
A computational intelligence method to solve the problem of packing
variable-length fresh products into fixed-size bins

Yanjie Zhou , Xiaojin Wang , Hang Wang , Jiang Xu *

School of Management, Zhengzhou University, China

A R T I C L E I N F O

Keywords:
Bin packing
Computational intelligence
Fresh product packing

A B S T R A C T

Fresh production packing is very essential in green logistics. A fresh product usually can be parceled up into
different three-dimensional sizes. This paper studies the hybrid variable of fresh product packing into fixed-size
bins, where part of the product can be parceled into different three-dimensional sizes. A nonlinear mathematical
model is proposed to formulate the studied problem, and a piecewise linearization approximation method is used
to linearize it. A three-phase computational intelligence framework integrated with variable neighbourhood
search is proposed to solve large-scale studied problems. The proposed computational intelligence framework
can readily adopt any computational intelligence method. This paper adopts a genetic algorithm and harmony
search to implement the proposed framework. This paper conducts various experiments to verify the perfor-
mance of the proposed solution framework. The experimental results showed the effectiveness and efficiency of
the proposed solution framework.

1. Introduction

Fresh products, encompassing perishable goods such as recently
harvested fruits, vegetables, and freshly processed meats, require
specialized packaging solutions to maintain quality and integrity.
Common packaging materials, including plastic bags, corrugated card-
board boxes, molded foam trays, cling films, and vacuum-sealed con-
tainers, protect against physical damage and environmental factors
during handling, transportation, and storage. Effective packaging design
plays a critical role in preserving product freshness. For instance, fragile
items like eggs necessitate customized solutions such as compartmen-
talized pulp cartons that provide individual cushioning to prevent shell
fractures. The geometric challenges of packaging irregular polyhedral-
shaped produce (e.g., broccoli, star-fruits) require flexible three-
dimensional packaging configurations that adapt to product
morphology while maintaining structural stability.

Fig. 1 demonstrates the dimensional variability in egg packaging
through different carton designs. This illustrates how identical quanti-
ties of products can be accommodated in varying spatial arrangements
through strategic container selection. Such flexibility in packaging ge-
ometry enables optimized space utilization during logistics operations
while ensuring product protection. The choice of appropriate packaging
configurations must balance protection requirements with

transportation efficiency and material sustainability considerations.
This paper studies the hybrid variable of the fresh product packing

into fixed-size bins problem. In the studied problem, there is a set of
fresh and non-fresh products. Only parts of the fresh product can be
parceled into variable three-dimensional sizes. The remainder of the
products are parceled up into fixed three-dimensional sizes. All the
products need to be packed into a set of three-dimensional bins. The goal
of the studied problem is to maximize the utilization of three-
dimensional bins by stratifying the constraints of freshness. The con-
tributions of this paper are summarized as follows.

(1) This paper first studied the hybrid variable of the fresh product
packing into fixed-size bins problem that allows part of the fresh
product to adjust its packing size. This paper adopts living fish
packing as a case study. A nonlinear integer mathematical model
is proposed to formulate the fresh fish packing problem, consid-
ering the oxygen requirement of living fish and activity space
during transportation.

(2) The nonlinear mathematical model is complex to solve by both
commercial and non-commercial mixed integer programming
solvers, including Cplex, Gurobi, and SCIP. A piecewise lineari-
zation approximation method makes the nonlinear mathematical

* Corresponding author.
E-mail addresses: ieyjzhou@zzu.edu.cn (Y. Zhou), 1970591837@qq.com (X. Wang), 1277574781@qq.com (H. Wang), xujiang@zzu.edu.cn (J. Xu).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2025.111450
Received 31 March 2025; Received in revised form 10 June 2025; Accepted 3 August 2025

Computers & Industrial Engineering 209 (2025) 111450

Available online 9 August 2025
0360-8352/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

mailto:ieyjzhou@zzu.edu.cn
mailto:1277574781@qq.com
mailto:1277574781@qq.com
mailto:xujiang@zzu.edu.cn
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2025.111450
https://doi.org/10.1016/j.cie.2025.111450

model solvable. The developed linear mixed integer program-
ming model provides optimal solutions for small-scale problems.

(3) To solve large-scale problems, this paper decomposes the studied
problem into three subproblems. A three-phase computational
intelligence framework is proposed by integrating variable
neighborhood search methods into the three subproblems. This
paper adopts genetic algorithms and harmony search algorithms
as examples of computational intelligence methods to implement
the proposed framework. This paper conducts various experi-
ments to verify the proposed solution framework. The experiment
results show the outperformance of the proposed solution
framework compared with the mathematical models

The remainder of this paper is organized as follows. Section 2 shows
the literature review. The proposed mathematical models are shown in
Section 3. Section 4 presents the proposed solution method. The
experimental results are shown in Section 5. Finally, the conclusions are
given.

2. Literature review

The Bin packing problem is a classic NP-hard combinatorial opti-
mization problem (Coffman et al., 1980), which is widely used in lo-
gistics, transportation systems, and production systems. The mixed bin
packing problem of three-dimensional variable-size goods studied in this
paper is a three-dimensional bin packing problem(3D-BPP). The bin
packing problem explores how to place a set of strongly or weakly
heterogeneous goods into one or a group of strongly or weakly hetero-
geneous large containers to maximize the loaded items (or value) or
minimize the number of containers used. In general, the research can be
divided into two levels, one of which is the extension of the application
of the bin packing problem, and the other is the research on the algo-
rithms of the three-dimensional bin packing problem.

2.1. Application research on the three-dimensional bin packing problem

Many scholars have proposed different detailed loading scenarios for
the Loading-related constraints based on the actual cargo loading pro-
cess. Alonso et al., 2019a propose a two-stage pallet loading problem
that considers multiple constraints such as geometry, weight, and pro-
hibition of gaps between pallets (to prevent goods from moving).
Considering the above, stability constraints and periodic constraints for

loading are considered (Alonso et al., 2019b). Sheng et al. (2017) and
Ekici (2021) explore different forms of full loading constraints. Ac-
cording to the machine loading scenario, Zhao et al. (2021) study the
online 3D-BPP. The above researches provide a comprehensive theo-
retical framework for different actual loading scenarios, focusing on the
industrial field and route arrangement, simplifying cargo loading
planning.

Regarding the goods-related constraints, Ren et al. (2011) consid-
ered the cargo loading priority. A 3D-BPP with time windows is studied
by Liu et al. (2021). A complex 3D-BPP involving multiple goods is
proposed by Ceschia and Schaerf (2011). Zhao et al. (2022) take into
account the effect of deformation of compressible cargo, but it is only
considered a weak constraint in the loading process. Regarding the
packaging and loading of a single type of goods, Kilincci and Medinoglu
(2021) study the packaging and loading of a single type of cargo.
However, few studies focus on the impact of changing cargo size on
improving loading rate and the mixed loading of variable-size and fixed-
size goods.

Regarding container-related constraints, Paquay et al. (2014) pro-
pose a loading problem for boxes with special shapes based on air
transportation to meet the special needs of air transportation. Que et al.
(2023) discuss the 3D-BPP with adjustable container height, providing
new ideas for packing optimization in scenarios with variable container
sizes. Ananno and Ribeiro (2024) focus on the 3D-BPP of multiple
containers, take into account constraints such as container-full-shipment
to minimize the total number of containers used, and finally achieve the
complete palletizing of the order. However, no in-depth research has
been conducted on the compatibility of containers of different sizes with
various types of goods.

Regarding the study of multi-objective 3D-BPP, Gendreau et al.
(2006) were the first to combine the 3D-BPP and path planning prob-
lems. Ceschia and Schaerf (2013) propose a multi-objective function
with four parts and assigned weights. Erbayrak et al. (2021) study the
multi-objective 3D-BPP, aiming to minimize the number of containers
used and maximize the family unity ratio, providing a new direction for
the study of cargo correlation in the packing problem. However, there is
a lack of targeted research on the needs of special fields, such as fresh
food, in terms of multi-objective trade-offs.

2.2. Algorithm of the three-dimensional bin packing problem

In the literature on using exact algorithms to solve the 3D-BPP,

Fig. 1. An example of fresh egg packing into different types of cartons.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

2

usually, a mathematical model for the 3D-BPP is built first, and then the
solver (e. g., CPLEX, LINGO, etc.) will be used to solve the model.
Junqueira et al. (2012) construct a mixed integer linear programming
model and solve it with the CPLEX solver. Chen et al. (1995) propose a
zero-one mixed integer programming model. Nascimento et al. (2021)
model common constraints. Fleszar (2022) proposes the branch and
bound method. Zhang et al. (2020) introduce the branch and price al-
gorithm. Hifi et al. (2010) improve the model relaxation lower bound
through effective inequalities. However, the exact algorithm is ineffi-
cient for solving large-scale problems, and it isn’t easy to fully meet the
strict assumptions of the model in actual application scenarios.

