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 A B S T R A C T

Automated guided vehicles (AGVs) are essential for manufacturing logistics. However, despite their reliance on 
electric power, the coordination of their routes with charging operations has received little attention, and the 
productivity remains to be improved. To address this issue, this paper proposes a new methodology for routing 
AGVs that incorporates fast-charging operations within the production cycle to guarantee (non-stop production. 
We establish a new mixed-integer linear programming (MILP) model and develop a customized adaptive 
large neighborhood search (ALNS) to tackle its computational complexity. Specifically, we design a charging 
insertion heuristic to optimize the recharging strategy and construct feasible solutions. We compare our 
computational results with those obtained from several state-of-the-art heuristics and metaheuristic algorithms. 
Our findings demonstrate that the proposed ALNS algorithm outperforms existing methods in terms of both 
stability and solution quality when addressing this problem.
1. Introduction

Automated Guided Vehicles (AGVs) are autonomous robots used 
to transport materials, thereby enhancing production efficiency and 
reducing manual intervention. Exemplified by Industry 4.0 (Mehami, 
Nawi, & Zhong, 2018), AGVs play a crucial role in this setting and 
have been extensively deployed in various industrial applications such 
as container terminals (Angeloudis & Bell, 2010; Cai, Li, Luo, & He, 
2023), warehouses (Luo, Zhao, Zhu, & Sun, 2023; Niu, Wu, Xing, 
Wang, & Zhang, 2023), and manufacturing (Xin, Lu, Wang, & Deng, 
2025; Xin, Wu, D’Ariano, Negenborn, & Zhang, 2023). In manufactur-
ing applications, AGVs are essential for logistics, ensuring the timely 
delivery of materials required during the manufacturing process. With 
the expansion of the production scale, the scheduling system must 
effectively allocate materials to meet these challenges, leading to an 
increased frequency of orders and a growing demand for materials.

The production cycle is considered an efficient and vital tool in mod-
ern manufacturing. It offers a systematic approach to managing com-
plex manufacturing processes and achieving operational excellence (Li 
et al., 2022; Zou, Pan, Meng, Gao, & Wang, 2020). Specifically, it 
decomposes the overall manufacturing process within the workshop 
into several continuous production phases and addresses order uncer-
tainty to attain operational excellence. Within such production cycles, 
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the necessary materials must be transported by the AGVs promptly 
to feed the required machines, and the related routing problems and 
algorithms have been thoroughly investigated (Chi, Sang, Zhang, Duan, 
& Zou, 2024; Zou, Pan, Wang, Miao, & Peng, 2022).

Yet, in the context of AGV routing for manufacturing applications, 
research on charging operations has received little attention, and pro-
ductivity remains to be improved. For each production cycle, the 
existing literature commonly assumes that AGVs recharge only after 
completing all assigned tasks, overlooking the impact of energy con-
straints (Zou et al., 2023). As charging operations require considerable 
time, this assumption renders some AGVs, whose remaining battery lev-
els upon returning to the warehouse are insufficient for redeployment 
in subsequent production cycles, unavailable until recharging processes 
have been fully completed, thereby leading to low AGV utilization 
in certain production cycles. This limitation occasionally escalates to 
extreme scenarios where simultaneous charging demands from multiple 
AGVs disrupt operational continuity due to vehicle shortages, reducing 
productivity or even halting production.

Thanks to the fast charging technology (Zhang et al., 2022), it 
is possible to seamlessly incorporate the charging operations during 
the transportation phase for routing the electric AGVs and maintain 
a non-stop production pattern to achieve high productivity. Fig.  1 
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Fig. 1. Graphical illustration of the non-stop production pattern (AGV charges during production, while the AGVs recharge only after completing all assigned tasks in the existing 
literature).
illustrates this arrangement. In the depicted example, AGV 1 recharges 
at charging station 2 during the task transport, rapidly restoring its 
battery level. As a result, all AGVs remain available for redeployment 
in subsequent production cycles, enhancing production efficiency and 
ensuring continuous system reliability. In this circumstance, a new 
mathematical model and an efficient algorithm must be developed to 
fill this research gap.

To address the above issues, our contributions are summarized as 
follows:

• We investigate a novel multi-AGV routing problem within a man-
ufacturing context, considering charging operations during the 
production cycle to facilitate continuous production. Unlike ex-
isting methods that either disregard AGV energy constraints en-
tirely or assume charging is conducted only after all tasks are 
completed, our approach integrates charging activities into the 
scheduling process, thereby facilitating truly continuous produc-
tion.

• We develop a new mathematical model that integrates charging-
related energy constraints into the multi-AGV routing framework 
and establishes a mixed-integer linear programming (MILP) for-
mulation. This model captures the interplay between routing 
decisions and battery limitations, establishing a solid foundation 
for subsequent optimization.

• To address the computational complexity, we devise a customized 
Adaptive Large Neighborhood Search (ALNS) algorithm. This al-
gorithm incorporates ten destroy and five repair operators to 
improve solution quality and search efficiency. Notably, it in-
tegrates a charging insertion heuristic that maintains solution 
feasibility by embedding charging operations directly within the 
routing process.

The structure of this paper is organized as follows: Section 2 reviews 
related literature. In Section 3, we describe the multi-AGV routing prob-
lem and establish an MILP model. Section 4 proposes the customized 
ALNS algorithm. Section 5 presents numerical experiments on the 
proposed methodology and conducts a comparative analysis. Finally, 
Section 6 summarizes this paper and discusses future directions.
2 
2. Literature review

This part reviews the literature concerning the AGV routing problem 
in manufacturing applications and logistics applications, as well as its 
closely related problem, the electric vehicle routing problem (EVRP).

2.1.  AGVs in manufacturing systems

AGVs have been widely used in manufacturing systems for trans-
porting materials, and the routing of multiple AGVs involves different 
types of manufacturing applications. For instance, the multi-AGV rout-
ing in an intelligent textile spinning workshop has been investigated, 
and an improved genetic algorithm has been proposed to meet the real-
time application requirement (Farooq, Bao, Raza, Sun, & Ma, 2021). 
Similarly, the routes of the AGVs are determined by a genetic algorithm 
for the prefabricated bathroom units manufacturing system to schedule 
the operation for each workstation and to choose a start time for each 
unit (Chen, Tiong, & Chen, 2019). For large-scale flexible manufac-
turing systems, the routing of AGVs is quite challenging. To quickly 
yield high-quality solutions, an improved Benders decomposition has 
been proposed using an open-source module theories solver and a 
commercial constraint programming solver (Riazi & Lennartson, 2021). 
Moreover, a neural network-based multi-state planning algorithm is 
developed to make a good trade-off between AGV utilization rate and 
total processing makespan in flexible manufacturing systems (Wang 
et al., 2022). To resolve the conflict in the routing problem, a time–
space network model has been proposed for a capacitated AGV system 
that includes splitting and merging manufacturing tasks (Murakami, 
2020).

In particular, the multi-AGV routing for computer numerical control 
machines in the matrix workshop has received considerable attention 
due to its capacity to enhance space utilization, flexibility, and produc-
tion efficiency. (Li, Zeng et al., 2018) initially introduced the multi-AGV 
routing problem under single-load conditions, constructing a mathe-
matical model and designing a harmony search algorithm. Later, Li, 
Li et al. (2018) proposed an improved harmony search algorithm to 
tackle the multi-load scheduling problem with a multi-objective model. 
Building on this foundation, recent research has been developed to 
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extend to large-scale scenarios. An MILP model is formulated to min-
imize the transportation cost, including distance cost, penalty cost for 
violating time constraints, and AGV cost; a discrete artificial bee colony 
algorithm with new operations has been proposed to solve this prob-
lem (Zou et al., 2020). To address dynamic routing, a discrete invasive 
weed optimization algorithm that incorporates rescheduling strategies 
and emergency waiting time settings is proposed, enabling the system 
to adapt to task updates and exceptional cases (Li et al., 2023, 2022). 
Furthermore, to improve energy efficiency, efficient iterated greedy 
algorithms have been proposed to deal with different considerations 
such as charging and maintenance (Zou et al., 2023, 2022).

