di.

(2) 

3.2.2. Constraints on the non-overlapping of cargo
Here, six binary decision variables represent the positional re-

lationships between the goods: left, right, top, bottom, front, and back, 
where i < j. To ensure that cargo i and cargo j placed in a container do 
not overlap or intersect, the following relationship must exist (Egeblad 
and Pisinger, 2009). 

lij+rij + uij + oij + bij + fij ≥ 1 (3) 

This constraint states that when both cargo i as well as cargo j are 
placed in a container(si = sj = 1), the positional relationship between 
them must be front or rear, left or right, top or bottom, and the positional 
relation between the goods must include one or more items. At the same 
time, the coordinates of goods i and j must satisfy the following 
inequalities: 

lij = 1⇒ xi + wi ≤ xj, rij = 1⇒ xj + wj ≤ xi
uij = 1⇒ yi + hi ≤ yj, oij = 1⇒ yj + hj ≤ yi
bij = 1⇒ zi + di ≤ zj, fij = 1⇒ zj + dj ≤ zi

(4) 

3.2.3. Constraints on the constant volume of cargo
hí, dí are the width and height of the cargo i after the size change. To 

ensure that the volume of the cargo remains unchanged after the size 
change, the height and width after the change must meet the following 
requirements: 

vi

wi
= hʹ

i × dʹ
i = hi × di (5) 

In the model assumptions, this paper assumes that the length of the 
variable-size cargo is fixed, and the width and height are variable. Here, 
it is necessary to constrain the range of changes in the size of the goods to 
ensure that the live fish have a certain space to move. First, the width 
and height range depend on the size of the side of the cargo. The cargo 
size cannot exceed the side area, which determines the upper limit of the 
contents. At the same time, it is also, to some extent, related to the size of 
the live fish. The changed packaging must completely wrap the goods, 
which determines the lower limit of the size change. Fig. 3 is a simple 
schematic diagram of size change.

To facilitate calculation, it is assumed that the length and width of 
fish i are hi/2 and di/2. Therefore, the lower limit of hí and dí are hi/2 and 
hi/2. Accordingly, the upper limit is the side area, so the range of cargo 

Fig. 2. Living fish packing process.

Fig. 3. Schematic diagram of dimensional change.
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size variation can be defined as: 

hLB
i = hi/2, hUB

i = hi × di (6) 

dLB
i = hi/2, dUB

i = hi × di 

The mixed integer programming model proposed in this paper is an 
extended model of the traditional three-dimensional container model. 
The model introduces the constraint of constant volume of cargo pack-
aging (5) to ensure that the volume of the box remains constant after 
changes. Eq. (5) is a nonlinear constraint, which cannot be directly 
modelled and solved by either commercial mixed integer programming 
solvers (such as CPLEX) or open source solvers (such as CBC), the model 
needs to use a linearization method to transform the nonlinear con-
straints into linear constraints before the mixed integer programming 
solvers can perform modelling and solving.

3.3. Linear mixed integer programming model

As mentioned before, PN is a nonlinear mixed integer programming 
model. This subsection adopts a piecewise linearization approximation 
(PLA) method to linearize it. In this subsection, we introduce two 
auxiliary continuous variables, pi and qi to transform the constraints.

Let pi = (hí + dí)/2, qi =
(
hí − dí

)
/2, then p2

i − q2
i = hí × dí, where 

hí = (pi +qi), dí = (pi − qi). hí ∈ (hLB
i , hUB

i ) and dí ∈ (dLB
i , dUB

i ) are hold. 
The upper and lower limits of pi and qi are shown as follows. 

1
2
(hLB

i + dLB
i ) ≤ pi ≤

1
2
(hUB

i + dUB
i ) (7) 

1
2
(hLB

i − dUB
i ) ≤ qi ≤

1
2
(hUB

i − dLB
i ) (8) 

The PLA method is then used to linearize the nonlinear constraints:
p2

i is segmented, that is, along the pi-axis, the interval is divided into 
m intervals [αi0,⋯.αim] of equal length. 

pi ∈
(
(hLB

i + dLB
i )/2, (hUB

i + dUB
i )/2

)
, there are αi0 = (hLB

i + dLB
i )/

2 and αim = (hUB
i + dUB

i )/2. Let θαi =
(
(hUB

i + dUB
i )/2 − (hLB

i + dLB
i )/2

)
/m, 

then αit and βit can be defined as follow. 

αit = αi0 +(t − 1)×θαi, ∀t = 1,⋯,m (9) 

βit = βi0 +(t − 1)×θβi, ∀t = 1,⋯,m (10) 

Then the nonlinear constraints (5) can be linearized as follows. 

∑m

t=0
αitεit = pi∀i = 1,⋯, n (11) 

∑m

t=0
εit = 1∀i = 1,⋯, n (12) 

εi0 ≤ ωi0∀i = 1,⋯, n (13) 

εit ≤ ωi,t− 1 +ωi,t∀t = 1,⋯,m − 1 (14) 

εi,m ≤ ωi,m− 1∀i = 1,⋯, n; t = 1,⋯,m (15) 

∑m− 1

t=0
ωit = 1 (16) 

∑m

t=0
βitδit = qi∀i = 1,⋯, n (17) 

∑m

t=0
δit = 1∀i = 1,⋯, n (18) 

δi0 ≤ φi0∀i = 1,⋯, n (19) 

δit ≤ φi,t− 1 +φi,t∀t = 1,⋯,m − 1 (20) 

δi,m ≤ φi,m− 1∀i = 1,⋯, n (21) 

∑m− 1

t=0
φit = 1∀i = 1,⋯, n (22) 

∑m

t=0
α2

itεit −
∑m

t=0
β2

itδit = hi × di∀i = 1,⋯, n (23) 

δit, εit ≥ 0,φit ,ωit ∈ {0,1}∀t = 0,⋯, n − 1 (24) 

Finally, the linearized mixed integer programming model could be 
obtained as follows. 