The constructive heuristic algorithm can quickly provide an
approximate solution to the problem through the designed placement
rules. The placement rules are designed with concepts such as “wall-
building”(George & Robinson, 1980; Kang et al., 2024), “layer-building”
(Saraiva et al., 2015), “block-building” (Zhu et al., 2012), and “tower-
building”. There are also extreme point methods (Crainic et al., 2008)
and Deep Bottom Left with Fill strategy (Korhan & Mustafa, 2004). The
construction heuristic algorithm can quickly provide approximate so-
lutions, improving the packing efficiency and solution quality, but its
adaptability to complex constraints is limited.

Deep reinforcement learning algorithms (Jiang et al., 2021; Que
et al., 2023; Wang et al., 2025) and local search algorithms (T. et al.,
2003; Faroe et al., 2003) are common meta-heuristic algorithms. The
calculation time for meta-heuristic algorithms is relatively long, and it is
often combined with a construction heuristic algorithm to form a hybrid
heuristic algorithm to improve the overall performance and increase the
convergence speed and performance of the algorithm. Moon et al.
(2013) combine multiple algorithms to solve the 3D-BPP, considering
load balance, effectively combining the convergence advantage of the
greedy algorithm with the optimization advantage of the ant colony
algorithm. Zhang et al. (2024) propose a method combining a generative
adversarial network and a genetic algorithm to solve the 3D-BPP, which
proves to generate high-quality solutions and has excellent robustness
and effectiveness in 3D-BPP solving, but the method relies upon the
quality of the initial solution.

This paper takes the packaging and loading of live fish in fresh cold
chain logistics as a scenario and proposes a three-dimensional variable-
size mixed cargo packing problem. A linear mixed integer programming
model is constructed, and a variable-size optimization algorithm is
designed. The algorithm contains three stages: construction, search, and
improvement. The article is dedicated to providing logistics companies
with reasonable solutions to improve container loading rates and pro-
mote digital development.

3. Mathematical model

This section introduces the problem description and mathematical
model.

3.1. Problem descriptions

Given a set of cargo I and I =
{

Ĩ, I
}

, ̃I denotes the set of cargo with

variable size and I denotes the set of cargo with fixed size, where |I| = k,
⃒
⃒
⃒̃I
⃒
⃒
⃒ = n and |I| = k − n. (wi, hi, di) represents the width, height, and height

of the cargo i, respectively. vi denotes the volume of cargo i. If i ∈ I, wi, hi

and di are constant value. If i ∈ Ĩ, hi and di are variable with the con-
straints that hLB

i ≤ hi ≤ hUB
i and dLB

i ≤ di ≤ dUB
i are hold. All the cargo

will be packed into a container C with a length of W, a width of H, a
height of D. VC denotes the volume of container C. This paper aims to
maximize the utilization of container space, taking into account many
constraints in the actual loading process, and aims to provide logistics
companies with an optimized cargo transportation packaging and
container loading solution. The parameters and decision variables are

shown in Table 1.
The assumptions used in this paper are summarized as follows:

1) All cargo to be loaded is packed as regular cuboids. The shape of the
cargo is divided into two types: regular and irregular. Living fish
were originally irregularly shaped cargo, but they became regular
blocks after packaging. A subset of cargo is variable.

2) In this paper, the packing for transporting live fish was adjusted to
increase the container loading rate, without considering the impact
of different transport packaging schemes on the survival rate of live
fish. Therefore, it is assumed that if the live fish have a certain
amount of space to move around in the bag, the impact of the
transportation packaging scheme on the survival rate of the fish is
not considered in this paper.

3) In the actual packaging process of live fish, the size of the packaging
bag is usually chosen according to the length of the fish. Therefore,
the length of the transport package changes less than the width and
height. Thus, when adjusting the transport package of live fish, this
paper assumes that the length of the goods is fixed, and only changes
the height and width of the cargo. Fig. 2 shows the Living fish
packing process.

4) The container and the cargo both have a certain weight-bearing ca-
pacity. This article assumes that the total weight of the cargo placed
in the container is within its bearing range and that no squeezing or
deformation occurs between the cargo. Regardless of the weight limit
constraints, cargo weight-bearing constraints during loading are not
considered.

5) The cost of customized packaging and packaging materials is not
considered. Due to the scale effect, this article assumes that the lo-
gistics company’s live fish packing cost is lower than that of the
shipper; the cost of customized packaging is not considered.

Table 1
Symbols and decision variables.

Type Symbol The meaning of the parameters

Parameter C Container
I A set of cargo I,whereI =

{
Ĩ, I

}
and |I| = k

Ĩ The set of cargo with variable size, where
⃒
⃒
⃒̃I
⃒
⃒
⃒ = n

I The set of cargo with fixed size, where |I| = k − n
i Index of cargo, where i ∈ I
j Index of cargo, where j ∈ I
(W,H,D) The length, width and height of the container
(wi,hi,

di)

The length, width and height of the cargo i

VC The volume of container C
vi The volume of the cargo i
n Number of variable-size goods to be loaded
k Total quantity of goods to be loaded
hLB

i ,hUB
i The lower and upper limits of the height dimensional

changes of cargo i
dLB

i ,dUB
i The lower and upper limits of the width dimensional

changes of cargo i
m The number of function segment intervals

Decision
variables

(xi,yi,zi) The coordinates of the lower left rear corner of cargo i
in the coordinate system

hʹ
i Width after the size of cargo i changes

dʹ
i Height after the size of cargo i changes

si 1 If cargo i is placed in the container, then it is 1;
0 otherwise.

lij 1 if cargo i is to the left of cargo j; 0 otherwise
rij 1 if cargo i is to the right of cargo j; 0 otherwise
uij 1 if cargo i is below cargo j; 0 otherwise
oij 1 if cargo i is above cargo j; 0 otherwise
bij 1 if cargo i is behind cargo j; 0 otherwise
fij 1 if cargo i is in front of cargo j; 0 otherwise
αij The jth breakpoint of the continuous variable pi

βij The jth breakpoint of the continuous variable qi

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

3

3.2. Nonlinear mixed integer programming model

This paper aims to maximize the utilization of container space, and
the corresponding objective function can be expressed as:

PNMax
∑n

i=1visi

VC
(1)

3.2.1. Cargo geometric constraints
Obviously, the cargo cannot exceed or overlap with the container, so

the cargo location coordinates must satisfy the following constraints:
⎧
⎨

⎩

0 ≤ xi ≤ W − wi
0 ≤ yi ≤ H − hi
0 ≤ zi ≤ D − di.

(2)

3.2.2. Constraints on the non-overlapping of cargo
Here, six binary decision variables represent the positional re-

lationships between the goods: left, right, top, bottom, front, and back,
where i < j. To ensure that cargo i and cargo j placed in a container do
not overlap or intersect, the following relationship must exist (Egeblad
and Pisinger, 2009).

lij+rij + uij + oij + bij + fij ≥ 1 (3)

This constraint states that when both cargo i as well as cargo j are
placed in a container(si = sj = 1), the positional relationship between
them must be front or rear, left or right, top or bottom, and the positional
relation between the goods must include one or more items. At the same
time, the coordinates of goods i and j must satisfy the following
inequalities:

lij = 1⇒ xi + wi ≤ xj, rij = 1⇒ xj + wj ≤ xi
uij = 1⇒ yi + hi ≤ yj, oij = 1⇒ yj + hj ≤ yi
bij = 1⇒ zi + di ≤ zj, fij = 1⇒ zj + dj ≤ zi

(4)

3.2.3. Constraints on the constant volume of cargo
hí, dí are the width and height of the cargo i after the size change. To

ensure that the volume of the cargo remains unchanged after the size
change, the height and width after the change must meet the following
requirements:

vi

wi
= hʹ

i × dʹ
i = hi × di (5)

In the model assumptions, this paper assumes that the length of the
variable-size cargo is fixed, and the width and height are variable. Here,
it is necessary to constrain the range of changes in the size of the goods to
ensure that the live fish have a certain space to move. First, the width
and height range depend on the size of the side of the cargo. The cargo
size cannot exceed the side area, which determines the upper limit of the
contents. At the same time, it is also, to some extent, related to the size of
the live fish. The changed packaging must completely wrap the goods,
which determines the lower limit of the size change. Fig. 3 is a simple
schematic diagram of size change.

To facilitate calculation, it is assumed that the length and width of
fish i are hi/2 and di/2. Therefore, the lower limit of hí and dí are hi/2 and
hi/2. Accordingly, the upper limit is the side area, so the range of cargo

Fig. 2. Living fish packing process.

Fig. 3. Schematic diagram of dimensional change.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

4

size variation can be defined as:

hLB
i = hi/2, hUB

i = hi × di (6)

dLB
i = hi/2, dUB

i = hi × di

The mixed integer programming model proposed in this paper is an
extended model of the traditional three-dimensional container model.
The model introduces the constraint of constant volume of cargo pack-
aging (5) to ensure that the volume of the box remains constant after
changes. Eq. (5) is a nonlinear constraint, which cannot be directly
modelled and solved by either commercial mixed integer programming
solvers (such as CPLEX) or open source solvers (such as CBC), the model
needs to use a linearization method to transform the nonlinear con-
straints into linear constraints before the mixed integer programming
solvers can perform modelling and solving.