2.2.  AGVs in logistics systems

In addition to manufacturing applications, research on the rout-
ing of AGVs is also investigated in logistics applications, particularly 
those focusing on warehouses and container terminals. Regarding ware-
house applications, mathematical programming serves as a fundamen-
tal methodology to provide systematic solutions. For instance, the 
routing of multi-load AGVs for an intelligent sorting center has been 
investigated, and a multi-objective mixed-integer programming (MIP) 
model was formulated to find the trade-off among delay, energy con-
sumption, and partial charging (Huo, He, Xiong, & Wu, 2024). Simi-
larly, Xin et al. (2024) formulated the dynamic task allocation problem 
as a vehicle routing problem (VRP) with real-time task arrivals, in-
troducing a rolling horizon strategy integrated with ALNS and the 
Kuhn–Munkres algorithm to enable periodic task reallocation. Further-
more, the routing of AGVs integrated with order batching has been 
explored using a two-commodity network flow formulation (Xie, Li, & 
Luttmann, 2023). Recently, reinforcement learning has been applied to 
route AGVs in parts-to-pick warehouse scenarios (Li, Liu et al., 2024).

Container terminals are also places where AGVs are used to auto-
mate operations to boost the productivity of global trade logistics. In 
container terminals, AGVs are operated with other types of equipment, 
such as quay and yard cranes, and therefore, the routing of AGVs 
is integrated with the scheduling of these machines. Yang, Zhong, 
Dessouky, and Postolache (2018) set up a bi-level programming model 
for quay cranes, AGVs, and stacking cranes to coordinate the tasks and 
AGVs’ paths. The coordination between the AGVs and quay cranes or 
yard cranes is investigated, especially to optimize the operation speed 
and reduce energy consumption for greener and sustainable terminal 
operations (Ma, Yu, Xie, & Yang, 2024; Xin, Meng, D’Ariano, Wang, 
& Negenborn, 2022). Moreover, the integrated scheduling of these 
coordinated machines can be decomposed using ADMM using a multi-
robot task allocation framework (Chen et al., 2020). Besides these 
methods using mathematical programming, the coordinated scheduling 
is carried out by the digital twin-based support framework, which 
contains a mathematical programming model and Q-learning algorithm 
to deal with the operations of the complex operating environment (Gao, 
Chang, Chen, & Sha, 2024; Li, Fan et al., 2024).

2.3.  EVRP

Another stream of research focuses on the EVRP, a variant of the 
traditional VRP that specifically utilizes a fleet of electric vehicles 
rather than internal combustion engine vehicles. For instance, Conrad 
and Figliozzi (2011) investigated the EVRP, allowing electric vehicles 
to recharge either fully or up to 80% of their battery capacity at selected 
customer locations during service, and an iterative construction and 
improvement heuristic was proposed. Schneider, Stenger, and Goeke 
(2014) expanded on this by introducing time windows and developing 
a foundational model where electric vehicles can recharge at any 
battery level using a linear charging function, with vehicles always 
leaving stations fully charged. This was solved using a metaheuristic 
that combines variable neighborhood search with tabu search. Ke-
skin and Çatay (2018) further examined this problem, focusing on 
3 
time windows and various recharging configurations. Cortés-Murcia, 
Prodhon, and Murat Afsar (2019) handled an EVRP variant with time 
windows, partial recharging, and satellite customers using iterated local 
search. Dönmez, Çağrı Koç, and Altıparmak (2022) studied the mixed 
fleet VRP with time windows and partial recharging, developing an MIP 
model and ALNS. Cai, Wu, and Fang (2024) proposed a double-assistant 
evolutionary multitasking algorithm for electric vehicle routing with 
backup batteries and swapping stations. Wang, Hou, and Guo (2024) 
focused on inventory management for battery swapping and charging 
stations under demand uncertainty. Qian, Feng, Yu, Hu, and Chen 
(2024) introduced a method for EVRP with time windows and battery 
swapping stations.

2.4. Summary

As a summarizing remark, the routing of AGVs for manufacturing 
and logistics applications remains an active research area. A compar-
ison for the main related works on AGV routing with this study is 
summarized in Table  1. It can be observed that most existing literatures 
ideally assume that AGVs recharge after completing all tasks and 
overlooks the impact of energy constraints (Huo et al., 2024; Li et al., 
2022; Zou et al., 2023), resulting in low AGV utilization and reduced 
productivity. In contrast, integrating fast charging operations within 
the production cycle represents an emerging research direction that 
is crucial for non-stop production. However, a comprehensive math-
ematical framework that explicitly incorporates fast charging during 
production remains underexplored. Consequently, addressing this gap 
is crucial for maintaining continuous AGV operation and ensuring high 
production efficiency in modern manufacturing systems. Furthermore, 
the development of more effective models and algorithms is required.

3. Problem description and formulation

This section describes the investigated multi-AGV routing integrated 
with fast charging and provides the mathematical model in detail.

3.1. Problem description

In modern matrix manufacturing workshops, workstations are ar-
ranged in a matrix format. The layout of the matrix manufactur-
ing workshop studied in this paper is shown in Fig.  1, which com-
prises warehouses, workstations, charging stations, AGVs, pathways, 
and other key components. Once the workshop is fully operational, 
these components will work in coordination to ensure the efficient 
operation of the entire system. Specifically, each workstation consists 
of computer numerical control (CNC) machines and a material buffer. 
The material buffer is responsible for storing raw materials, while 
the CNC machine performs processing operations, consuming materials 
continuously throughout the process. When the material buffer runs 
low, the workstation sends a signal to replenish the materials in a 
timely manner. This moment is termed call time, and the corresponding 
workstation is defined as a customer. Additionally, the planned se-
quence of tasks assigned to each AGV is defined as a route. To ensure a 
consistent representation within the routing framework, the warehouse, 
customers, and charging stations are collectively categorized as tasks. 
However, due to the uncertainty in the call time of the workstations 
and the actual material delivery time, the material demand fluctuates 
dynamically, further increasing the complexity and uncertainty of the 
problem. AGVs load goods from the warehouse and shuttle between 
workstations in a predetermined order to ensure continuity and stabil-
ity in production. After completing material delivery, they return to the 
warehouse, ready for the next transportation.