Max
∑k

i=1visi

Vc
(25) 

lij+rij + uij + oij + bij + fij ≥ si + sj − 1 ∀i, j = 1,⋯, k (26) 

xi − xj +Wlij ≤ W − wi∀i, j = 1,⋯, k (27) 

xj − xi +Wrij ≤ W − wj∀i, j = 1,⋯, k (28) 

yi − yj +Huij ≤ H − (pi + qi)∀i, j = 1,⋯, k (29) 

yj − yi +Hoij ≤ H −
(

pj + qj

)
∀i, j = 1,⋯, k (30) 

zi − zj +Dbij ≤ D − (pi − qi)∀i, j = 1,⋯, k (31) 

zj − zi +Dfij ≤ D −
(

pj − qj

)
∀i, j = 1,⋯, k (32) 

0 ≤ xi ≤ W − wi∀i = 1,⋯, k (33) 

0 ≤ yi ≤ H − (pi + qi)∀i = 1,⋯, k (34) 

0 ≤ zi ≤ D − (pi − qi)∀i = 1,⋯, k (35) 

pi = (hi + di)∀i = n+1, ..k (36) 

qi = (hi − di)∀i = n+1, ..k (37) 

∑m

t=0
αitεit = pi∀i = 1,⋯, n (38) 

∑m

t=0
εit = 1∀i = 1,⋯, n (39) 

εi0 ≤ ωi0∀i = 1,⋯, n (40) 

εit ≤ ωi,t− 1 +ωi,t∀t = 1,⋯,m − 1 (41) 

εi,m ≤ ωi,m− 1∀i = 1,⋯, n (42) 

∑m− 1

t=0
ωit = 1∀i = 1,⋯, n (43) 

∑m

t=0
βitδit = qi∀i = 1,⋯, n (44) 

∑m

t=0
δit = 1∀i = 1,⋯, n (45) 
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δi0 ≤ φi0∀i = 1,⋯, n (46) 

δit ≤ φi,t− 1 +φi,t∀t = 1,⋯,m − 1 (47) 

δi,m ≤ φi,m− 1∀i = 1,⋯, n (48) 

∑m− 1

t=0
φit = 1∀i = 1,⋯, n (49) 

∑m

t=0
α2

itεit −
∑m

t=0
β2

itδit = hi × di∀i = 1,⋯, n (50) 

1
2
(hLB

i + dLB
i ) ≤ pi ≤

1
2
(hUB

i + dUB
i )∀i = 1,⋯, n (51) 

1
2
(hLB

i − dUB
i ) ≤ qi ≤

1
2
(hUB

i − dLB
i )∀i = 1,⋯, n (52) 

lij, rij, uij, oij, bij, fij ∈ {0,1}∀i, j = 1,⋯, k (53) 

si ∈ {0,1}∀i = 1,⋯, k (54) 

δit, εit ≥ 0,φit,ωit ∈ {0,1}∀t = 0,⋯, n − 1 (55) 

xi, yi, zi ≥ 0∀i = 1,⋯, n (56) 

In the model, the formula (25) is the objective function, maximizing 
the sum of the volumes of goods placed in the container. The formula 
(26) ~ (32) means that there is no overlap between the goods placed in 
the container; (33)–(35) indicates that the goods are entirely placed in 
the container and there is no overlapping with the container; Equations 
(36)–(52) are a linearized representation of the constraint (5), which 
introduces 2mn binary decision variables and 2 n(m+1) continuous 
variables(εit , δit) to ensure that the cargo volume after the change is 
constant; The formulas (53)–(56) represent decision variable 
constraints.

The model is a mixed integer programming model whose complexity 
is defined by the quantity of goods, the quantity of goods with variable 
sizes, and the number of segments in the linearization process. There are 
6k2 +k+4mn binary decision variables and 3k+2mn continuous vari-
ables.

4. Solution framework

The above proposed linear mixed integer programming model could 
be solved by solvers for small-scale problems. For large-scale problems, a 
more effective method should be designed. Many previous studies have 
used computational intelligence methods to solve complex combinato-
rial problems (Zhou et al., 2025). The problem studied is more complex 
to solve than the previous 3D-BPP. To solve the studied problem, this 
paper decomposes it into three subproblems: the construction stage, the 
search stage, and the local search stage. The following content in-
troduces the proposed solution framework (see Fig. 4).

4.1. Construction stage

In the construction stage, the cargo loading sequence is given. This 
stage aims to load the cargo into the given bin according to the given 
sequence. In this paper, there are two types of cargoes. We first load the 
fixed-size cargoes. Then, we load the variable-sized cargoes. Deepest 
Bottom Left with Fill (DBLF), which was proposed by Korhan and 
Mustafa (2004), is adopted for the fixed-size cargoes. After loading the 
fixed-size cargoes, we will collect the cargoes that have been placed (IP). 
The set of potential positions (List PP) and a collection of remaining 
space (List MS). The set of variable-size goods that have not yet been 
placed is I, where |I| = n. The following algorithm introduces the 
method for loading variable-sized cargoes.

Algorithm 1:Size change algorithm

Input: IP, List PP and List MS
1: for i = 1 to n do
2: for j = 1 to |MS| do
3: if max vj > vi and max vj < vfit then
4:Vfit = max vj

5 fitness point = j
6:wmax = max wj

7:hmax = max hj

8: dmax = max dj

9: end if
10: end for
11: if hi > hmax then
12: hi = hmax

13: di =
vi

wihi
14: end if

(continued on next page)

Fig. 4. The proposed solution framework.
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(continued )

Algorithm 1:Size change algorithm

15: if di > dmaxdi > dmax then
16: di = dmax

17: hi =
vi

widi
18: end if
19: if cargo i can be placed at point j then
20: place cargo i at point j
21: update List PP and List MS by DBLF
22: end if
23: end for
24: end

In the above algorithm, Vfit is the volume of the maximum remaining 
space at the optimal placement point. We assume that Vfit = M, where M 
is the maximum value. max vj represents the volume of the remaining 
space, where maxvj = maxwj × maxhj × max dj.