3.3. Linear mixed integer programming model

As mentioned before, PN is a nonlinear mixed integer programming
model. This subsection adopts a piecewise linearization approximation
(PLA) method to linearize it. In this subsection, we introduce two
auxiliary continuous variables, pi and qi to transform the constraints.

Let pi = (hí + dí)/2, qi =
(
hí − dí

)
/2, then p2

i − q2
i = hí × dí, where

hí = (pi +qi), dí = (pi − qi). hí ∈ (hLB
i , hUB

i) and dí ∈ (dLB
i , dUB

i) are hold.
The upper and lower limits of pi and qi are shown as follows.

1
2
(hLB

i + dLB
i) ≤ pi ≤

1
2
(hUB

i + dUB
i) (7)

1
2
(hLB

i − dUB
i) ≤ qi ≤

1
2
(hUB

i − dLB
i) (8)

The PLA method is then used to linearize the nonlinear constraints:
p2

i is segmented, that is, along the pi-axis, the interval is divided into
m intervals [αi0,⋯.αim] of equal length.

pi ∈
(
(hLB

i + dLB
i)/2, (hUB

i + dUB
i)/2

)
, there are αi0 = (hLB

i + dLB
i)/

2 and αim = (hUB
i + dUB

i)/2. Let θαi =
(
(hUB

i + dUB
i)/2 − (hLB

i + dLB
i)/2

)
/m,

then αit and βit can be defined as follow.

αit = αi0 +(t − 1)×θαi, ∀t = 1,⋯,m (9)

βit = βi0 +(t − 1)×θβi, ∀t = 1,⋯,m (10)

Then the nonlinear constraints (5) can be linearized as follows.

∑m

t=0
αitεit = pi∀i = 1,⋯, n (11)

∑m

t=0
εit = 1∀i = 1,⋯, n (12)

εi0 ≤ ωi0∀i = 1,⋯, n (13)

εit ≤ ωi,t− 1 +ωi,t∀t = 1,⋯,m − 1 (14)

εi,m ≤ ωi,m− 1∀i = 1,⋯, n; t = 1,⋯,m (15)

∑m− 1

t=0
ωit = 1 (16)

∑m

t=0
βitδit = qi∀i = 1,⋯, n (17)

∑m

t=0
δit = 1∀i = 1,⋯, n (18)

δi0 ≤ φi0∀i = 1,⋯, n (19)

δit ≤ φi,t− 1 +φi,t∀t = 1,⋯,m − 1 (20)

δi,m ≤ φi,m− 1∀i = 1,⋯, n (21)

∑m− 1

t=0
φit = 1∀i = 1,⋯, n (22)

∑m

t=0
α2

itεit −
∑m

t=0
β2

itδit = hi × di∀i = 1,⋯, n (23)

δit, εit ≥ 0,φit ,ωit ∈ {0,1}∀t = 0,⋯, n − 1 (24)

Finally, the linearized mixed integer programming model could be
obtained as follows.

Max
∑k

i=1visi

Vc
(25)

lij+rij + uij + oij + bij + fij ≥ si + sj − 1 ∀i, j = 1,⋯, k (26)

xi − xj +Wlij ≤ W − wi∀i, j = 1,⋯, k (27)

xj − xi +Wrij ≤ W − wj∀i, j = 1,⋯, k (28)

yi − yj +Huij ≤ H − (pi + qi)∀i, j = 1,⋯, k (29)

yj − yi +Hoij ≤ H −
(

pj + qj

)
∀i, j = 1,⋯, k (30)

zi − zj +Dbij ≤ D − (pi − qi)∀i, j = 1,⋯, k (31)

zj − zi +Dfij ≤ D −
(

pj − qj

)
∀i, j = 1,⋯, k (32)

0 ≤ xi ≤ W − wi∀i = 1,⋯, k (33)

0 ≤ yi ≤ H − (pi + qi)∀i = 1,⋯, k (34)

0 ≤ zi ≤ D − (pi − qi)∀i = 1,⋯, k (35)

pi = (hi + di)∀i = n+1, ..k (36)

qi = (hi − di)∀i = n+1, ..k (37)

∑m

t=0
αitεit = pi∀i = 1,⋯, n (38)

∑m

t=0
εit = 1∀i = 1,⋯, n (39)

εi0 ≤ ωi0∀i = 1,⋯, n (40)

εit ≤ ωi,t− 1 +ωi,t∀t = 1,⋯,m − 1 (41)

εi,m ≤ ωi,m− 1∀i = 1,⋯, n (42)

∑m− 1

t=0
ωit = 1∀i = 1,⋯, n (43)

∑m

t=0
βitδit = qi∀i = 1,⋯, n (44)

∑m

t=0
δit = 1∀i = 1,⋯, n (45)

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

5

δi0 ≤ φi0∀i = 1,⋯, n (46)

δit ≤ φi,t− 1 +φi,t∀t = 1,⋯,m − 1 (47)

δi,m ≤ φi,m− 1∀i = 1,⋯, n (48)

∑m− 1

t=0
φit = 1∀i = 1,⋯, n (49)

∑m

t=0
α2

itεit −
∑m

t=0
β2

itδit = hi × di∀i = 1,⋯, n (50)

1
2
(hLB

i + dLB
i) ≤ pi ≤

1
2
(hUB

i + dUB
i)∀i = 1,⋯, n (51)

1
2
(hLB

i − dUB
i) ≤ qi ≤

1
2
(hUB

i − dLB
i)∀i = 1,⋯, n (52)

lij, rij, uij, oij, bij, fij ∈ {0,1}∀i, j = 1,⋯, k (53)

si ∈ {0,1}∀i = 1,⋯, k (54)

δit, εit ≥ 0,φit,ωit ∈ {0,1}∀t = 0,⋯, n − 1 (55)

xi, yi, zi ≥ 0∀i = 1,⋯, n (56)

In the model, the formula (25) is the objective function, maximizing
the sum of the volumes of goods placed in the container. The formula
(26) ~ (32) means that there is no overlap between the goods placed in
the container; (33)–(35) indicates that the goods are entirely placed in
the container and there is no overlapping with the container; Equations
(36)–(52) are a linearized representation of the constraint (5), which
introduces 2mn binary decision variables and 2 n(m+1) continuous
variables(εit , δit) to ensure that the cargo volume after the change is
constant; The formulas (53)–(56) represent decision variable
constraints.

The model is a mixed integer programming model whose complexity
is defined by the quantity of goods, the quantity of goods with variable
sizes, and the number of segments in the linearization process. There are
6k2 +k+4mn binary decision variables and 3k+2mn continuous vari-
ables.

4. Solution framework

The above proposed linear mixed integer programming model could
be solved by solvers for small-scale problems. For large-scale problems, a
more effective method should be designed. Many previous studies have
used computational intelligence methods to solve complex combinato-
rial problems (Zhou et al., 2025). The problem studied is more complex
to solve than the previous 3D-BPP. To solve the studied problem, this
paper decomposes it into three subproblems: the construction stage, the
search stage, and the local search stage. The following content in-
troduces the proposed solution framework (see Fig. 4).

4.1. Construction stage

In the construction stage, the cargo loading sequence is given. This
stage aims to load the cargo into the given bin according to the given
sequence. In this paper, there are two types of cargoes. We first load the
fixed-size cargoes. Then, we load the variable-sized cargoes. Deepest
Bottom Left with Fill (DBLF), which was proposed by Korhan and
Mustafa (2004), is adopted for the fixed-size cargoes. After loading the
fixed-size cargoes, we will collect the cargoes that have been placed (IP).
The set of potential positions (List PP) and a collection of remaining
space (List MS). The set of variable-size goods that have not yet been
placed is I, where |I| = n. The following algorithm introduces the
method for loading variable-sized cargoes.

Algorithm 1:Size change algorithm

Input: IP, List PP and List MS
1: for i = 1 to n do
2: for j = 1 to |MS| do
3: if max vj > vi and max vj < vfit then
4:Vfit = max vj

5 fitness point = j
6:wmax = max wj

7:hmax = max hj

8: dmax = max dj

9: end if
10: end for
11: if hi > hmax then
12: hi = hmax

13: di =
vi

wihi
14: end if

(continued on next page)

Fig. 4. The proposed solution framework.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

6

(continued)

Algorithm 1:Size change algorithm

15: if di > dmaxdi > dmax then
16: di = dmax

17: hi =
vi

widi
18: end if
19: if cargo i can be placed at point j then
20: place cargo i at point j
21: update List PP and List MS by DBLF
22: end if
23: end for
24: end

In the above algorithm, Vfit is the volume of the maximum remaining
space at the optimal placement point. We assume that Vfit = M, where M
is the maximum value. max vj represents the volume of the remaining
space, where maxvj = maxwj × maxhj × max dj.

A construction heuristic algorithm based on size change is designed
to combine the above-mentioned size change scheme with the DBLF
loading strategy. First, the goods are loaded in sequence according to the
given loading order using the DBLF loading strategy. After the first
round of packing is completed, the second round of packing is carried
out, that is, the size of the unloaded variable-length goods is changed in
turn and then packed. The algorithm pseudo code is shown in algorithm
2.