Given the numerous workstations in the workshop, multiple cus-
tomers may be generated simultaneously. If each AGV is assigned 
to customers strictly in the order of their generation, the transport 
capacity of the AGVs cannot be fully utilized, resulting in inefficient 
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Table 1
Summary of related work on AGV routing.
 Literatures Recharging configuration Policy Objective function Model Algorithm  
 Standard Fast  
 Farooq et al. (2021) – Completion time MINLP GA  
 Wang et al. (2022) – Makespan MINLP MSSA  
 Li et al. (2022) – Distance cost, penalty cost and AGV cost MINLP DIWO  
 Zou et al. (2023) ✓ CAD Distance cost, penalty cost and AGV cost MILP SAIG  
 Xin et al. (2024) – Total completion time and makespan MIP ALNS-KM  
 Huo et al. (2024) ✓ CAD Delay and energy consumption MIP NSGA-II  
 Xin et al. (2022) – Makespan and energy consumption MINLP GA  
 Chen et al. (2020) – Min total turn time ILP ADMM  
 This paper ✓ CDD Distance cost, penalty cost and AGV cost MILP ALNS  
 CAD (Charging after delivery), CDD (Charging during delivery), Mixed-integer nonlinear programming (MINLP), GA (Genetic algorithm), MSSA (Multi-state scheduling
 algorithm), DIWO (Discrete invasive weed optimization), SAIG (Self-adaptive iterated greedy), ALNS-KM (Adaptive large neighborhood search-Kuhn–Munkres algorithm),
 NSGA-II (Non-dominated sorting GA), ADMM (Alternating direction method of multipliers-based dual decomposition).
Fig. 2. Illustration of consecutive production cycles with the time-division strategy.
 

transportation. To address this issue, this study adopts a time-division 
strategy (Zou et al., 2020), as shown in Fig.  2, by dividing the entire 
production time into multiple consecutive production cycles. Each 
production cycle comprises two phases: a calculation phase and a trans-
portation phase. During the calculation phase, the system schedules all 
customers generated in the previous production cycle and produces an 
optimal allocation plan. In the transportation phase, the AGVs perform 
material transport according to the routing plan. This strategy allows 
AGVs to serve multiple customers within the same production cycle, 
reducing the number of AGVs required in the workshop and lowering 
transportation costs.

However, as the AGVs operate, their battery power gradually de-
pletes, which may lead to low battery issues. To ensure that AGVs 
can continuously transport materials over long periods without delays 
or interruptions due to insufficient power, the primary challenge in 
the multi-AGV routing problem becomes how to efficiently plan AGV 
charging behavior. This study proposes a flexible routing strategy 
based on fast charging to address the charging issue of AGVs during 
production. Before each AGV routing is determined, the control system 
assesses the AGV’s battery level. If the remaining battery is predicted 
to fall below a predefined battery threshold, the system schedules a 
fast charge for the AGV. The timing of charging and the selection of 
the charging station are flexibly determined based on the customer 
sequence, aiming to optimize routing cost efficiency. This strategy 
ensures that AGVs can complete tasks efficiently while minimizing the 
impact of charging on task execution. The objective function of this 
study is to minimize transportation distance costs, early arrival penalty 
costs, and AGV usage costs.

To ensure the generalizability of this research on matrix manufac-
turing workshops, we propose the following basic assumptions:

• All equipment operates normally without breakdowns (Li, Li 
et al., 2018; Zou, Pan, & Wang, 2021);

• All AGVs are of the same specifications (Li, Li et al., 2018; Zou 
et al., 2021);

• The pathways are dual-lane, allowing AGVs to travel without 
collision risk during transportation (Zou et al., 2023);

• AGVs maintain a constant speed during transportation (Li, Li 
et al., 2018; Zou et al., 2021);
4 
• The charging stations are equipped with enough charging piles to 
support multiple AGVs charging simultaneously.

The assumptions regarding equipment reliability, uniform AGV 
specifications, dual-lane pathways, and constant AGV speed are adopted
from previous studies (Li, Li et al., 2018; Zou et al., 2023, 2021). 
Additionally, we introduce a novel parallel AGV recharge capacity 
assumption tailored to this study. Collectively, these assumptions estab-
lish a controlled yet realistic environment for modeling AGV operations 
in matrix manufacturing workshops.

3.2. Modeling

In order to address the aforementioned issues, we have proposed a 
mathematical model. The notation for the sets is provided in Table  2, 
while the indices and parameters utilized in the model are detailed in 
Table  3. Additionally, Table  4 presents the variables used in the model, 
categorized into decision variables and auxiliary variables.

The problem can be represented by an undirected graph 𝐺 = (𝑉 ,𝐸), 
where 𝑉  is the set of vertices, and 𝐸 = {(𝑖, 𝑗) ∣ 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗}
is the set of edges, representing the feasible shortest paths between 
each pair of vertices. Let 𝐶 = {1, 2,… , 𝑛} represent the customers, 
and 𝐷 = {0, 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′}, where 0 represents the warehouse, 
and 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′ represent the charging stations. There are 𝑚
AGVs available in the workshop, forming the AGV set 𝐾 = {1, 2,… , 𝑚}. 
The control system dispatches the optimal number of AGVs based on 
specific circumstances, and this number is always less than 𝑚. The 
transportation distance between two vertices is based on Manhattan 
distance, and the time required for an AGV to travel from customer 
𝑖 to customer 𝑗 is calculated as 𝑡𝑖𝑗 = 𝑑𝑖𝑗∕𝑣, where 𝑑𝑖𝑗 is the Manhattan 
distance and 𝑣 is the AGV speed.

As the workstation submits a material request, its production opera-
tions continue uninterrupted, progressively depleting the buffer stock. 
To maintain efficient production in the manufacturing workshop, the 
AGV must accurately replenish the necessary materials based on the 
consumption level in the buffer at the time of its arrival. Considering 
the workstation’s consumption dynamics and its stock level at the 
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Table 2
Notation for sets.
 Set Definition  
 𝐶 Set of customers, and 𝐶 = {1, 2,… , 𝑛}  
 𝐷 Set of vertices excluding customers, and 𝐷 = {0, 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′} where 0 represents 
 the warehouse, and others represent charging stations  
 𝐹 Set of charging stations, and 𝐹 = {𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′}  
 𝑉 Set of all vertices, and 𝑉 = 𝐶 ∪𝐷  
 𝐾 Set of AGVs, and 𝐾 = {1, 2,… , 𝑚}  
 𝐸 Set of edges, and 𝐸 = {(𝑖, 𝑗) ∣ 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗}  
Table 3
Notation for indices and parameters.
 Index Definition  
 𝑖, 𝑗 Indices of tasks  
 𝑘 Index of AGVs  
 Parameter Definition  
 𝑥𝑖 X-coordinate of task 𝑖  
 𝑦𝑖 Y-coordinate of task 𝑖  
 𝑛 Total number of customers  
 𝑚 Number of available AGVs in the workshop  
 𝑄 Load capacity of the AGV  
 𝐻 Total battery capacity of the AGV  
 𝑁 Initial battery power of the AGV  
 𝑟c Charging rate  
 𝑟d Discharging rate  
 𝑑𝑖𝑗 Distance between customer 𝑖 and customer 𝑗  
 𝑡𝑖𝑗 Time required for the AGV to travel from customer 𝑖 to customer 𝑗  
 𝑡𝑚 Consumption time for each material  
 𝑡𝑢 Unloading time of materials at workstations  
 𝑆 Capacity of the material buffer zone  
 𝑆𝑐

𝑖 Remaining capacity of the material buffer zone when workstation 𝑖 calls  
 𝑔 Weight of each unit of material  
 𝑣 Speed of the AGVs  
 𝛼 Battery threshold: The minimum required battery level (as a fraction of total battery 
 capacity) upon arriving at the warehouse.  
 𝑐𝑡 Weight coefficient for the early arrival penalty cost  
 𝑐𝑑 Weight coefficient for transportation distance cost  
 𝑐𝑎 Weight coefficient for AGV usage cost  
 𝑇 𝑙

𝑖 Expiration time for customer 𝑖  
 𝑇 𝑐

𝑖 Call time for customer 𝑖  
 𝛥𝑇 Duration of the calculation phase  
 𝑇0 Departure time of the AGV from the warehouse  
Table 4
Notation for variables.
 Decision Variable Definition  
 𝑥𝑖𝑗𝑘 Equals 1 if tasks 𝑖 and 𝑗 are executed consecutively by AGV 𝑘, and 0 otherwise (binary variable).  
 𝑇 𝑟