A construction heuristic algorithm based on size change is designed 
to combine the above-mentioned size change scheme with the DBLF 
loading strategy. First, the goods are loaded in sequence according to the 
given loading order using the DBLF loading strategy. After the first 
round of packing is completed, the second round of packing is carried 
out, that is, the size of the unloaded variable-length goods is changed in 
turn and then packed. The algorithm pseudo code is shown in algorithm 
2.

Algorithm 2:Packing Strategy Based on Size Variation

Input: List PP
1: for i = 1 to n do
2: for j = 1 to |PP|
3: if goods i can be placed at potential placement point j then
4: the goods i will be placed at the potential place j
5: update List PP with DBLF
6: break
7: end if
8: end for
9: end for
10: update the collection of goods with variable sizes that are not included I
11: for i = 1 to n do
12: if cargo i is a variable-size cargo and is not placed in container C then
13: the size will be changed with algorithm 1
14: break
15: end if
16: end for
17: end

4.2. Search stage

In the construction stage, we will generate a loading configuration by 
using the given loading sequence. By using the configuration generated 
by the construction, we can calculate the objective function. Thus, we 
can evaluate the fitness of any loading sequence. In this subsection, two 
computational intelligence methods are introduced, which are shown 
below.

4.2.1. Genetic algorithm
The following contents introduce the core operation in genetic al-

gorithm design.

4.2.1.1. Encoding and decoding. This paper uses a vector of integers to 
denote the loading sequences, which is the encoding of the genetic al-
gorithm design. Algorithm 2 is adopted as the decoding method to 
calculate the objective function.

4.2.1.2. Hybrid population initialization. This paper adopts the random 
and probability-based methods to initialize the population. Random 
initialization is a pure random method to generate an integer vector, and 

probability-based initialization methods are also random initialization 
methods, in which the cargo volume is adopted as the probability for 
generating the loading sequence.

4.2.1.3. Genetic operation. In parent selection, the roulette wheel 
method is adopted. In crossover operation, one-point and two-point 
crossover are adopted (see Fig. 5).

Gene transposition is adopted as the mutation operation. Repair 
operation is shown in Fig. 6.

4.2.2. Harmony search
We adopt a random key encoding and decoding in the harmony 

search algorithm design to represent the harmony memory. Fig. 7 shows 
an example of the harmony encoding and decoding method.

In the random key encoding and decoding method adopted in this 
paper, the element of harmony memory is a float number. HM can be 
defined as follows. 

HM =

⎡

⎢
⎣

X1

X2

⋮

XHMS

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
1x1

2⋯x1
k |f(X

1)

x2
1x2

2⋯x2
k |f(X

2)

⋮
xHMS

1 xHMS
2 ⋯xHMS

k |f(XHMS)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(57) 

Thus, we could use the following two equations to generate a new 
element of the harmony memory for both xnew

i from and not from the 
current HM, respectively. 

xnew
i ←

{
xnew

i ∈ {x1
i , x

2
i , ..., x

HMS
i }

xnew
i ∈ (xL

i , x
U
i )

,HMCR (58) 

xnew
i ←

{
xnew

i ± bw*rand
xnew

i
,PAR,1 − PAR (59) 

rand is a random floating number generator between 0 and 1. 
xnew

i = xnew
i +bw*rand when rand < 0.5, and xnew

i = xnew
i − bw*rand when 

rand ≥ 0. 5. The fine-turned variable xnew
i still needs to satisfy xnew

i ∈ (xL
i ,

xU
i ).

4.3. Local search stage

In the local search stage, this paper designs variable neighbourhood 
search methods as a local search to improve a given solution.

4.3.1. Neighbourhood design
Based on the neighbourhood action, we need to design the neigh-

bourhood structure Nk of a given solution, where k denotes the kth 

neighborhood. In this paper, the maximum value of k is 4. The following 
contents introduce the N1,N2,N3 and N4. 

(1) Neighbourhood structure N1: N1 is generated by a two-point swap 
operation, which is similar to the two-point swap mutation 
operation.

(2) Neighbourhood structure N2: N2 is generated by the basis of 
fragment flipping, which is similar to the inversion mutation in 
genetic algorithms. A subset of the loading sequence is chosen, 
and then we invert the entire string in the subset.

(3) Neighbourhood structure N3: N3 is generated by a random 
insertion operation, in which a randomly selected loading 
sequence is selected and randomly inserted into a random 
position.

(4) Neighbourhood structure N4: N4 is generated by rearrangement 
operation. In the rearrangement operation, we first select several 
piece loading sequences and insert them into the head of the 
loading sequence.
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Fig. 8 shows four examples of N1,N2,N3 and N4.

4.3.2. Search strategies
In this paper, two search strategies are adopted, which are variable 

neighborhood descent (VND) and variable neighbourhood search (VNS).

5. Experimental results

5.1. Experimental environment

The experimental environments are as follows: CPU is Intel (R) Core 

(TM) i5-12500H @2.50 GHz, memory is 32 GB, and the operating sys-
tem is Windows 11. In this paper, IBM ILOG CPLEX 12.6 is used to solve 
the mixed integer programming model. The hybrid heuristic algorithm 
is written in C++, and the code is compiled through Dev C++ 5.11 with 
the GCC compiler.

5.2. Benchmark data set

Through the investigation of the actual transportation process of live 
fish in a logistics enterprise, it is found that live fish are often packed in 
water bags and transported in cartons. According to the classic test data 
set of the 3D packing problem, two groups of example data of different 
sizes are set up. In the small-scale test case, 10 cargoes of different sizes 
are randomly generated to test the performance of the mixed integer 
programming model and the heuristic algorithm. The dimensions of 
container C in the case are W = 569,H = 213,D = 218, W = 569,H =

213,D = 218W = 569,H = 213,D = 218. Here, the parameter gener-
ation rules for cargoes in the small-scale example are shown in Table 2:

Here, the generation rules of cargo size for a small-scale example 

Fig. 5. One-point and two-point operation.