Algorithm 2:Packing Strategy Based on Size Variation

Input: List PP
1: for i = 1 to n do
2: for j = 1 to |PP|
3: if goods i can be placed at potential placement point j then
4: the goods i will be placed at the potential place j
5: update List PP with DBLF
6: break
7: end if
8: end for
9: end for
10: update the collection of goods with variable sizes that are not included I
11: for i = 1 to n do
12: if cargo i is a variable-size cargo and is not placed in container C then
13: the size will be changed with algorithm 1
14: break
15: end if
16: end for
17: end

4.2. Search stage

In the construction stage, we will generate a loading configuration by
using the given loading sequence. By using the configuration generated
by the construction, we can calculate the objective function. Thus, we
can evaluate the fitness of any loading sequence. In this subsection, two
computational intelligence methods are introduced, which are shown
below.

4.2.1. Genetic algorithm
The following contents introduce the core operation in genetic al-

gorithm design.

4.2.1.1. Encoding and decoding. This paper uses a vector of integers to
denote the loading sequences, which is the encoding of the genetic al-
gorithm design. Algorithm 2 is adopted as the decoding method to
calculate the objective function.

4.2.1.2. Hybrid population initialization. This paper adopts the random
and probability-based methods to initialize the population. Random
initialization is a pure random method to generate an integer vector, and

probability-based initialization methods are also random initialization
methods, in which the cargo volume is adopted as the probability for
generating the loading sequence.

4.2.1.3. Genetic operation. In parent selection, the roulette wheel
method is adopted. In crossover operation, one-point and two-point
crossover are adopted (see Fig. 5).

Gene transposition is adopted as the mutation operation. Repair
operation is shown in Fig. 6.

4.2.2. Harmony search
We adopt a random key encoding and decoding in the harmony

search algorithm design to represent the harmony memory. Fig. 7 shows
an example of the harmony encoding and decoding method.

In the random key encoding and decoding method adopted in this
paper, the element of harmony memory is a float number. HM can be
defined as follows.

HM =

⎡

⎢
⎣

X1

X2

⋮

XHMS

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
1x1

2⋯x1
k |f(X

1)

x2
1x2

2⋯x2
k |f(X

2)

⋮
xHMS

1 xHMS
2 ⋯xHMS

k |f(XHMS)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(57)

Thus, we could use the following two equations to generate a new
element of the harmony memory for both xnew

i from and not from the
current HM, respectively.

xnew
i ←

{
xnew

i ∈ {x1
i , x

2
i , ..., x

HMS
i }

xnew
i ∈ (xL

i , x
U
i)

,HMCR (58)

xnew
i ←

{
xnew

i ± bw*rand
xnew

i
,PAR,1 − PAR (59)

rand is a random floating number generator between 0 and 1.
xnew

i = xnew
i +bw*rand when rand < 0.5, and xnew

i = xnew
i − bw*rand when

rand ≥ 0. 5. The fine-turned variable xnew
i still needs to satisfy xnew

i ∈ (xL
i ,

xU
i).

4.3. Local search stage

In the local search stage, this paper designs variable neighbourhood
search methods as a local search to improve a given solution.

4.3.1. Neighbourhood design
Based on the neighbourhood action, we need to design the neigh-

bourhood structure Nk of a given solution, where k denotes the kth

neighborhood. In this paper, the maximum value of k is 4. The following
contents introduce the N1,N2,N3 and N4.

(1) Neighbourhood structure N1: N1 is generated by a two-point swap
operation, which is similar to the two-point swap mutation
operation.

(2) Neighbourhood structure N2: N2 is generated by the basis of
fragment flipping, which is similar to the inversion mutation in
genetic algorithms. A subset of the loading sequence is chosen,
and then we invert the entire string in the subset.

(3) Neighbourhood structure N3: N3 is generated by a random
insertion operation, in which a randomly selected loading
sequence is selected and randomly inserted into a random
position.

(4) Neighbourhood structure N4: N4 is generated by rearrangement
operation. In the rearrangement operation, we first select several
piece loading sequences and insert them into the head of the
loading sequence.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

7

Fig. 8 shows four examples of N1,N2,N3 and N4.

4.3.2. Search strategies
In this paper, two search strategies are adopted, which are variable

neighborhood descent (VND) and variable neighbourhood search (VNS).

5. Experimental results

5.1. Experimental environment

The experimental environments are as follows: CPU is Intel (R) Core

(TM) i5-12500H @2.50 GHz, memory is 32 GB, and the operating sys-
tem is Windows 11. In this paper, IBM ILOG CPLEX 12.6 is used to solve
the mixed integer programming model. The hybrid heuristic algorithm
is written in C++, and the code is compiled through Dev C++ 5.11 with
the GCC compiler.

5.2. Benchmark data set

Through the investigation of the actual transportation process of live
fish in a logistics enterprise, it is found that live fish are often packed in
water bags and transported in cartons. According to the classic test data
set of the 3D packing problem, two groups of example data of different
sizes are set up. In the small-scale test case, 10 cargoes of different sizes
are randomly generated to test the performance of the mixed integer
programming model and the heuristic algorithm. The dimensions of
container C in the case are W = 569,H = 213,D = 218, W = 569,H =

213,D = 218W = 569,H = 213,D = 218. Here, the parameter gener-
ation rules for cargoes in the small-scale example are shown in Table 2:

Here, the generation rules of cargo size for a small-scale example

Fig. 5. One-point and two-point operation.

Fig. 6. Repair solutions for one-point and two-point intersections.

Fig. 7. Using floating point numbers to obtain cargo loading order.

Fig. 8. Examples of N1,N2,N3 and N4.

Table 2
Rules for generating parameters of cargo size in small-scale examples.

Range of the cargo
length

Range of the cargo
width

Range of the cargo
height

Type of
goods

[1,
1
2

W] [
2
3

H,H] [
2
3

D,D] [0,1]

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

8

come from Martello et al. (2000), whose literature proposed a variety of
rules for generating cargo data sets for 3D packing, which are widely
used as benchmark data sets. Since the generated data sets are all fixed-
size cargoes, and to distinguish between variable-size and fixed-size
cargoes, this paper randomly generates the cargo type through the
rand function, where 1 represents variable-size cargoes and 0 represents
fixed-size cargoes.

Large-scale experiments are designed to test the performance of the
algorithm in solving large-scale calculation examples. The large-scale
calculation examples come from the widely used classical test data
sets BR 1-BR 7, which were proposed by Bischoff and Ratcliff (1995).
The calculation examples in large-scale testing are randomly selected
from BR1 ~ BR7. The number of goods included in each calculation
example is between 80 and 140, and the heterogeneity of goods in the
examples, BR1 − BR7, is gradually enhanced. Similarly, BR does not
distinguish between cargo types and uses the rand function to randomly
generate the type of cargo to distinguish variable-size cargo from fixed-
size cargo.

5.3. Parameter tuning

To determine the parameters of the proposed genetic algorithm and
harmony search, the Taguchi method is adopted, which can effectively
determine the parameters of metaheuristics in the algorithm and has
been used in many previous studies (Xin et al. 2024; Zhou and Lee
2020).

5.3.1. Genetic algorithm
The Taguchi method is adopted to determine the parameters of the

genetic algorithm, including population size, crossover probability,
mutation probability, and maximum iterations. The optimal tuning pa-
rameters are shown in Table 3. The details of the Taguchi method for
determining the parameters of the genetic algorithm are shown in Ap-
pendix A.

5.3.2. Harmony search
In harmony search, we need to determine four parameters: harmony

memory size, harmony memory considering rate, pitch adjusting rate,
and maximum number of iterations. The details of the Taguchi method
for determining parameters of harmony search are shown in Appendix B.
The determined parameters of the harmony search algorithm are shown
in Table 4.

5.3.3. Perturbation factors
This paper conducted the following experiments to determine the

perturbation factor for variable neighbor search. GA represents the ge-
netic algorithm. HS represents the harmony search algorithm. M1 rep-
resents the variable neighbourhood search algorithm, of which
neighbourhood action 1 is the perturbation strategy (See Table 5).

5.4. Comparison between mathematical model and computational
intelligence methods

This subsection compares the solutions obtained by the mathemat-
ical model and computational intelligence methods.

5.4.1. Small-scale problems
Based on the characteristics of the exact algorithm, which applies to

small-scale examples and can solve them accurately, small-scale
example experiments are designed to verify the effectiveness of the
two hybrid algorithms and whether they can reach the global optimum.
Therefore, the experimental results of the two algorithms are compared
with the results of the mixed integer programming model solved by the
CPLEX solver to verify the effectiveness of the algorithm.

In the small-scale experiment, based on 10 examples, the CPLEX
solver was used to solve the mixed integer programming model. The
hybrid genetic algorithm and the hybrid harmony search algorithm are
both implemented in C++. The calculation example was run indepen-
dently 10 times, each time to obtain the average loading rate and
average running time. Since the purpose of this experiment is to verify
whether the two hybrid heuristic algorithms can obtain the global
optimal solution or not, the Gap values between algorithms and models,
and between the algorithms are calculated through formula (60) and
compared, and Gap1 & Gap 2 are regarded as the Gap values of loading
rate and the average operation time, respectively.