𝑖 Delivery time for customer 𝑖 (non-negative continuous variable).  
 Auxiliary Variable Definition  
 𝑧𝑖𝑘 Equals 1 if task 𝑖 is assigned to AGV 𝑘, and 0 otherwise (binary variable).  
 𝑞𝑖 Demand quantity of customer 𝑖 (non-negative continuous variable).  
 𝑒𝑟𝑖𝑘 Remaining battery power of AGV 𝑘 upon arrival at customer 𝑖 (non-negative continuous variable). 
 𝑒𝑙𝑖𝑘 Remaining battery power of AGV 𝑘 upon departure from customer 𝑖 (non-negative continuous  
  variable).  
 𝑐𝑘 Equals 1 if AGV 𝑘 requires charging, and 0 otherwise (binary variable).  
 𝑑p

𝑘 Predicted travel distance of AGV 𝑘 (non-negative continuous variable).  
moment of the request, the replenishment quantity can be determined 
using the following formula: 
𝑞𝑖 =

((

𝑆 − 𝑆𝑐
𝑖
)

+
(

𝑇 𝑟
𝑖 − 𝑇 𝑐

𝑖
)

∕𝑡𝑚
)

⋅ 𝑔, ∀𝑖 ∈ 𝐶 (1)

The total distance traveled by all AGVs can be expressed as: 

𝐶𝑑 =
𝑚
∑

𝑘=1

𝑛
∑

𝑗=0

𝑛
∑

𝑖=0
𝑥𝑖𝑗𝑘𝑑𝑖𝑗 (2)

The total early arrival penalties for all customers can be expressed 
as: 

𝐶𝑡 =
𝑚
∑

𝑛
∑

𝑛
∑

𝑥𝑖𝑗𝑘
(

𝑇 𝑙
𝑗 − 𝑇 𝑟

𝑗

)

(3)

𝑘=1 𝑗=1 𝑖=0

5 
The number of AGVs used can be expressed as: 

𝐶𝑎 =
𝑚
∑

𝑘=1

𝑛
∑

𝑗=1
𝑥0𝑗𝑘 (4)

The objective function of the mathematical model aims to minimize 
transportation costs. It consists of three elements: 𝐶𝑑 (transportation 
distance cost), 𝐶𝑎 (AGV usage cost), and 𝐶𝑡 (early arrival penalty cost). 
The coefficients 𝑐𝑑 , 𝑐𝑎, and 𝑐𝑡 are weighting parameters that enable the 
model to adjust the relative importance of these cost elements based on 
specific operational requirements. The objective function is formulated 
as follows: 
min𝐹 = 𝑐 𝐶 + 𝑐 𝐶 + 𝑐 𝐶 (5)
𝑑 𝑑 𝑎 𝑎 𝑡 𝑡
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To enhance clarity in our model, we divide the constraints into 
two categories: basic constraints, which establish the standard routing 
model, and energy constraints, which specifically address the battery 
limitations and fast charging operations of the AGVs.

Basic constraints: 
𝑚
∑

𝑘=1

𝑛
∑

𝑖=0
𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝐶 (6)

𝑚
∑

𝑘=1

𝑛
∑

𝑗=0
𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝐶 (7)

∑

𝑖∈𝑉
𝑥𝑖𝑗𝑘 =

∑

𝑖∈𝑉
𝑥𝑗𝑖𝑘, ∀𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (8)

∑

𝑖∈𝑉
𝑥𝑖0𝑘 =

∑

𝑗∈𝑉
𝑥0𝑗𝑘 ≤ 1, ∀𝑘 ∈ 𝐾 (9)

𝑛
∑

𝑗=1

𝑛
∑

𝑖=0
𝑥𝑖𝑗𝑘 ⋅ 𝑞𝑗 ≤ 𝑄, ∀𝑘 ∈ 𝐾 (10)

𝑑p𝑘 =
∑

𝑖∈𝑉

∑

𝑗∈𝑉
𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗𝑘, ∀𝑘 ∈ 𝐾 (11)

𝑥𝑖𝑗𝑘 ⋅ 𝑇
𝑟
𝑗 =

⎧

⎪

⎨

⎪

⎩

(𝑇0 + 𝑡𝑖𝑗 ) ⋅ 𝑥𝑖𝑗𝑘, 𝑖 = 0, ∀𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾,

(𝑇 𝑟
𝑖 + 𝑡𝑢 + 𝑡𝑖𝑗 ) ⋅ 𝑥𝑖𝑗𝑘, ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾

(𝑇 𝑟
𝑖 + 𝑟c ⋅ (𝐻 − 𝑒𝑟𝑖𝑘) + 𝑡𝑖𝑗 ) ⋅ 𝑥𝑖𝑗𝑘, ∀𝑖 ∈ 𝐹 , ∀𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾

(12)

𝑇 𝑐
𝑖 ≤ 𝑇 𝑟

𝑖 ≤ 𝑇 𝑙
𝑖 , ∀𝑖 ∈ 𝑉 (13)

𝑧𝑖𝑘 =
∑

𝑗∈𝑉
𝑥𝑖𝑗𝑘, ∀𝑖 ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (14)

𝑧𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (15)

𝑐𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾 (16)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (17)

𝑥𝑖𝑗𝑘 = 0, ∀𝑖, 𝑗 ∈ 𝑉 and 𝑖 = 𝑗 (18)

𝑇 𝑟
𝑖 = 𝑇0, 𝑖 = 0 (19)

Constraints (6)–(8) ensure that each customer is served by exactly 
one AGV, maintaining consistent in-degree and out-degree for each 
customer. Constraint (9) ensures that each AGV is used at most once 
in a dispatch and that dispatched AGVs start from and return to the 
warehouse. Constraint (10) guarantees that the total load carried by 
an AGV does not exceed its maximum load capacity. Constraint (11) 
specifies the method for calculating the total distance traveled by each 
AGV along its assigned route. Constraint (12) defines the delivery time 
of the AGV at vertex 𝑗, considering its movement from different types 
of vertex 𝑖. Specifically, if 𝑖 is the warehouse, the delivery time is 
determined by the departure time and travel time. When 𝑖 is a customer, 
the delivery time is calculated by adding the unloading time and the 
travel time from 𝑖 to 𝑗 to the delivery time at 𝑖. Similarly, for a charging 
station, it is obtained as the sum of the delivery time at 𝑖, the charging 
time at 𝑖, and the travel time. Constraint (13) ensures compliance with 
time window restrictions. Finally, constraints (14)–(19) denote restric-
tions on the decision variables. After presenting the basic constraints, 
we then introduce the energy-related constraints.

Energy-related constraints: 
∑ ∑

𝑥𝑖𝑗𝑘 ≤ 𝑚, ∀𝑖 ∈ 𝐹 (20)

𝑘∈𝐾 𝑗∈𝑉

6 
𝑒𝑟0𝑘 ≥ 𝛼 ⋅𝐻, ∀𝑘 ∈ 𝐾 (21)

𝑒𝑙𝑖𝑘 =

⎧

⎪

⎨

⎪

⎩

𝐻, ∀𝑖 ∈ 𝐹 , ∀𝑘 ∈ 𝐾
𝑁, 𝑖 = 0, ∀𝑘 ∈ 𝐾
𝑒𝑟𝑖𝑘, ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾

(22)

𝑒𝑟𝑗𝑘 ≤ 𝑒𝑙𝑖𝑘 − 𝑟d ⋅ 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗𝑘 +𝐻 ⋅ (1 − 𝑥𝑖𝑗𝑘), ∀𝑖, 𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (23)

𝑒𝑟𝑗𝑘 ≥ 𝑒𝑙𝑖𝑘 − 𝑟d ⋅ 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗𝑘 −𝐻 ⋅ (1 − 𝑥𝑖𝑗𝑘), ∀𝑖, 𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (24)