Fig. 6. Repair solutions for one-point and two-point intersections.

Fig. 7. Using floating point numbers to obtain cargo loading order.

Fig. 8. Examples of N1,N2,N3 and N4.

Table 2 
Rules for generating parameters of cargo size in small-scale examples.

Range of the cargo 
length

Range of the cargo 
width

Range of the cargo 
height

Type of 
goods

[1,
1
2

W] [
2
3

H,H] [
2
3

D,D] [0,1]
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come from Martello et al. (2000), whose literature proposed a variety of 
rules for generating cargo data sets for 3D packing, which are widely 
used as benchmark data sets. Since the generated data sets are all fixed- 
size cargoes, and to distinguish between variable-size and fixed-size 
cargoes, this paper randomly generates the cargo type through the 
rand function, where 1 represents variable-size cargoes and 0 represents 
fixed-size cargoes.

Large-scale experiments are designed to test the performance of the 
algorithm in solving large-scale calculation examples. The large-scale 
calculation examples come from the widely used classical test data 
sets BR 1-BR 7, which were proposed by Bischoff and Ratcliff (1995). 
The calculation examples in large-scale testing are randomly selected 
from BR1 ~ BR7. The number of goods included in each calculation 
example is between 80 and 140, and the heterogeneity of goods in the 
examples, BR1 − BR7, is gradually enhanced. Similarly, BR does not 
distinguish between cargo types and uses the rand function to randomly 
generate the type of cargo to distinguish variable-size cargo from fixed- 
size cargo.

5.3. Parameter tuning

To determine the parameters of the proposed genetic algorithm and 
harmony search, the Taguchi method is adopted, which can effectively 
determine the parameters of metaheuristics in the algorithm and has 
been used in many previous studies (Xin et al. 2024; Zhou and Lee 
2020).

5.3.1. Genetic algorithm
The Taguchi method is adopted to determine the parameters of the 

genetic algorithm, including population size, crossover probability, 
mutation probability, and maximum iterations. The optimal tuning pa-
rameters are shown in Table 3. The details of the Taguchi method for 
determining the parameters of the genetic algorithm are shown in Ap-
pendix A.

5.3.2. Harmony search
In harmony search, we need to determine four parameters: harmony 

memory size, harmony memory considering rate, pitch adjusting rate, 
and maximum number of iterations. The details of the Taguchi method 
for determining parameters of harmony search are shown in Appendix B. 
The determined parameters of the harmony search algorithm are shown 
in Table 4.

5.3.3. Perturbation factors
This paper conducted the following experiments to determine the 

perturbation factor for variable neighbor search. GA represents the ge-
netic algorithm. HS represents the harmony search algorithm. M1 rep-
resents the variable neighbourhood search algorithm, of which 
neighbourhood action 1 is the perturbation strategy (See Table 5).

5.4. Comparison between mathematical model and computational 
intelligence methods

This subsection compares the solutions obtained by the mathemat-
ical model and computational intelligence methods.

5.4.1. Small-scale problems
Based on the characteristics of the exact algorithm, which applies to 

small-scale examples and can solve them accurately, small-scale 
example experiments are designed to verify the effectiveness of the 
two hybrid algorithms and whether they can reach the global optimum. 
Therefore, the experimental results of the two algorithms are compared 
with the results of the mixed integer programming model solved by the 
CPLEX solver to verify the effectiveness of the algorithm.

In the small-scale experiment, based on 10 examples, the CPLEX 
solver was used to solve the mixed integer programming model. The 
hybrid genetic algorithm and the hybrid harmony search algorithm are 
both implemented in C++. The calculation example was run indepen-
dently 10 times, each time to obtain the average loading rate and 
average running time. Since the purpose of this experiment is to verify 
whether the two hybrid heuristic algorithms can obtain the global 
optimal solution or not, the Gap values between algorithms and models, 
and between the algorithms are calculated through formula (60) and 
compared, and Gap1 & Gap 2 are regarded as the Gap values of loading 
rate and the average operation time, respectively. 

Gap =
l1 − l2

l1
× 100% (2) 

The l in the formula represents the algorithm’s loading rate or 
computation time.

The experimental results of the model and algorithm are shown in 
Table 6, which includes the loading rate and running time of the mixed 
integer programming model, as well as the optimal, worst, average 
loading rate, and average running time of the hybrid genetic algorithm 
and the hybrid harmony search algorithm.

According to the experimental results, the Hybrid integer program-
ming model, hybrid genetic algorithm and hybrid harmony search al-
gorithm are compared pairwise, obtaining the Gap value of loading rate 
and operation time, respectively. The results are shown in Table 7.

The experimental results show that the hybrid genetic algorithm 
(HGA) can get the global optimal solution every time, proving the sta-
bility of HGA. As can be seen from Table 7, the medians of the three 
comparisons are all 0, which shows that the hybrid integer programming 
model constructed in this paper and the variable size optimization al-
gorithm designed can obtain the global optimal solution, and the cor-
rectness and effectiveness of the model and algorithm are verified. At the 
same time, the average running times of the model and the two algo-
rithms are 3.83 s, 1.49 s, and 0.47 s, respectively. And the value of the 
hybrid integer programming model Vs the hybrid genetic algorithm is 
60.32 %, the value of the hybrid integer programming model Vs the 
hybrid harmony search algorithms is 87.37 %, and the value of the 
hybrid genetic algorithm Vs the hybrid harmony search algorithm is 
65.78 %. Compared with the mixed integer programming model, both of 
the two variable-size optimization algorithms can obtain the optimal 
solution in a shorter time, with good convergence, and obtain the ideal 
loading plan in a shorter time.