Gap =
l1 − l2

l1
× 100% (2)

The l in the formula represents the algorithm’s loading rate or
computation time.

The experimental results of the model and algorithm are shown in
Table 6, which includes the loading rate and running time of the mixed
integer programming model, as well as the optimal, worst, average
loading rate, and average running time of the hybrid genetic algorithm
and the hybrid harmony search algorithm.

According to the experimental results, the Hybrid integer program-
ming model, hybrid genetic algorithm and hybrid harmony search al-
gorithm are compared pairwise, obtaining the Gap value of loading rate
and operation time, respectively. The results are shown in Table 7.

The experimental results show that the hybrid genetic algorithm
(HGA) can get the global optimal solution every time, proving the sta-
bility of HGA. As can be seen from Table 7, the medians of the three
comparisons are all 0, which shows that the hybrid integer programming
model constructed in this paper and the variable size optimization al-
gorithm designed can obtain the global optimal solution, and the cor-
rectness and effectiveness of the model and algorithm are verified. At the
same time, the average running times of the model and the two algo-
rithms are 3.83 s, 1.49 s, and 0.47 s, respectively. And the value of the
hybrid integer programming model Vs the hybrid genetic algorithm is
60.32 %, the value of the hybrid integer programming model Vs the
hybrid harmony search algorithms is 87.37 %, and the value of the
hybrid genetic algorithm Vs the hybrid harmony search algorithm is
65.78 %. Compared with the mixed integer programming model, both of
the two variable-size optimization algorithms can obtain the optimal
solution in a shorter time, with good convergence, and obtain the ideal
loading plan in a shorter time.

In a word, in the small-scale example experiments, the model and
algorithms designed in this paper are able to obtain the global optimal
solution within a certain period of time, verifying the correctness of the
model and algorithm. From the perspective of running time, the hybrid
genetic algorithm and the hybrid harmony search algorithm can be used
to obtain the optimal solution in a relatively short time, which shows the
effectiveness of the two algorithms.

Table 3
Parameter setting of genetic algorithm.

Parameters of the genetic algorithm Level

Population size (P) 30
Crossover probability (Pc) 0.8
Mutation probability (Pm) 0.25
Iterations (Iter) 300

Table 4
Parameter setting of harmony search algorithm.

Parameters of the harmony search algorithm level

Harmony Memory Size (HMS) 50
Harmony Memory Considering Rate (HMCR) 0.85
Pitch Adjusting Rate (PAR) 0.25
Maximum number of Iterations (MaxIter) 220

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

9

5.4.2. Large-scale problems
In large-scale examples, with the increase of the number of goods,

the difficulty of the exact algorithm, i.e., the mixed integer program-
ming model, increases, and the running time increases exponentially,
resulting in the model’s optimal solution not being obtained within a
specific period of time. Therefore, in large-scale comparative experi-
ments, this paper did not use CPLEX to solve the hybrid integer pro-
gramming model as a contrast, but only compared the hybrid harmony
search algorithm with the hybrid genetic algorithm. Similarly, due to the
increase in the number of goods, to ensure the stability of the heuristic
algorithm, this paper independently runs 12 groups of large-scale ex-
amples 10 times each time, takes the average of the loading rate and

running time, and then compares the results of the heuristic algorithm
with the results of the hybrid integer programming model, compares the
differences between the two algorithms in average loading rate and
average running time to calculate the results between the two algo-
rithms. The results of the large-scale experiment are shown in Table 8.

The table above lists the calculation results of 12 large-scale exam-
ples calculated by the hybrid genetic algorithm and the hybrid harmony
search algorithm, mainly including the optimal loading rate, the worst
loading rate, the average loading rate, and the average running time.
Gap1 and Gap2 come out through calculation. We can see that the
average loading rates of the hybrid harmony search algorithm and the
hybrid genetic algorithm are 76.65 % and 81.89 %, respectively. The
hybrid genetic algorithm has a higher solving ability than the hybrid
harmony search algorithm, with an average value of − 6.84 %, which
verifies the convergence and effectiveness of the hybrid genetic algo-
rithm. From the comparison of running time, the average running time
of the hybrid harmony search algorithm is 235.43 s, while the average
running time of the hybrid genetic algorithm is 127.81 s, with an
average value of 45.71 %. Through the above comparison, it is found
that compared with the hybrid harmony search algorithm, the hybrid
genetic algorithm significantly shortens the solution time and can obtain
a better solution in a shorter time. It has good convergence and can
quickly provide customers with an ideal loading solution.

The iterative curve of the two algorithms is plotted to compare the
convergence of the hybrid genetic algorithm and the hybrid harmony
algorithm. The two algorithms have different internal designs, so the
maximum number of iterations set by the algorithm cannot be used as
the independent variable. Here, the fitness evaluation times represent
the independent variable, and the iteration curve, as shown in Fig. 9, is
drawn, with the target value representing the dependent variable. Due
to limited space, this article will show the algorithm iteration curves of

Table 5
Experimental results of perturbation strategy.

Methods Example 1 Example 2 Example 3 Example 4 Example 5 Average loading rate (%) Running time (s)

Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%)

GA M1 86.54 86.19 80.54 87.52 80.92 84.34 94.49
M2 86.13 86.11 80.15 87.41 80.59 84.08 104.05
M3 86.80 85.94 79.77 87.66 81.05 84.25 90.17
M4 86.13 85.77 79.35 87.81 80.55 83.92 98.17

HS M1 79.47 83.46 76.46 81.53 77.24 79.63 193.98
M2 79.85 83.88 76.34 82.57 76.62 79.85 231.52
M3 78.39 83.88 74.94 82.85 77.34 79.48 227.21
M4 77.60 83.88 75.55 80.77 79.97 79.55 327.18

Table 6
Experimental results of a small-scale example.

Example Hybrid integer programming model Hybrid genetic algorithm Hybrid harmony search algorithm

Loading rate/% Running time/s Loading rate/% Running time/s Loading rate/% Running time/s

Minimum Maximum Average Minimum Maximum Average

test_1 90.85 2.92 90.85 90.85 90.85 1.39 84.08 90.85 84.92 0.54
test_2 74.52 4.71 74.52 74.52 74.52 1.35 70.77 74.52 72.75 0.55
test_3 72.73 4.58 72.73 72.73 72.73 1.04 67.17 72.73 69.77 0.48
test_4 83.63 4.56 83.63 83.63 83.63 1.50 79.21 83.63 80.10 0.38

Example Hybrid integer programming model Hybrid genetic algorithm Hybrid harmony search algorithm
Loading rate/% Running time/s Loading rate/% Running time/s Loading rate/% Running time/s

Minimum Maximum Average Minimum Maximum Average
test_5 84.35 3.32 84.35 84.35 84.35 1.34 84.35 84.35 84.35 0.46
test_6 79.02 3.22 79.02 79.02 79.02 2.05 79.02 79.02 79.02 0.43
test_7 76.58 3.44 76.58 76.58 76.58 1.08 72.65 76.58 74.69 0.39
test_8 80.27 4.55 80.27 80.27 80.27 2.13 80.27 80.27 80.27 0.40
test_9 84.12 4.09 84.12 84.12 84.12 2.18 84.12 84.12 84.12 0.57
test_10 83.17 2.86 83.17 83.17 83.17 0.84 83.17 83.17 83.17 0.46
Average 80.93 3.83 80.93 80.93 80.93 1.49 72.69 80.93 79.32 0.47

Table 7
Gap value comparison.

Example Hybrid integer
programming model
VsHybrid genetic
algorithm

Hybrid integer
programming model
VsHybrid harmony
search algorithms

Hybrid Inheritance
Algorithm VsHybrid
harmony search
algorithms

Gap(%) Gap(%) Gap(%)

Gap1 Gap2 Gap1 Gap2 Gap1 Gap2

test_1 0 52.40 0 81.51 0 61.15
test_2 0 71.34 0 88.32 0 59.26
test_3 0 77.29 0 89.52 0 53.85
test_4 0 67.11 0 91.67 0 74.67
test_5 0 59.64 0 86.14 0 65.67
test_6 0 36.34 0 86.65 0 79.02
test_7 0 68.60 0 88.66 0 63.89
test_8 0 53.19 0 91.21 0 81.22
test_9 0 46.70 0 86.06 0 73.85
test_10 0 70.63 0 83.92 0 45.24
average 0 60.32 0 87.37 0 65.78

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

10

the following five examples.

5.5. Ablation experiment

In order to verify the impact of the variable neighbourhood search
algorithm on the performance of the genetic algorithm, an ablation
experiment was designed to compare the performance changes of the
hybrid genetic algorithm before and after the combination of the genetic
algorithm and the variable neighbourhood search algorithm, and the
impact of VND on the algorithm. VND and VNS are combined with the
genetic algorithm separately and form two algorithms, GA + VNS and
GA + VND. Through the experiments, the algorithm iteration curve
diagram is obtained after the genetic algorithm is combined with VNS
and VND. As is shown in Fig. 10, the three curves represent the iteration
curves of the GA, GA + VND, and GA + VNS algorithms, respectively.
The vertical axis represents the target value of the optimal individual in
the population, and the horizontal axis represents the fitness evaluation
times. Due to limited space, this paper will show the algorithm iteration
curve diagrams of the following five examples.