𝑐𝑘 ≥ (𝑟d ⋅ 𝑑
p
𝑘 − (𝑁 − 𝛼 ⋅𝐻))∕𝐻, ∀𝑘 ∈ 𝐾 (25)

𝑐𝑘 ≤ (𝑟d ⋅ 𝑑
p
𝑘 − (𝑁 − 𝛼 ⋅𝐻) +𝐻)∕𝐻, ∀𝑘 ∈ 𝐾 (26)

𝑐𝑘 =
∑

𝑖∈𝑉

∑

𝑗∈𝐹
𝑥𝑖𝑗𝑘, ∀𝑘 ∈ 𝐾 (27)

Constraint (20) states that all AGVs can access charging stations. 
Constraint (21) ensures that all AGVs arrive at the warehouse with a 
sufficient battery level to support subsequent tasks, where 𝛼 denotes 
the battery threshold. Constraint (22) defines the battery level of the 
AGV upon exiting different types of vertices. Constraints (23) and (24) 
employ the big-𝑀 method to precisely track the AGV’s battery level 
as it transitions between vertices. Constraints (25) and (26) utilize 
the big-𝑀 technique to accurately represent whether charging is re-
quired under specific conditions, with the binary variable 𝑐𝑘 indicating 
the necessity of charging: 𝑐𝑘 = 1 signifies that charging is needed, 
while 𝑐𝑘 = 0 indicates otherwise. The big-𝑀 technique operates by 
imposing upper and lower bounds that link the AGV’s battery level to 
the charging condition, ensuring the binary variable is activated only 
when charging is required. Building on this, Constraint (27) schedules 
a charging operation if required (𝑐𝑘 = 1); conversely, no charging 
operation is planned if not needed (𝑐𝑘 = 0).

In the model, constraints (10) and (12) are nonlinear, and we 
linearize them using the big-M method to formulate our problem as an 
MILP model. Moreover, similar to Zou et al. (2020), the AGV routing 
problem with integrated fast-charging operations can be viewed as a 
variant of the VRP, a well-known NP-hard problem. Its complexity 
is further compounded by task sequencing, time windows, demand 
uncertainties, and battery-charging strategies, with charging decisions 
exerting a critical influence on route feasibility and total transit time. 
Although commercial solvers such as Gurobi can efficiently solve small-
scale instances, their computational effort grows exponentially with 
problem size, rendering them impractical for large-scale, real-world 
applications. To overcome these limitations, we propose an improved 
two-stage ALNS algorithm incorporating a heuristic charging-station 
insertion strategy.

4. Algorithm design

In this section, we detail the proposed ALNS algorithm customized 
for the AGV routing problem with integrated fast-charging operations. 
The key steps of the proposed ALNS algorithm are presented in Fig.  3, 
and a detailed description of the heuristic for the insertion of charging 
stations is provided in Section 4.3. The ALNS algorithm, originally 
proposed by Ropke and Pisinger (2006), is widely applied to solve 
VRP and EVRP. The core idea of ALNS is to explore new solutions by 
combining various destroy and repair operations, adaptively adjusting 
their selection probabilities based on the performance during the search 
process.

During the ALNS search process, any alteration in customer visit 
sequences can influence charging decisions. To enhance search effi-
ciency, we divide the neighborhood search operation of ALNS into two 
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Fig. 3. Flowchart of the Proposed ALNS Algorithm.
Algorithm 1: The main procedure of the Improved ALNS heuristic algorithm with SA
Input: A set of destroy and repair operators (D and R)
Output: The best solution 𝛹best

1 Apply the constructive heuristic to generate an initial solution 𝛹current;
2 𝛹best ← 𝛹current;
3 Initialize selection probabilities 𝑃 𝑡

𝑑 for each destroy operator 𝑑 ∈ 𝐷 and 𝑃 𝑡
𝑟  for each repair operator 𝑟 ∈ 𝑅 in the iteration round 𝑡;

4 Let ℎ be the cooling rate and 𝑇  be the temperature;
5 while termination conditions are not met do
6 Remove all charging stations;
7 Select a destroy operator 𝑑 and obtain a partial solution 𝜙∗

new;
8 Choose a repair operator 𝑟 to generate a new NC solution 𝜙new;
9 Apply the charging station insertion heuristic to construct a feasible solution 𝛹new;
10 if 𝑐(𝛹new) < 𝑐(𝛹current) then
11 𝛹current ← 𝛹new;
12 else
13 Let 𝜈 ← exp

(

(𝑐(𝛹current) − 𝑐(𝛹new))∕𝑇
)

;
14 Generate a random number 𝛿 ∈ [0, 1];
15 if 𝛿 < 𝜈 then
16 𝛹current ← 𝛹new;
17 end 
18 end
19 if 𝑐(𝛹current) < 𝑐(𝛹best) then
20 𝛹best ← 𝛹current;
21 end 
22 𝑇 ← ℎ ⋅ 𝑇 ;
23 Update the selection probabilities for the operators;
24 end 
25 return 𝛹best;
stages. Each neighborhood search operation follows a ‘‘search first, 
insert later’’ principle, where neighborhood operations modify non-
charging (NC) solutions that exclude charging stations, followed by the 
insertion heuristic to convert it into a feasible solution. Specifically, in 
the first stage, destroy and repair operations are applied to NC solutions 
that satisfy capacity and time window constraints without considering 
battery constraints. In the second stage, when an NC solution is gener-
ated after the destroy and repair operations, a charging station insertion 
heuristic is applied to add charging stations to the NC routes, ensuring 
the feasibility of the solution. The final feasible solution is accepted 
under simulated annealing (SA) criterion and is iteratively optimized 
within the algorithm framework. The algorithm framework is outlined 
in Algorithm 1.

4.1. Solution representation

In this study, to effectively address the AGV routing problem with 
charging considerations, we adopt a solution representation based on 
task permutations, similar to the classical VRP. Each task is represented 
by a unique identifier, where the warehouse is denoted by 𝐷0, cus-
tomers by 𝐶, and charging stations by 𝑆. For example, 𝐶1 represents 
customer 1, and 𝑆1 represents charging station 1. The solution is 
represented as a two-dimensional list, where each list corresponds to 
a complete route of an AGV. In each route, the AGV departs from the 
warehouse, visits the tasks in sequence to complete the respective tasks, 
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and finally returns to the warehouse. For instance, if five workstations 
issue replenishment requests, requiring two AGVs, the task sequence 
for the first AGV could be [𝐷0, 𝑆2, 𝐶2, 𝐶5, 𝐶3, 𝐷0], and the sequence for 
the second AGV could be [𝐷0, 𝐶1, 𝐶4, 𝐷0]. Thus, the solution can be 
expressed as [[𝐷0, 𝑆2, 𝐶2, 𝐶5, 𝐶3, 𝐷0], [𝐷0, 𝐶1, 𝐶4, 𝐷0]]. The routes of the 
two AGVs are shown in Fig.  1.

4.2. Initial solution construction

As ALNS commences from a single initial solution, its performance 
critically depends on the quality of the initial solution. Accordingly, 
we design a two-phase constructive heuristic algorithm to generate a 
high-quality initial solution.

In the first phase, we adopt an extended nearest neighbor heuristic 
(ENNH). Let 𝑉 = {1,… , 𝑛} represent the set of unassigned customers. 
Each AGV departs from the warehouse, and at each iteration, it iden-
tifies the three nearest unserved customers relative to its current loca-
tion. Among these candidates, the customer with the earliest expiration 
time is selected as the next successor. If adding the customer maintains 
compliance with both the time window and capacity constraints, the 
current route is updated. Otherwise, the warehouse is appended, signal-
ing the termination of the current route and initiating the construction 
of a new route. This iterative process continues until all customers are 
assigned. Algorithm 2 presents the pseudocode for the ENNH.