In a word, in the small-scale example experiments, the model and 
algorithms designed in this paper are able to obtain the global optimal 
solution within a certain period of time, verifying the correctness of the 
model and algorithm. From the perspective of running time, the hybrid 
genetic algorithm and the hybrid harmony search algorithm can be used 
to obtain the optimal solution in a relatively short time, which shows the 
effectiveness of the two algorithms.

Table 3 
Parameter setting of genetic algorithm.

Parameters of the genetic algorithm Level

Population size (P) 30
Crossover probability (Pc) 0.8
Mutation probability (Pm) 0.25
Iterations (Iter) 300

Table 4 
Parameter setting of harmony search algorithm.

Parameters of the harmony search algorithm level

Harmony Memory Size (HMS) 50
Harmony Memory Considering Rate (HMCR) 0.85
Pitch Adjusting Rate (PAR) 0.25
Maximum number of Iterations (MaxIter) 220
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5.4.2. Large-scale problems
In large-scale examples, with the increase of the number of goods, 

the difficulty of the exact algorithm, i.e., the mixed integer program-
ming model, increases, and the running time increases exponentially, 
resulting in the model’s optimal solution not being obtained within a 
specific period of time. Therefore, in large-scale comparative experi-
ments, this paper did not use CPLEX to solve the hybrid integer pro-
gramming model as a contrast, but only compared the hybrid harmony 
search algorithm with the hybrid genetic algorithm. Similarly, due to the 
increase in the number of goods, to ensure the stability of the heuristic 
algorithm, this paper independently runs 12 groups of large-scale ex-
amples 10 times each time, takes the average of the loading rate and 

running time, and then compares the results of the heuristic algorithm 
with the results of the hybrid integer programming model, compares the 
differences between the two algorithms in average loading rate and 
average running time to calculate the results between the two algo-
rithms. The results of the large-scale experiment are shown in Table 8.

The table above lists the calculation results of 12 large-scale exam-
ples calculated by the hybrid genetic algorithm and the hybrid harmony 
search algorithm, mainly including the optimal loading rate, the worst 
loading rate, the average loading rate, and the average running time. 
Gap1 and Gap2 come out through calculation. We can see that the 
average loading rates of the hybrid harmony search algorithm and the 
hybrid genetic algorithm are 76.65 % and 81.89 %, respectively. The 
hybrid genetic algorithm has a higher solving ability than the hybrid 
harmony search algorithm, with an average value of − 6.84 %, which 
verifies the convergence and effectiveness of the hybrid genetic algo-
rithm. From the comparison of running time, the average running time 
of the hybrid harmony search algorithm is 235.43 s, while the average 
running time of the hybrid genetic algorithm is 127.81 s, with an 
average value of 45.71 %. Through the above comparison, it is found 
that compared with the hybrid harmony search algorithm, the hybrid 
genetic algorithm significantly shortens the solution time and can obtain 
a better solution in a shorter time. It has good convergence and can 
quickly provide customers with an ideal loading solution.

The iterative curve of the two algorithms is plotted to compare the 
convergence of the hybrid genetic algorithm and the hybrid harmony 
algorithm. The two algorithms have different internal designs, so the 
maximum number of iterations set by the algorithm cannot be used as 
the independent variable. Here, the fitness evaluation times represent 
the independent variable, and the iteration curve, as shown in Fig. 9, is 
drawn, with the target value representing the dependent variable. Due 
to limited space, this article will show the algorithm iteration curves of 

Table 5 
Experimental results of perturbation strategy.

Methods Example 1 Example 2 Example 3 Example 4 Example 5 Average loading rate (%) Running time (s)

Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%)

GA M1 86.54 86.19 80.54 87.52 80.92 84.34 94.49
M2 86.13 86.11 80.15 87.41 80.59 84.08 104.05
M3 86.80 85.94 79.77 87.66 81.05 84.25 90.17
M4 86.13 85.77 79.35 87.81 80.55 83.92 98.17

HS M1 79.47 83.46 76.46 81.53 77.24 79.63 193.98
M2 79.85 83.88 76.34 82.57 76.62 79.85 231.52
M3 78.39 83.88 74.94 82.85 77.34 79.48 227.21
M4 77.60 83.88 75.55 80.77 79.97 79.55 327.18

Table 6 
Experimental results of a small-scale example.

Example Hybrid integer programming model Hybrid genetic algorithm Hybrid harmony search algorithm

Loading rate/% Running time/s Loading rate/% Running time/s Loading rate/% Running time/s

Minimum Maximum Average Minimum Maximum Average

test_1 90.85 2.92 90.85 90.85 90.85 1.39 84.08 90.85 84.92 0.54
test_2 74.52 4.71 74.52 74.52 74.52 1.35 70.77 74.52 72.75 0.55
test_3 72.73 4.58 72.73 72.73 72.73 1.04 67.17 72.73 69.77 0.48
test_4 83.63 4.56 83.63 83.63 83.63 1.50 79.21 83.63 80.10 0.38

Example Hybrid integer programming model Hybrid genetic algorithm Hybrid harmony search algorithm
Loading rate/% Running time/s Loading rate/% Running time/s Loading rate/% Running time/s

Minimum Maximum Average Minimum Maximum Average
test_5 84.35 3.32 84.35 84.35 84.35 1.34 84.35 84.35 84.35 0.46
test_6 79.02 3.22 79.02 79.02 79.02 2.05 79.02 79.02 79.02 0.43
test_7 76.58 3.44 76.58 76.58 76.58 1.08 72.65 76.58 74.69 0.39
test_8 80.27 4.55 80.27 80.27 80.27 2.13 80.27 80.27 80.27 0.40
test_9 84.12 4.09 84.12 84.12 84.12 2.18 84.12 84.12 84.12 0.57
test_10 83.17 2.86 83.17 83.17 83.17 0.84 83.17 83.17 83.17 0.46
Average 80.93 3.83 80.93 80.93 80.93 1.49 72.69 80.93 79.32 0.47

Table 7 
Gap value comparison.