It can be found that the fitness evaluation times of the genetic al-
gorithm without a local search strategy are far less than those of the
other two algorithms. Although the convergence of the algorithm is
good, it is easy to fall into a local optimum and not obtain the global
optimal solution. Due to the lack of a perturbation strategy, the GA +
VND algorithm also fell into the local optimum early, and the conver-
gence speed is not as fast as the genetic algorithm; As for the GA + VNS
algorithm combined with VNS, its fitness evaluation times are far more
than that of the other two algorithms, and the quality of its solution is
significantly improved, reflecting the optimization of the algorithm.
Experiments have proved that the hybrid genetic algorithm combined
with the variable neighbourhood search algorithm can not only improve
the algorithm’s solving ability through multiple neighbourhood struc-
tures, but also effectively prevent the algorithm from falling into the
local optimum through the perturbation strategy. Therefore, the vari-
able neighbourhood search algorithm designed in this paper has a sig-
nificant impact on improving the solution ability of the genetic
algorithm.

5.6. Management insights

This paper proposed a solution method for packing variable-sized
fresh products into a fixed-sized container. This solution method could
help the decision makers to pack variable-sized fresh products to reduce
the reliance on human judgment, which can be subjective and time-
consuming, especially when dealing with a large variety of product
sizes and bin configurations.

The method’s ability to handle the variability in fresh-product

lengths is a key strength. Fresh produce comes in diverse shapes and
sizes, and packing it efficiently has always been a headache for logistics
managers. The new approach takes into account these variations and
provides optimized packing solutions, ensuring that the available bin
space is utilized to its maximum potential. This leads to improved space
utilization rates, which can be a game-changer in an industry where
transportation and storage costs are major cost drivers.

For the logistics managers, in actual logistics work scenarios, they
may get optimized cargo loading plans via user-friendly software in-
terfaces developed based on this framework, by inputting information
such as the size, quantity, whether the goods are variable in size, and the
specifications of the container, ultimately improving the loading rate of
containers and reducing transportation costs. The method can be used as
a tool to enforce sustainable packaging regulations for the policymakers
as well. For an example, the policymakers could encourage and super-
vise related enterprises to follow the methods in the framework to design
better packaging plans while meeting the needs of product preservation,
avoiding materials waste.

6. Conclusions

Fresh production is crucial for the agricultural and food industries,
bolstering the supply chain and generating income for farmers. In the
domain of green logistics, the packing of fresh produce is of utmost
importance. Fresh products typically come in a variety of three-
dimensional dimensions for packaging. This study focuses on the prob-
lem of packing fresh products, some of which have diverse three-
dimensional sizes, into fixed-size bins.

To address this, we first formulate the problem using a nonlinear
mathematical model. Subsequently, a piecewise linearization approxi-
mation approach is employed to linearize the model. For solving large-
scale instances of the problem, we propose a three-phase computational
intelligence framework integrated with variable neighbourhood search.
One of the advantages of this framework is its flexibility, as it can
incorporate any computational intelligence method. In this study, we
implement the proposed framework using a genetic algorithm and
harmony search. Extensive experiments are carried out to validate the
performance of the proposed solution framework. The experimental
results demonstrate the effectiveness and efficiency of the proposed
approach, providing valuable insights for optimizing fresh product
packing in green logistics.

Despite the advantages of the computational intelligence method
proposed for packing variable-length fresh products into fixed-size bins,
several limitations must be acknowledged to provide a comprehensive
understanding of its practical application and potential drawbacks. (1)
This paper only considered one fixed-size bin. More bins could be
considered. (2) In the fresh-produce industry, obtaining precise and up-

Table 8
Large-scale example experimental results.

Calculation example Hybrid harmony search algorithm Hybrid genetic algorithm Gap/%

Loading rate/% Running time/s Loading rate/% Gap1 Gap2

Minimum Maximum Average Minimum Maximum Average

BR1-1 76.82 79.42 77.98 292.19 85.83 87.12 86.83 155.35 − 11.35 46.83
BR1-2 82.21 84.71 82.96 459.36 85.94 87.61 86.15 175.54 − 3.84 61.79
BR2-1 74.45 77.42 75.47 362.16 78.39 82.32 80.83 39.38 − 7.10 89.13
BR2-2 80.63 81.72 80.98 264.95 87.29 87.71 87.49 114.50 − 8.04 56.78
BR3-1 75.99 78.48 76.80 92.26 80.06 84.79 81.84 90.85 − 6.56 1.53
BR3-2 74.59 79.49 77.50 123.00 81.72 86.17 83.67 112.90 − 7.96 8.21
BR4-1 75.39 76.20 75.84 139.26 80.20 82.01 81.00 78.35 − 6.81 43.74
BR4-2 73.50 76.19 74.34 193.02 79.19 82.64 80.87 152.10 − 8.79 21.20
BR5-1 74.39 76.86 75.64 97.71 76.26 79.31 77.46 70.48 − 2.41 27.87
BR5-2 72.07 75.06 73.69 232.23 76.30 82.70 79.28 207.26 − 7.59 10.75
BR6-1 73.52 75.53 74.57 285.54 76.88 77.57 77.06 165.24 − 3.33 42.13
BR7-1 73.79 74.26 74.04 283.42 77.38 82.55 80.22 171.73 − 8.35 39.41
average 75.61 77.95 76.65 235.43 80.45 83.54 81.89 127.81 ¡6.84 45.71

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

11

to-date data on product sizes, shapes, and weights can be challenging.
More constraints could be considered for fresh products.

Future studies could consider the following aspects: (1) Reinforce-
ment learning could be adopted for solving larger case problems. (2)
More application of fresh products could be explored.

CRediT authorship contribution statement

Yanjie Zhou: Validation, Methodology, Writing – original draft,
Project administration, Writing – review & editing, Supervision,
Conceptualization. Xiaojin Wang: Writing – original draft,

Investigation, Methodology, Visualization. Hang Wang: Software,
Formal analysis, Conceptualization, Methodology. Jiang Xu: Writing –
review & editing, Methodology, Supervision, Conceptualization,
Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research was supported by the National Natural Science

Fig. 9. Iterative curve of the hybrid genetic algorithm and the hybrid har-
mony algorithm.

Fig. 10. Iteration curve of algorithms.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

12

Foundation of China (72201252).

Appendix

Appendix A:. Nonlinear mixed integer programming model

The nonlinear mixed integer programming model could be obtained as follows.

PNMax
∑n

i=1visi

VC
(A1)

⎧
⎨

⎩

0 ≤ xi ≤ W − wi
0 ≤ yi ≤ H − hi
0 ≤ zi ≤ D − di.

(A2)

lij+rij + uij + oij + bij + fij ≥ 1 (A3)

lij = 1⇒ xi +wi ≤ xj, rij = 1⇒ xj +wj ≤ xi (A4)

uij = 1⇒ yi + hi ≤ yj, oij = 1⇒ yj + hj ≤ yi

bij = 1⇒ zi + di ≤ zj, fij = 1⇒ zj + dj ≤ zi

vi

wi
= hʹ

i × dʹ
i = hi × di (A5)

hLB
i = hi/2, hUB

i = hi × di (A6)

dLB
i = hi/2, dUB

i = hi × di

Appendix B:. Genetic algorithm design

Parameter selection of genetic algorithm

The main parameters to be debugged in the genetic algorithm include population size (P), cross probability (Pc), mutation variation (Pm), and
maximum number of algorithm iterations (Iter). Through prior algorithmic testing, five different levels of parameters, considered to be potentially
optimal levels, have been designed. The overall parameter level design is shown in Table 9.

Table 9
Genetic algorithm parameter levels.

Serial number Parameters of the genetic algorithm

P Pc Pm Iter

1 20 0.5 0.05 140
2 30 0.6 0.1 180
3 40 0.7 0.15 220
4 50 0.8 0.2 260
5 60 0.9 0.25 300

Based on the above genetic algorithm parameter level table, this paper uses the Taguchi method to set up an
orthogonal matrix table to design an experiment. As shown in Table 10.

Table 10
Experimental design of genetic algorithm.