Since the routes constructed in the first phase do not consider 
battery constraints, we introduce a charging station insertion heuristic 
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Algorithm 2: The extended nearest neighborhood heuristic
Input: the set of unassigned customers 𝑉unvisited
Output: An NC solution 𝜙0

1 Initialize an NC solution 𝜙0 and 𝑗 = 𝐷0;
2 while 𝑉unvisited is not empty do
3 Create a new route 𝛾 starting from the j;
4 while 𝑉unvisited is not empty do
5 Find the three nearest customers to 𝑗 in 𝑉unvisited;
6 Choose the customer i with the earliest expiration time;
7 Add the customer 𝑖 into 𝛾;
8 if the route 𝛾 is NC feasible then
9 Let 𝑗 = 𝑖 and remove customer 𝑖 from 𝑉unvisited;
10 else
11 Remove the last added customer from 𝛾;
12 Add 𝐷0 at the end of 𝛾 and set 𝑗 = 𝐷0;
13 end
14 end 
15 if the route 𝛾 contains at least one customer then
16 Add the route 𝛾 to 𝜙0;
17 end 
18 end 
19 return 𝜙0;
in the second phase to ensure solution feasibility. Specifically, when the 
AGV’s battery level is insufficient during a route, the heuristic inserts 
an appropriate charging station to ensure that the final route complies 
with battery limitations and routing requirements.

4.3. Charging station insertion heuristic

The main steps of the charging station insertion heuristic are out-
lined in Algorithm 3. Given an NC solution, each route in the solution 
is sequentially assessed to determine whether charging is required. 
Routes that meet energy constraints are immediately deemed feasible. 
Otherwise, if charging is necessary, the route is adjusted by inserting a 
charging station.

For each route requiring adjustment, the feasible insertions of charg-
ing stations are evaluated. An insertion is deemed feasible only if the 
remaining energy level allows the visit to the charging station and the 
resulting route satisfies both the time window and capacity constraints. 
After evaluating all feasible insertions, the insertion with the minimum 
total cost is selected to ensure the route remains optimal in terms of effi-
ciency. If no viable insertion is available, the customer with the earliest 
expiration time is removed and added to the removal list. The updated 
route is then re-evaluated for charging requirements. This process is 
repeated iteratively until all routes meet the feasibility criteria, either 
by not requiring charging or by successfully incorporating charging 
stations.

Finally, once all routes in the current solution have become feasible, 
the customers in the removal list are addressed. While the removal 
list is not empty, the ENNH is applied to these customers, generating 
a new NC solution that may comprise multiple routes. This new NC 
solution is then combined with the previous solution. Subsequently, the 
algorithm returns to step 1 to process the updated solution through the 
aforementioned operations to ensure feasibility. This iterative proce-
dure continues to refine the solution until the removal list is empty at 
step 14, ultimately yielding a feasible final solution.

4.4. Destroy and repair operators

An initial feasible solution is first given, followed by the generation 
of NC solutions through the removal of charging stations. Neighbor-
hood search is then performed on the NC solutions using destroy and 
repair operators. Previous studies on routing problems have introduced 
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a variety of destroy and repair operators (Keskin & Çatay, 2018; Ropke 
& Pisinger, 2006). Based on the unique characteristics of this problem, 
we selected 10 effective destroy operators and 5 repair operators 
specifically tailored to these requirements. Finally, a charging station 
insertion heuristic is applied to incorporate charging stations into the 
NC solutions, thereby resulting in feasible solutions.

4.4.1. Destroy operators
The destruction mechanism within the ALNS framework comprises 

multiple destroy operators, which can be classified into two categories: 
route destroy and customer destroy. In the route destroy operation, an 
AGV route is selected, and all customers within that route are removed 
and added to the unassigned list 𝜁 . In customer destroy, a subset of 𝑛
customers is selected and added to the unassigned list, where the value 
of 𝑛 is determined based on the total number of customers. In this study, 
we employ several well-known destroy operators including Random 
Route, Shortest Route, Random, Worst-Distance, Worst-Time, Shaw, 
Proximity-based, Time-based, and Zone (Keskin & Çatay, 2018), and we 
also propose the Fewest Customer Route Destroy. Detailed descriptions 
of all destroy operators are provided below.

Random Route Destroy In this operator, a route is randomly 
selected from the current solution and deleted, with all its customers 
added to the unassigned list, denoted as 𝜁 . This random destroy strategy 
helps to expand the search space, thereby increasing the chances of 
finding the global optimum. (Keskin & Çatay, 2018)

Shortest Route Destroy This operator removes the route with the 
shortest distance from the current solution and deletes all customers 
on that route, thereby helping to minimize the risk of converging to a 
local optimum (Keskin & Çatay, 2018).

Fewest Customer Route Destroy This operation selects and re-
moves the route containing the fewest customers, aiming to merge 
routes and reduce the number of AGVs required.

Random Customer Destroy A set of 𝑛 customers is randomly 
removed from various routes in the current solution. This random 
selection aims to diversify the search and expand the solution space 
(Keskin & Çatay, 2018; Ropke & Pisinger, 2006).

Worst-Distance Customer Destroy Customers with the highest 
total distances are selected and removed one by one from the current 
solution. The distance of a customer is defined as the sum of the 
distances to its preceding and succeeding customers in the route (Keskin 
& Çatay, 2018; Ropke & Pisinger, 2006).
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Algorithm 3: The procedure of the charging station insertion heuristic
Input: An infeasible NC solution 𝜙0
Output: A feasible solution 𝛹fea

1 Let 𝑉unvisited ← ∅;
2 foreach AGV route 𝛾 in 𝜙0 do
3 while route 𝛾 requires charging do
4 Find feasible insertions for charging stations;
5 if no insertion point exists then
6 Remove the customer with the earliest expiration time;
7 Add the removed customer to 𝑉unvisited;
8 else
9 Select the insertion with the minimum cost;
10 Generate a feasible route 𝛾fea;
11 𝛾 ← 𝛾fea;
12 end
13 end 
14 end 
15 while 𝑉unvisited ≠ ∅ do
16 Apply the ENNH for 𝑉unvisited and update 𝜙0;
17 Return to step 1;
18 end 
19 return 𝛹fea;
Worst-Time Customer Destroy This operator calculates the dif-
ference between the delivery time and the expiration time for each 
customer 𝑖, then removes the customer with the largest difference. The 
goal is to maximize the number of customers whose time windows are 
satisfied (Keskin & Çatay, 2018).

Shaw Destroy The Shaw Destroy operation involves removing a 
group of customers based on specific criteria. Initially, the operator ran-
domly selects and removes a customer 𝑖. Then, it selects the customer 
𝑗 = argmin(𝛷1 ⋅ 𝑑𝑖𝑗 + 𝛷2 ⋅ |𝑇 𝑙

𝑗 − 𝑇 𝑙
𝑖 | + 𝛷3 ⋅ 𝑙𝑖𝑗 + 𝛷4 ⋅ |𝑞𝑗 − 𝑞𝑖|), where 𝛷1

to 𝛷4 are the weights of different parameters. Here, 𝑑𝑖𝑗 represents the 
distance between customers 𝑖 and 𝑗, 𝑇 𝑙 denotes the expiration time, 
and 𝑞 indicates the material demand (Keskin & Çatay, 2018; Ropke & 
Pisinger, 2006).

Proximity-based Customer Destroy In this operator, the first cus-
tomer is selected randomly, and the next customer is chosen based on 
proximity to the previously selected one. At each step, the customer 
closest to the last selected customer is added to the unassigned list. 
This process continues until 𝑛 customers are selected and removed 
sequentially (Keskin & Çatay, 2018).