Example Hybrid integer 
programming model 
VsHybrid genetic 
algorithm

Hybrid integer 
programming model 
VsHybrid harmony 
search algorithms

Hybrid Inheritance 
Algorithm VsHybrid 
harmony search 
algorithms

Gap(%) Gap(%) Gap(%)

Gap1 Gap2 Gap1 Gap2 Gap1 Gap2

test_1 0 52.40 0 81.51 0 61.15
test_2 0 71.34 0 88.32 0 59.26
test_3 0 77.29 0 89.52 0 53.85
test_4 0 67.11 0 91.67 0 74.67
test_5 0 59.64 0 86.14 0 65.67
test_6 0 36.34 0 86.65 0 79.02
test_7 0 68.60 0 88.66 0 63.89
test_8 0 53.19 0 91.21 0 81.22
test_9 0 46.70 0 86.06 0 73.85
test_10 0 70.63 0 83.92 0 45.24
average 0 60.32 0 87.37 0 65.78
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the following five examples.

5.5. Ablation experiment

In order to verify the impact of the variable neighbourhood search 
algorithm on the performance of the genetic algorithm, an ablation 
experiment was designed to compare the performance changes of the 
hybrid genetic algorithm before and after the combination of the genetic 
algorithm and the variable neighbourhood search algorithm, and the 
impact of VND on the algorithm. VND and VNS are combined with the 
genetic algorithm separately and form two algorithms, GA + VNS and 
GA + VND. Through the experiments, the algorithm iteration curve 
diagram is obtained after the genetic algorithm is combined with VNS 
and VND. As is shown in Fig. 10, the three curves represent the iteration 
curves of the GA, GA + VND, and GA + VNS algorithms, respectively. 
The vertical axis represents the target value of the optimal individual in 
the population, and the horizontal axis represents the fitness evaluation 
times. Due to limited space, this paper will show the algorithm iteration 
curve diagrams of the following five examples.

It can be found that the fitness evaluation times of the genetic al-
gorithm without a local search strategy are far less than those of the 
other two algorithms. Although the convergence of the algorithm is 
good, it is easy to fall into a local optimum and not obtain the global 
optimal solution. Due to the lack of a perturbation strategy, the GA +
VND algorithm also fell into the local optimum early, and the conver-
gence speed is not as fast as the genetic algorithm; As for the GA + VNS 
algorithm combined with VNS, its fitness evaluation times are far more 
than that of the other two algorithms, and the quality of its solution is 
significantly improved, reflecting the optimization of the algorithm. 
Experiments have proved that the hybrid genetic algorithm combined 
with the variable neighbourhood search algorithm can not only improve 
the algorithm’s solving ability through multiple neighbourhood struc-
tures, but also effectively prevent the algorithm from falling into the 
local optimum through the perturbation strategy. Therefore, the vari-
able neighbourhood search algorithm designed in this paper has a sig-
nificant impact on improving the solution ability of the genetic 
algorithm.

5.6. Management insights

This paper proposed a solution method for packing variable-sized 
fresh products into a fixed-sized container. This solution method could 
help the decision makers to pack variable-sized fresh products to reduce 
the reliance on human judgment, which can be subjective and time- 
consuming, especially when dealing with a large variety of product 
sizes and bin configurations.

The method’s ability to handle the variability in fresh-product 

lengths is a key strength. Fresh produce comes in diverse shapes and 
sizes, and packing it efficiently has always been a headache for logistics 
managers. The new approach takes into account these variations and 
provides optimized packing solutions, ensuring that the available bin 
space is utilized to its maximum potential. This leads to improved space 
utilization rates, which can be a game-changer in an industry where 
transportation and storage costs are major cost drivers.

For the logistics managers, in actual logistics work scenarios, they 
may get optimized cargo loading plans via user-friendly software in-
terfaces developed based on this framework, by inputting information 
such as the size, quantity, whether the goods are variable in size, and the 
specifications of the container, ultimately improving the loading rate of 
containers and reducing transportation costs. The method can be used as 
a tool to enforce sustainable packaging regulations for the policymakers 
as well. For an example, the policymakers could encourage and super-
vise related enterprises to follow the methods in the framework to design 
better packaging plans while meeting the needs of product preservation, 
avoiding materials waste.

6. Conclusions

Fresh production is crucial for the agricultural and food industries, 
bolstering the supply chain and generating income for farmers. In the 
domain of green logistics, the packing of fresh produce is of utmost 
importance. Fresh products typically come in a variety of three- 
dimensional dimensions for packaging. This study focuses on the prob-
lem of packing fresh products, some of which have diverse three- 
dimensional sizes, into fixed-size bins.

To address this, we first formulate the problem using a nonlinear 
mathematical model. Subsequently, a piecewise linearization approxi-
mation approach is employed to linearize the model. For solving large- 
scale instances of the problem, we propose a three-phase computational 
intelligence framework integrated with variable neighbourhood search. 
One of the advantages of this framework is its flexibility, as it can 
incorporate any computational intelligence method. In this study, we 
implement the proposed framework using a genetic algorithm and 
harmony search. Extensive experiments are carried out to validate the 
performance of the proposed solution framework. The experimental 
results demonstrate the effectiveness and efficiency of the proposed 
approach, providing valuable insights for optimizing fresh product 
packing in green logistics.

Despite the advantages of the computational intelligence method 
proposed for packing variable-length fresh products into fixed-size bins, 
several limitations must be acknowledged to provide a comprehensive 
understanding of its practical application and potential drawbacks. (1) 
This paper only considered one fixed-size bin. More bins could be 
considered. (2) In the fresh-produce industry, obtaining precise and up- 

Table 8 
Large-scale example experimental results.