Programme Parameters of the genetic algorithm

P Pc Pm Iter

1 20 0.5 0.05 140
2 20 0.6 0.1 180
3 20 0.7 0.15 220
4 20 0.8 0.2 260
5 20 0.9 0.25 300
6 30 0.5 0.1 220
7 30 0.6 0.15 260
8 30 0.7 0.2 300
9 30 0.8 0.25 140
10 30 0.9 0.05 180

(continued on next page)

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

13

Table 10 (continued)

Programme Parameters of the genetic algorithm

P Pc Pm Iter

11 40 0.5 0.15 300
12 40 0.6 0.2 140
13 40 0.7 0.25 180
14 40 0.8 0.05 220
15 40 0.9 0.1 260
16 50 0.5 0.2 180
17 50 0.6 0.25 220
18 50 0.7 0.05 260
19 50 0.8 0.1 300
20 50 0.9 0.15 140
21 60 0.5 0.25 260
22 60 0.6 0.05 300
23 60 0.7 0.1 140
24 60 0.8 0.15 180
25 60 0.9 0.2 220

In the orthogonal experiment, five large-scale examples were tested. The algorithm ran each calculation example
10 times independently, and the average loading rate and average run time came out. The calculation results are
shown in Table 11:

Table 11
Results of genetic algorithm orthogonal experiment.

Programme BR1-1 BR1-2 BR2-1 BR2-2 BR3-1 Average loading rate (%) Running time (s)

Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%)

1 84.71 85.36 75.47 87.36 78.41 82.26 0.75
2 84.10 85.48 75.79 87.51 80.35 82.65 1.14
3 84.81 85.86 78.88 87.60 79.82 83.39 1.53
4 84.61 85.86 76.98 87.68 80.79 83.18 1.88
5 85.07 85.99 78.92 87.70 79.81 83.50 2.10
6 85.31 85.44 77.71 87.52 79.10 83.02 1.94
7 85.42 86.07 76.31 87.61 79.74 83.03 1.37
8 85.63 86.03 79.13 87.69 80.82 83.86 1.81
9 84.59 85.53 76.53 87.42 79.11 82.64 2.53
10 85.35 85.78 77.42 87.57 78.09 82.84 2.60
11 85.48 86.11 78.31 87.60 79.85 83.47 0.94
12 83.28 85.23 74.55 87.48 77.48 81.60 1.33
13 83.78 85.52 76.08 87.55 79.96 82.58 1.97
14 84.95 85.73 77.38 87.62 79.19 82.97 2.34
15 86.31 85.90 77.14 87.54 79.30 83.24 2.64
16 82.94 85.44 75.32 87.42 78.09 81.84 1.12
17 84.22 85.69 76.86 87.57 78.83 82.63 1.65
18 84.35 85.36 77.85 87.46 78.73 82.75 2.18
19 85.77 86.28 77.90 87.59 79.38 83.38 2.54
20 83.26 85.27 74.87 87.36 77.05 81.56 2.82
21 84.55 86.03 76.95 87.44 77.95 82.58 1.10
22 84.53 85.69 77.13 87.60 78.37 82.66 1.78
23 82.06 85.19 74.53 87.36 77.35 81.30 2.28
24 83.97 85.78 75.45 87.36 78.60 82.23 2.75
25 83.27 85.44 75.54 87.41 77.88 81.91 2.90

In order to determine the optimal parameter level configuration of genetic algorithm, Taguchi method is used to analyse the large-the-better S/N
ratio with the formula and main effect diagram of signal-to-noise ratio (SNR) are shown in (61).

S/N = log10

(∑
UF2

n

)

(61)

In the formula (61), UF represents the objective function, where the average load.
rate is represented, and n represents the number of times each calculation example runs separately.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

14

Fig. 11. Main effect diagram of signal-to-noise ratio (SNR).

Appendix C:. Harmony search design

Parameter selection of harmony search algorithm

Similarly, the Taguchi method is also used to determine the parameters of the harmonic search algorithm. The main parameters involved in the
harmony search algorithm are the harmonic memory size (HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR), and
maximum number of iterations (MaxIter). First, based on previous algorithm tests, five levels of parameters were designed as potential optimal level
parameters. The overall parameters are shown in Table 12.

Table 12
Parameters level of harmony search algorithm.

Serial number Parameters of the harmonic search algorithm

HMS HMCR PAR MaxIter

1 20 0.55 0.05 140
2 30 0.65 0.1 160
3 40 0.75 0.15 180
4 50 0.85 0.2 200
5 60 0.95 0.25 220

Based on the above parameter level table of the harmonic search algorithm, an orthogonal matrix table is set to design
the experiment, as shown in Table 13.

Table 13
Experimental design of harmony search algorithm.

Parameters of the harmonic search algorithm

HMS HMCR PAR MaxIter

1 20 0.55 0.05 140
2 20 0.65 0.1 160
3 20 0.75 0.15 180
4 20 0.85 0.2 200
5 20 0.95 0.25 220
6 30 0.55 0.1 180
7 30 0.65 0.15 200
8 30 0.75 0.2 220
9 30 0.85 0.25 140
10 30 0.95 0.05 160
11 40 0.55 0.15 220
12 40 0.65 0.2 140
13 40 0.75 0.25 160
14 40 0.85 0.05 180
15 40 0.95 0.1 200
16 50 0.55 0.2 160
17 50 0.65 0.25 180
18 50 0.75 0.05 200
19 50 0.85 0.1 220
20 50 0.95 0.15 140
21 60 0.55 0.25 200

(continued on next page)

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

15

Table 13 (continued)

Parameters of the harmonic search algorithm

HMS HMCR PAR MaxIter

22 60 0.65 0.05 220
23 60 0.75 0.1 140
24 60 0.85 0.15 160
25 60 0.95 0.2 180

In the orthogonal experiment, five large-scale examples were tested. The algorithm ran each example 10 times
independently and took its loading rate and running time. The calculation results are shown in Table 14.

Table 14
Orthogonal experiment results of harmony search algorithm.

BR1-1 BR1-2 BR2-1 BR2-2 BR3-1 Average loading rate (%) Running time (s)

Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%) Loading rate (%)

1 76.12 76.38 73.57 79.22 74.01 75.86 4.05
2 77.66 82.25 74.46 80.24 75.40 78.00 10.02
3 78.02 83.25 75.87 80.73 75.29 78.63 9.01
4 77.53 82.92 75.28 80.17 75.39 78.26 11.48
5 77.49 83.09 75.41 80.84 74.65 78.30 15.87
6 76.84 81.71 75.01 80.10 74.25 77.58 11.95
7 77.76 82.42 75.61 80.19 75.46 78.29 14.54
8 78.11 83.13 76.12 81.31 76.27 78.99 18.21
9 78.39 83.59 74.83 81.31 75.79 78.78 13.04
10 77.80 82.63 75.89 80.46 75.59 78.47 14.35
11 77.69 82.25 75.05 80.71 75.14 78.17 20.04
12 78.07 82.05 74.45 79.43 74.64 77.73 11.73
13 78.32 82.25 75.01 80.16 76.09 78.37 12.60
14 79.03 83.50 75.61 81.22 76.72 79.22 21.75
15 79.06 83.83 76.35 81.14 75.24 79.12 33.31
16 77.65 82.21 75.73 80.24 74.89 78.14 19.50
17 79.24 82.84 77.86 80.89 77.36 79.64 26.10
18 79.24 83.09 76.46 80.84 76.53 79.23 23.05
19 78.75 83.21 76.34 81.76 76.76 79.36 24.47
20 77.58 82.59 74.94 80.31 76.02 78.29 13.87
21 78.16 82.75 75.55 80.50 75.90 78.57 24.89
22 78.68 83.38 77.42 80.86 75.16 79.10 28.84
23 78.55 82.46 75.97 80.55 76.27 78.76 21.30
24 78.66 83.88 76.47 81.13 75.43 79.11 28.57
25 77.53 83.79 76.64 81.20 75.05 78.84 28.85

The signal–noise ratio is calculated according to formula (61), and draw the main effect diagram of the SNR is plotted. The results are shown in
Fig. 12 Main effect diagram of SNR for harmony search algorithm.

Fig. 12. Main effect diagram of SNR for harmony search algorithm.

Data availability

Data will be made available on request.

References

Alonso, M. T., Alvarez-Valdes, R., Iori, M., & Parreño, F. (2019). Mathematical models for
multi container loading problems with practical constraints. Computers & Industrial
Engineering, 127, 722–733.

Alonso, M. T., Alvarez-Valdes, R., & Parreño, F. (2019). A GRASP algorithm for multi
container loading problems with practical constraints. 4OR, 18(1), 49–72.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

16

http://refhub.elsevier.com/S0360-8352(25)00596-0/h0005
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0005
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0005
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0010
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0010

Ananno, A. A., & Ribeiro, L. (2024). A multi-heuristic algorithm for multi-container 3-
d bin packing problem optimization using real world constraints. IEEE Access, 12,
42105–42130.

Bischoff, E. E., & Ratcliff, M. S. W. (1995). Issues in the development of approaches to
container loading. Omega, 23(4), 377–390.

Ceschia, S., & Schaerf, A. (2011). Local search for a multi-drop multi-container loading
problem. Journal of Heuristics, 19(2), 275–294.

Chen, C. S., Lee, S. M., & Shen, Q. S. (1995). An analytical model for the container
loading problem. European Journal of Operational Research, 80(1), 68–76.

Coffman, E. G., Jr., Garey, M. R., Johnson, D. S., & Tarjan, R. E. (1980). Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on
Computing, 9(4), 808–826.

Crainic, T. G., Perboli, G., & Tadei, R. (2008). Extreme point-based heuristics for three-
dimensional bin packing. INFORMS Journal on Computing, 20(3), 368–384.