Time-based Customer Destroy Since the expiration times are de-
termined by the call times, all customers will have identical time 
windows in terms of length. Therefore, similar to the Proximity-based 
Customer Destroy, this operator removes 𝑛 customers based on their 
similar call times (Keskin & Çatay, 2018).

Zone Destroy This operation begins by randomly selecting a region 
of predefined size in the Cartesian coordinate system. A random set of 
𝑛 customers within this region is then chosen for removal. If fewer than 
𝑛 customers are found, another region of the same size is selected, and 
the process is repeated until 𝑛 customers are removed (Keskin & Çatay, 
2018).

4.4.2. Repair operators
In the algorithm, five repair operators are introduced to reinsert 

removed customers into the routes, thereby generating an NC solution. 
Specifically, following the approach in Keskin and Çatay (2018), we 
adopt the Greedy, Time-based, Regret-2, and Regret-3 repair operators, 
and we additionally introduce a Random repair operator. During this 
insertion process, only time window and capacity constraints are con-
sidered, while battery capacity is not taken into account. Furthermore, 
it is important to note that since destroy operations may reduce the 
actual number of AGVs dispatched below the minimum required, if 
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no feasible insertion is available for any customer during the repair 
process, a new route will be initialized to accommodate the customer 
and facilitate the insertion of any remaining customers.

Greedy Repair The operator evaluates the insertion cost for each 
unassigned customer at the most appropriate position within the cur-
rent solution. It then iteratively inserts the customer with the minimum 
insertion cost into a feasible position. The insertion cost is defined as 
the increase in total travel distance caused by adding the customer 
(Keskin & Çatay, 2018; Ropke & Pisinger, 2006).

Time-based Repair The Time-based Repair, based on the Greedy 
Repair method, primarily differs in how insertion cost is defined. 
Instead of measuring the increase in travel distance, it calculates the 
cost as the change in route completion time after adding a customer. 
The objective is to minimize the increase in completion time for each 
route (Keskin & Çatay, 2018).

Random Repair The Random Repair operator inserts unassigned 
customers into existing routes by randomly selecting both the route and 
the insertion position. This operator introduces stochasticity to increase 
solution diversity and help avoid local optima.

Regret-2 Repair Let 𝛥𝑓𝑖 denote the change in the objective function 
value after inserting customer 𝑖 into the current solution. The customer 
to be inserted, 𝑖, is selected as: 𝑖 = argmax𝑖∈𝜁 (𝛥𝑓𝑖2 − 𝛥𝑓𝑖1), where 𝛥𝑓𝑖1
represents the increase in the objective function value after inserting 
customer 𝑖 at the best feasible position, and 𝛥𝑓𝑖2 is the increase after 
inserting the same customer at the second-best feasible position (Keskin 
& Çatay, 2018; Ropke & Pisinger, 2006).

Regret-3 Repair Similar to the Regret-2 Repair, the Regret-3 Repair 
compares the best and third-best feasible positions. Specifically, The 
chosen customer 𝑖 is determined as: 𝑖 = argmax𝑖∈𝜁 (𝛥𝑓𝑖3 − 𝛥𝑓𝑖1), where 
𝛥𝑓𝑖1 denotes the change from inserting customer 𝑖 in the best feasi-
ble position, and 𝛥𝑓𝑖3 represents the change from inserting the same 
customer in the third-best position (Ropke & Pisinger, 2006).

4.5.  Roulette wheel selection and operator weight update mechanism

This study employs a roulette wheel mechanism to probabilistically 
select destroy and repair operators during the search process. Initially, 
the weight of each operator is uniformly set to 1. Assume there are 
𝑘 destroy operators and 𝑚 repair operators. For a destroy operator 𝑗, 
its weight is denoted as 𝜔𝑑

𝑗 , and the probability of its selection under 
the roulette wheel mechanism is calculated as 𝑝𝑑 = 𝜔𝑑∕

(

∑𝑘 𝜔𝑑
)

, 𝑗 ∈
𝑗 𝑗 𝑖=1 𝑖
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{1, 2,… , 𝑘} Similarly, for a repair operator 𝑗, its weight is denoted as 𝜔𝑟
𝑗 , 

and the probability of its selection is given by 𝑝𝑟𝑗 = 𝜔𝑟
𝑗∕

(
∑𝑚

𝑖=1 𝜔
𝑟
𝑖
)

, 𝑗 ∈
{1, 2,… , 𝑚}.

During the search, the weights of selected operators are dynamically 
updated based on their performance. The weight update rules are 
defined as follows: 

𝜔𝑡+1
𝑑 = 𝜃𝜔𝑡

𝑑 + (1 − 𝜃) 𝑠𝑗 (28)

𝜔𝑡+1
𝑟 = 𝜃𝜔𝑡

𝑟 + (1 − 𝜃) 𝑠𝑗 (29)

Here, 𝜔𝑡+1
𝑑  and 𝜔𝑡+1

𝑟  represent the weights of the selected destroy and 
repair operators at iteration 𝑡+ 1, respectively. The parameter 𝜃 serves 
as a decay factor controlling the influence of previous iterations on 
the current weight update, and 𝑠𝑗 is the score assigned to operator 
𝑗 in iteration 𝑡, quantifying its effectiveness based on the solution’s 
performance. Higher scores correspond to more effective operators. The 
scores are assigned according to the following criteria: when a new 
global best solution is found, 𝑠𝑗 = 𝜇1; if the solution improves upon 
the current solution but does not surpass the global best, 𝑠𝑗 = 𝜇2; if 
the solution is worse than the current one but is accepted under the SA 
criterion, 𝑠𝑗 = 𝜇3; and if the solution is rejected, 𝑠𝑗 = 𝜇4. This adaptive 
mechanism guarantees that the algorithm remains flexible by gradually 
prioritizing operators with better performance, thereby enhancing the 
overall search process.

4.6. Acceptance criterion

This study adopts an SA mechanism as the acceptance criterion 
in the ALNS algorithm to balance exploration and exploitation. SA, 
a probabilistic optimization technique, prevents the algorithm from 
becoming trapped in local optima and facilitates its progression toward 
the global optimum. The acceptance of new solutions is regulated by a 
‘‘temperature’’ parameter that diminishes over time. Initially, at higher 
temperatures, the algorithm can accept suboptimal solutions with a 
certain probability, encouraging exploration and reducing the likeli-
hood of stagnation in suboptimal regions. As the temperature declines, 
the probability of accepting worse solutions decreases, steering the 
algorithm toward convergence. In each iteration, ALNS generates a new 
solution through destroy-and-repair operations, and the acceptance 
decision is based on the SA criterion. If the new solution enhances the 
objective value, it is directly accepted; otherwise, it is accepted with a 
probability calculated as: 

𝑃 = exp
((

𝑓current − 𝑓new
)

∕𝑇
)

(30)

Here, 𝑓current and 𝑓new denote the objective values of the current 
solution and new solution, respectively, while 𝑇  denotes the current 
temperature. This mechanism allows the algorithm to accept subopti-
mal solutions during the early stages of the search process, promoting 
broader exploration of the solution space. As the temperature declines, 
the acceptance criteria become stricter, focusing on solution refinement 
and guiding the search toward optimality.