Calculation example Hybrid harmony search algorithm Hybrid genetic algorithm Gap/%

Loading rate/% Running time/s Loading rate/% Gap1 Gap2

Minimum Maximum Average Minimum Maximum Average

BR1-1 76.82 79.42 77.98 292.19 85.83 87.12 86.83 155.35 − 11.35 46.83
BR1-2 82.21 84.71 82.96 459.36 85.94 87.61 86.15 175.54 − 3.84 61.79
BR2-1 74.45 77.42 75.47 362.16 78.39 82.32 80.83 39.38 − 7.10 89.13
BR2-2 80.63 81.72 80.98 264.95 87.29 87.71 87.49 114.50 − 8.04 56.78
BR3-1 75.99 78.48 76.80 92.26 80.06 84.79 81.84 90.85 − 6.56 1.53
BR3-2 74.59 79.49 77.50 123.00 81.72 86.17 83.67 112.90 − 7.96 8.21
BR4-1 75.39 76.20 75.84 139.26 80.20 82.01 81.00 78.35 − 6.81 43.74
BR4-2 73.50 76.19 74.34 193.02 79.19 82.64 80.87 152.10 − 8.79 21.20
BR5-1 74.39 76.86 75.64 97.71 76.26 79.31 77.46 70.48 − 2.41 27.87
BR5-2 72.07 75.06 73.69 232.23 76.30 82.70 79.28 207.26 − 7.59 10.75
BR6-1 73.52 75.53 74.57 285.54 76.88 77.57 77.06 165.24 − 3.33 42.13
BR7-1 73.79 74.26 74.04 283.42 77.38 82.55 80.22 171.73 − 8.35 39.41
average 75.61 77.95 76.65 235.43 80.45 83.54 81.89 127.81 ¡6.84 45.71
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to-date data on product sizes, shapes, and weights can be challenging. 
More constraints could be considered for fresh products.

Future studies could consider the following aspects: (1) Reinforce-
ment learning could be adopted for solving larger case problems. (2) 
More application of fresh products could be explored.
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Appendix 

Appendix A:. Nonlinear mixed integer programming model

The nonlinear mixed integer programming model could be obtained as follows. 

PNMax
∑n

i=1visi

VC
(A1) 

⎧
⎨

⎩

0 ≤ xi ≤ W − wi
0 ≤ yi ≤ H − hi
0 ≤ zi ≤ D − di.

(A2) 

lij+rij + uij + oij + bij + fij ≥ 1 (A3) 

lij = 1⇒ xi +wi ≤ xj, rij = 1⇒ xj +wj ≤ xi (A4) 

uij = 1⇒ yi + hi ≤ yj, oij = 1⇒ yj + hj ≤ yi 

bij = 1⇒ zi + di ≤ zj, fij = 1⇒ zj + dj ≤ zi 

vi

wi
= hʹ

i × dʹ
i = hi × di (A5) 

hLB
i = hi/2, hUB

i = hi × di (A6) 

dLB
i = hi/2, dUB

i = hi × di 

Appendix B:. Genetic algorithm design

Parameter selection of genetic algorithm

The main parameters to be debugged in the genetic algorithm include population size (P), cross probability (Pc), mutation variation (Pm), and 
maximum number of algorithm iterations (Iter). Through prior algorithmic testing, five different levels of parameters, considered to be potentially 
optimal levels, have been designed. The overall parameter level design is shown in Table 9.

Table 9 
Genetic algorithm parameter levels.

Serial number Parameters of the genetic algorithm

P Pc Pm Iter

1 20 0.5 0.05 140
2 30 0.6 0.1 180
3 40 0.7 0.15 220
4 50 0.8 0.2 260
5 60 0.9 0.25 300

Based on the above genetic algorithm parameter level table, this paper uses the Taguchi method to set up an 
orthogonal matrix table to design an experiment. As shown in Table 10.

Table 10 
Experimental design of genetic algorithm.

Programme Parameters of the genetic algorithm

P Pc Pm Iter

1 20 0.5 0.05 140
2 20 0.6 0.1 180
3 20 0.7 0.15 220
4 20 0.8 0.2 260
5 20 0.9 0.25 300
6 30 0.5 0.1 220
7 30 0.6 0.15 260
8 30 0.7 0.2 300
9 30 0.8 0.25 140
10 30 0.9 0.05 180

(continued on next page)
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Table 10 (continued )

Programme Parameters of the genetic algorithm

P Pc Pm Iter

11 40 0.5 0.15 300
12 40 0.6 0.2 140
13 40 0.7 0.25 180
14 40 0.8 0.05 220
15 40 0.9 0.1 260
16 50 0.5 0.2 180
17 50 0.6 0.25 220
18 50 0.7 0.05 260
19 50 0.8 0.1 300
20 50 0.9 0.15 140
21 60 0.5 0.25 260
22 60 0.6 0.05 300
23 60 0.7 0.1 140
24 60 0.8 0.15 180
25 60 0.9 0.2 220

In the orthogonal experiment, five large-scale examples were tested. The algorithm ran each calculation example 
10 times independently, and the average loading rate and average run time came out. The calculation results are 
shown in Table 11:

Table 11 
Results of genetic algorithm orthogonal experiment.

Programme BR1-1 BR1-2 BR2-1 BR2-2 BR3-1 Average loading rate (%) Running time (s)

Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%)

1 84.71 85.36 75.47 87.36 78.41 82.26 0.75
2 84.10 85.48 75.79 87.51 80.35 82.65 1.14
3 84.81 85.86 78.88 87.60 79.82 83.39 1.53
4 84.61 85.86 76.98 87.68 80.79 83.18 1.88
5 85.07 85.99 78.92 87.70 79.81 83.50 2.10
6 85.31 85.44 77.71 87.52 79.10 83.02 1.94
7 85.42 86.07 76.31 87.61 79.74 83.03 1.37
8 85.63 86.03 79.13 87.69 80.82 83.86 1.81
9 84.59 85.53 76.53 87.42 79.11 82.64 2.53
10 85.35 85.78 77.42 87.57 78.09 82.84 2.60
11 85.48 86.11 78.31 87.60 79.85 83.47 0.94
12 83.28 85.23 74.55 87.48 77.48 81.60 1.33
13 83.78 85.52 76.08 87.55 79.96 82.58 1.97
14 84.95 85.73 77.38 87.62 79.19 82.97 2.34
15 86.31 85.90 77.14 87.54 79.30 83.24 2.64
16 82.94 85.44 75.32 87.42 78.09 81.84 1.12
17 84.22 85.69 76.86 87.57 78.83 82.63 1.65
18 84.35 85.36 77.85 87.46 78.73 82.75 2.18
19 85.77 86.28 77.90 87.59 79.38 83.38 2.54
20 83.26 85.27 74.87 87.36 77.05 81.56 2.82
21 84.55 86.03 76.95 87.44 77.95 82.58 1.10
22 84.53 85.69 77.13 87.60 78.37 82.66 1.78
23 82.06 85.19 74.53 87.36 77.35 81.30 2.28
24 83.97 85.78 75.45 87.36 78.60 82.23 2.75
25 83.27 85.44 75.54 87.41 77.88 81.91 2.90