Egeblad, J., & Pisinger, D. (2009). Heuristic approaches for the two- and three-
dimensional knapsack packing problem. Computers & Operations Research, 36(4),
1026–1049.

Ekici, A. (2021). Bin packing problem with conflicts and item fragmentation. Computers
& Operations Research, 126, Article 105113.

Erbayrak, S., Özkır, V., & Mahir Yıldırım, U. (2021). Multi-objective 3D bin packing
problem with load balance and product family concerns. Computers & Industrial
Engineering, 159, Article 107518.

Faroe, O., Pisinger, D., & Zachariasen, M. (2003). Guided local search for the three-
dimensional bin-packing problem. INFORMS Journal on Computing, 15(3), 267–283.

Fleszar, K. (2022). A branch-and-bound algorithm for the quadratic multiple knapsack
problem. European Journal of Operational Research, 298(1), 89–98.

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a
routing and container loading problem. Transportation Science, 40(3), 342–350.

George, J. A., & Robinson, D. F. (1980). A heuristic for packing boxes into a container.
Computers & Operations Research, 7(3), 147–156.

Hifi, M., Kacem, I., Negre, S., & Wu, L. (2010). Heuristics algorithms based on a linear
programming for the three-dimensional bin-packing problem. IFAC Proceedings
Volumes, 43(8), 72–76.

Jiang, Y., Cao, Z., & Zhang, J. (2021). Learning to solve 3-d bin packing problem via deep
reinforcement learning and constraint programming. IEEE Transactions on
Cybernetics, 53(5), 1–12.

Junqueira, L., Morabito, R., & Sato Yamashita, D. (2012). Three-dimensional container
loading models with cargo stability and load bearing constraints. Computers &
Operations Research, 39(1), 74–85.

Kang, Z., Guan, Y., Wang, J., & Chen, P. (2024). Research on genetic algorithm
optimization with fusion tabu search strategy and its application in solving three-
dimensional packing problems. Symmetry, 16(4), 449.

Kilincci, O., & Medinoglu, E. (2021). An efficient method for the three-dimensional
container loading problem by forming box sizes. Engineering Optimization, 54(6),
1–16.

Karabulut, K., & İnceoğlu, M. M. (2004). A hybrid genetic algorithm for packing in 3d
with deepest bottom left with fill method. Lecture Notes in Computer Science, 3261,
441–450.

Liu, Q., Cheng, H., Tian, T., Wang, Y., Leng, J., Zhao, R., Zhang, H., & Wei, L. (2021).
Algorithms for the variable-sized bin packing problem with time windows.
Computers & Industrial Engineering, 155, Article 107175.

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing problem.
Operations Research, 48(2), 256–267.

Moon, I., & Nguyen, T. V. (2013). Container packing problem with balance constraints.
OR Spectrum, 36(4), 837–878.

Nascimento, O. X. D., Alves de Queiroz, T., & Junqueira, L. (2021). Practical constraints
in the container loading problem: Comprehensive formulations and exact algorithm.
Computers & Operations Research, 128, Article 105186.

Paquay, C., Schyns, M., & Limbourg, S. (2014). A mixed integer programming
formulation for the three-dimensional bin packing problem deriving from an air
cargo application. International Transactions in Operational Research, 23(1–2),
187–213.

Que, Q., Yang, F., & Zhang, D. (2023). Solving 3D packing problem using Transformer
network and reinforcement learning. Expert Systems with Applications, 214, Article
119153.

Ren, J., Tian, Y., & Sawaragi, T. (2011). A priority-considering approach for the multiple
container loading problem. International Journal of Metaheuristics, 1(4), 298.

Saraiva, R. D., Nepomuceno, N., & Pinheiro, P. R. (2015). A layer-building algorithm for
the three-dimensional multiple bin packing problem: A case study in an automotive
company. IFAC-PapersOnLine, 48(3), 490–495.

Sheng, L., Xiuqin, S., Changjian, C., Hongxia, Z., Dayong, S., & Feiyue, W. (2017).
Heuristic algorithm for the container loading problem with multiple constraints.
Computers & Industrial Engineering, 108, 149–164.

OsogamiH, T., & Okano. (2003). Local search algorithms for the bin packing problem and
their relationships to various construction heuristics. Journal of Heuristics, 9(1),
29–49.

Wang, B., Lin, Z., Kong, W., & Dong, H. (2025). Bin packing optimization via deep
reinforcement learning. IEEE Robotics And Automation Letters, 10(3), 2542–2549.

Xin, J., Yuan, Q., D’Ariano, A., Guo, G., Liu, Y., & Zhou, Y. (2024). Dynamic unbalanced
task allocation of warehouse AGVs using integrated adaptive large neighbourhood
search and Kuhn–Munkres algorithm. Computers & Industrial Engineering, 195, Article
110410.

Zhang, B., Yao, Y., Kan, H. K., & Luo, W. (2024). A GAN-based genetic algorithm for
solving the 3D bin packing problem. Scientific Reports, 14(1), 7775.

Zhang, Z., Denton, B. T., & Xie, X. (2020). Branch and price for chance-constrained bin
packing. Informs Journal on Computing, 32(3), 547–564.

Zhao, H., She, Q., Zhu, C., Yang, Y., & Xu, K. (2021). Online 3D bin packing with
constrained deep reinforcement learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(1), 741–749.

Zhao, J., Zhou, L., Wang, F., Liu, H., & Yang, J. (2022). Multibox three-dimensional
packing problems for heterogeneous extrudable items. Mathematical Problems in
Engineering, 2022, 1–12.

Zhou, Y., He, Z., Liu, C., Zhang, J., Li, Y., & Wang, Y. (2025). Less-than-container cargo
scheduling for China railway express along belt and road initiative routes.
Transportation Research Part E: Logistics and Transportation Review, 197, Article
104066.

Zhou, Y., & Lee, G. M. (2020). A bi-objective medical relief shelter location problem
considering coverage ratios. International Journal of Industrial Engineering: Theory,
Applications and Practice, 27(6), 971–988.

Zhu, W., Oon, W.-C., Lim, A., & Weng, Y. (2012). The six elements to block-building
approaches for the single container loading problem. Applied Intelligence, 37(3),
431–445.

Y. Zhou et al. Computers & Industrial Engineering 209 (2025) 111450

17

http://refhub.elsevier.com/S0360-8352(25)00596-0/h0015
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0015
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0015
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0020
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0020
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0025
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0025
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0030
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0030
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0035
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0035
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0035
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0040
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0040
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0045
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0045
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0045
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0050
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0050
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0055
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0055
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0055
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0060
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0060
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0065
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0065
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0070
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0070
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0075
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0075
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0080
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0080
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0080
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0085
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0085
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0085
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0090
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0090
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0090
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0095
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0095
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0095
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0100
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0100
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0100
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0105
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0105
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0105
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0110
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0110
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0110
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0115
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0115
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0120
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0120
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0125
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0125
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0125
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0130
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0130
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0130
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0130
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0135
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0135
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0135
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0140
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0140
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0145
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0145
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0145
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0150
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0150
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0150
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0155
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0155
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0155
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0160
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0160
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0165
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0165
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0165
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0165
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0175
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0175
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0180
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0180
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0185
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0185
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0185
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0190
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0190
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0190
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0195
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0195
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0195
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0195
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0200
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0200
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0200
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0205
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0205
http://refhub.elsevier.com/S0360-8352(25)00596-0/h0205

	A computational intelligence method to solve the problem of packing variable-length fresh products into fixed-size bins
	1 Introduction
	2 Literature review
	2.1 Application research on the three-dimensional bin packing problem
	2.2 Algorithm of the three-dimensional bin packing problem

	3 Mathematical model
	3.1 Problem descriptions
	3.2 Nonlinear mixed integer programming model
	3.2.1 Cargo geometric constraints
	3.2.2 Constraints on the non-overlapping of cargo
	3.2.3 Constraints on the constant volume of cargo

	3.3 Linear mixed integer programming model

	4 Solution framework
	4.1 Construction stage
	4.2 Search stage
	4.2.1 Genetic algorithm
	4.2.1.1 Encoding and decoding
	4.2.1.2 Hybrid population initialization
	4.2.1.3 Genetic operation

	4.2.2 Harmony search

	4.3 Local search stage
	4.3.1 Neighbourhood design
	4.3.2 Search strategies

	5 Experimental results
	5.1 Experimental environment
	5.2 Benchmark data set
	5.3 Parameter tuning
	5.3.1 Genetic algorithm
	5.3.2 Harmony search
	5.3.3 Perturbation factors

	5.4 Comparison between mathematical model and computational intelligence methods
	5.4.1 Small-scale problems
	5.4.2 Large-scale problems

	5.5 Ablation experiment
	5.6 Management insights

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix Acknowledgments
	Appendix A: Nonlinear mixed integer programming model

	Appendix B: Genetic algorithm design
	Parameter selection of genetic algorithm

	Appendix C: Harmony search design
	Parameter selection of harmony search algorithm

	Data availability
	References