In order to determine the optimal parameter level configuration of genetic algorithm, Taguchi method is used to analyse the large-the-better S/N 
ratio with the formula and main effect diagram of signal-to-noise ratio (SNR) are shown in (61). 

S/N = log10

(∑
UF2

n

)

(61) 

In the formula (61), UF represents the objective function, where the average load.
rate is represented, and n represents the number of times each calculation example runs separately. 
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Fig. 11. Main effect diagram of signal-to-noise ratio (SNR).

Appendix C:. Harmony search design

Parameter selection of harmony search algorithm

Similarly, the Taguchi method is also used to determine the parameters of the harmonic search algorithm. The main parameters involved in the 
harmony search algorithm are the harmonic memory size (HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR), and 
maximum number of iterations (MaxIter). First, based on previous algorithm tests, five levels of parameters were designed as potential optimal level 
parameters. The overall parameters are shown in Table 12.

Table 12 
Parameters level of harmony search algorithm.

Serial number Parameters of the harmonic search algorithm

HMS HMCR PAR MaxIter

1 20 0.55 0.05 140
2 30 0.65 0.1 160
3 40 0.75 0.15 180
4 50 0.85 0.2 200
5 60 0.95 0.25 220

Based on the above parameter level table of the harmonic search algorithm, an orthogonal matrix table is set to design 
the experiment, as shown in Table 13.

Table 13 
Experimental design of harmony search algorithm.

Parameters of the harmonic search algorithm

HMS HMCR PAR MaxIter

1 20 0.55 0.05 140
2 20 0.65 0.1 160
3 20 0.75 0.15 180
4 20 0.85 0.2 200
5 20 0.95 0.25 220
6 30 0.55 0.1 180
7 30 0.65 0.15 200
8 30 0.75 0.2 220
9 30 0.85 0.25 140
10 30 0.95 0.05 160
11 40 0.55 0.15 220
12 40 0.65 0.2 140
13 40 0.75 0.25 160
14 40 0.85 0.05 180
15 40 0.95 0.1 200
16 50 0.55 0.2 160
17 50 0.65 0.25 180
18 50 0.75 0.05 200
19 50 0.85 0.1 220
20 50 0.95 0.15 140
21 60 0.55 0.25 200

(continued on next page)
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Table 13 (continued )

Parameters of the harmonic search algorithm

HMS HMCR PAR MaxIter

22 60 0.65 0.05 220
23 60 0.75 0.1 140
24 60 0.85 0.15 160
25 60 0.95 0.2 180

In the orthogonal experiment, five large-scale examples were tested. The algorithm ran each example 10 times 
independently and took its loading rate and running time. The calculation results are shown in Table 14.

Table 14 
Orthogonal experiment results of harmony search algorithm.

BR1-1 BR1-2 BR2-1 BR2-2 BR3-1 Average loading rate (%) Running time (s)

Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%)

1 76.12 76.38 73.57 79.22 74.01 75.86 4.05
2 77.66 82.25 74.46 80.24 75.40 78.00 10.02
3 78.02 83.25 75.87 80.73 75.29 78.63 9.01
4 77.53 82.92 75.28 80.17 75.39 78.26 11.48
5 77.49 83.09 75.41 80.84 74.65 78.30 15.87
6 76.84 81.71 75.01 80.10 74.25 77.58 11.95
7 77.76 82.42 75.61 80.19 75.46 78.29 14.54
8 78.11 83.13 76.12 81.31 76.27 78.99 18.21
9 78.39 83.59 74.83 81.31 75.79 78.78 13.04
10 77.80 82.63 75.89 80.46 75.59 78.47 14.35
11 77.69 82.25 75.05 80.71 75.14 78.17 20.04
12 78.07 82.05 74.45 79.43 74.64 77.73 11.73
13 78.32 82.25 75.01 80.16 76.09 78.37 12.60
14 79.03 83.50 75.61 81.22 76.72 79.22 21.75
15 79.06 83.83 76.35 81.14 75.24 79.12 33.31
16 77.65 82.21 75.73 80.24 74.89 78.14 19.50
17 79.24 82.84 77.86 80.89 77.36 79.64 26.10
18 79.24 83.09 76.46 80.84 76.53 79.23 23.05
19 78.75 83.21 76.34 81.76 76.76 79.36 24.47
20 77.58 82.59 74.94 80.31 76.02 78.29 13.87
21 78.16 82.75 75.55 80.50 75.90 78.57 24.89
22 78.68 83.38 77.42 80.86 75.16 79.10 28.84
23 78.55 82.46 75.97 80.55 76.27 78.76 21.30
24 78.66 83.88 76.47 81.13 75.43 79.11 28.57
25 77.53 83.79 76.64 81.20 75.05 78.84 28.85

The signal–noise ratio is calculated according to formula (61), and draw the main effect diagram of the SNR is plotted. The results are shown in 
Fig. 12 Main effect diagram of SNR for harmony search algorithm.

Fig. 12. Main effect diagram of SNR for harmony search algorithm.

Data availability

Data will be made available on request.
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