5. Computational experiments

In this section, comprehensive statistical experiments are conducted 
to assess the effectiveness of the proposed ALNS algorithm. First, the 
test methods, analysis methods, and data settings for the experiments 
are described. Next, the experimental environment is presented. Sub-
sequently, the relevant parameters are selected. Then, we compare 
the computational results of the proposed algorithm with those of 
existing heuristic rules and metaheuristics. Finally, sensitivity analysis 
experiments on large-scale instances are conducted, and managerial 
insights are provided.
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Table 5
Parameter settings.
 Items Values Items Values  
 𝛥𝑇 10 s 𝑡𝑚 30 s/slice  
 𝑇0 350 s 𝑡𝑢 15 s  
 𝑄 250 kg 𝑔 0.75 kg/slice 
 𝑣 1 m/s 𝑆 48 slice  
 𝐻 72 Wh 𝑐𝑑 1  
 𝑁 33.6 Wh 𝑐𝑡 0.1  
 𝑟d 0.048 Wh/m 𝑐𝑎 1000  
 𝑟c 0.48 Wh/s 𝛼 0.2  

5.1. Experimental setup and methods

The instances used in this study are derived from Foxconn Tech-
nology Group, a leading electronics manufacturing company. The ex-
periment utilizes 110 instances of varying sizes, specifically 7, 10, 20, 
30, 40, and 50 customers. For sizes 10, 20, 30, 40, and 50, each size 
includes 20 instances, while size 7 includes 10 instances. Instances are 
labeled with ‘‘T’’ followed by their size and index. For example, T30I6 
denotes the 6th instance with 30 customers.

Each task in the instance includes detailed information such as the 
task type, positional coordinates, stock level in the buffer at the time of 
the call, call time, expiration time, and service duration. The task type 
is categorized as customer (c), warehouse (d), or charging station (f ). 
For example, the task 𝐶1 with detailed information {c, 8, 16, 30, 14, 
674, 15} can be interpreted as follows: c identifies it as a customer task, 
8 and 16 represent the 𝑥 and 𝑦 coordinates, 30 indicates the stock level 
in the buffer at the time of the call, 14 is the call time, 674 denotes 
the expiration time, and 15 is the service duration. Additionally, the 
parameter settings are summarized in Table  5.

The multi-AGV routing integrated with fast charging is a novel 
problem involving the routing of AGVs in matrix manufacturing work-
shops. To evaluate performance, the Gurobi solver and three algo-
rithms tailored to this problem were selected for comparison. The 
Gurobi solver was used to validate the effectiveness of the proposed 
model. As a heuristic method, First-Come-First-Served (FCFS) is widely 
used in matrix manufacturing workshops, making it a suitable choice 
for comparison. Additionally, the variable neighborhood search (VNS) 
algorithm and the SA algorithm were included in the comparison.

The performance of all methods was evaluated using the objective 
function 𝐹 . Each algorithm was executed 10 times for all 110 instances. 
For the Gurobi solver, obtaining a solution within a reasonable com-
putation time is challenging unless the instance size is very small. 
Therefore, a maximum computation time of 600 s was set.

In real-world production, AGV control systems must generate rout-
ing solutions within a limited time frame to prevent production disrup-
tions. Unlike previous studies that often use the number of iterations 
as a stopping criterion, this study imposes a CPU runtime limit of 
𝛥𝑇  = 10 s. This runtime limit ensures efficient solution generation, 
maintaining the continuity of production processes.

5.2. Experimental environment

All algorithms were implemented using Python 3.11, with the de-
velopment environment running on a Windows 10 (64-bit) operating 
system. The computational experiments were conducted on a work-
station equipped with an Intel Core i7-11700 processor, operating 
at a base clock speed of 2.5 GHz, alongside 16 GB of RAM. This 
configuration was selected to ensure efficient processing capabilities for 
the algorithms, particularly in handling the computational workload 
associated with the problem-solving process. The selected hardware 
and software environment offers a reliable platform for evaluating the 
performance and scalability of the proposed methods.
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Table 6
Parameter levels for ALNS.
 Parameter level 1 2 3 4  
 𝑇0 100 200 300 400  
 ℎ 0.8 0.9 0.999 0.99999  
 𝜃 0.1 0.4 0.6 0.9  
 [𝜇1 , 𝜇2 , 𝜇3 , 𝜇4] [0.45,0.3,0.15,0] [33,13,9,0] [45,15,3,0] [100,10,1,0] 
Table 7
Orthogonal test scheme L16 and results of orthogonal experiment.
 Exp 𝑇0 ℎ 𝜃 [𝜇1 , 𝜇2 , 𝜇3 , 𝜇4] S/N  
 1 100 0.8 0.1 [0.45,0.3,0.15,0] −73.168 
 2 100 0.9 0.4 [33,13,9,0] −73.138 
 3 100 0.999 0.6 [45,15,3,0] −73.140 
 4 100 0.99999 0.9 [100,10,1,0] −73.141 
 5 200 0.8 0.4 [45,15,3,0] −73.138 
 6 200 0.9 0.1 [100,10,1,0] −73.156 
 7 200 0.999 0.9 [0.45,0.3,0.15,0] −73.150 
 8 200 0.99999 0.6 [33,13,9,0] −73.153 
 9 300 0.8 0.6 [100,10,1,0] −73.133 
 10 300 0.9 0.9 [45,15,3,0] −73.128 
 11 300 0.999 0.1 [33,13,9,0] −73.142 
 12 300 0.99999 0.4 [0.45,0.3,0.15,0] −73.149 
 13 400 0.8 0.9 [33,13,9,0] −73.130 
 14 400 0.9 0.6 [0.45,0.3,0.15,0] −73.130 
 15 400 0.999 0.4 [100,10,1,0] −73.143 
 16 400 0.99999 0.1 [45,15,3,0] −73.146 
 

5.3. Parameter selection

Optimizing parameter settings is essential for enhancing the perfor-
mance of metaheuristic algorithms. In the proposed ALNS algorithm, 
four key parameters require calibration: the initial temperature (𝑇0), 
temperature cooling rate (ℎ), decay rate (𝜃), and reward combinations 
([𝜇1, 𝜇2, 𝜇3, 𝜇4]). Taguchi’s method (Leon, Shoemaker, & Kacker, 1987; 
Zhou & Lee, 2020) was employed to determine appropriate values for 
these parameters. Each parameter was evaluated across four prede-
fined levels to identify suitable values for subsequent experiments. The 
selected parameter ranges are detailed in Table  6.

This study evaluates the influence of parameter settings using the 
objective function as a performance indicator, where smaller values 
indicate greater parameter efficiency. Consequently, we adopt the 
‘‘smaller-the-better’’ principle to compute the signal-to-noise (S/N) 
ratio, defined as: 

𝑆∕𝑁 = −10 log10

(

1
𝑛

𝑛
∑

𝑖=1
(𝐹𝑖)2

)

(31)

where 𝐹𝑖 represents the objective value from the 𝑖th experiment, and 𝑛
denotes the total number of experiments.

To design the experiments, the L16 orthogonal array from the 
Taguchi framework was employed. Instance T30I10 was used for 
testing, with each parameter combination in the orthogonal array 
evaluated 20 times. The parameter settings, their corresponding S/N 
ratios, and the L16 orthogonal array are presented in Table  7.

The S/N results presented in Table  7 were analyzed to calculate 
the average response values for each parameter level, revealing their 
respective trends. These trends are illustrated in Fig.  4, which depicts 
the influence of each parameter on the S/N ratio. The steepness of the 
slopes in the figure reflects the relative significance of the parameters, 
with steeper slopes indicating a greater impact. Parameters associated 
with higher S/N ratios exhibit superior performance. Based on this 
analysis, the best parameter settings were determined as 𝑇0 = 400, 
ℎ = 0.9, 𝜃 = 0.9, [𝜇1, 𝜇2, 𝜇3, 𝜇4] = [45, 15, 3, 0].  To ensure a fair 
and reproducible comparison, we detail the parameter settings for the 
benchmark algorithms as follows. The computation time for SA, VNS, 
and ALNS was uniformly limited to 10 s. For the SA algorithm, we 
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employed the same initial temperature (400) and cooling rate (0.9) 
as used in our ALNS framework. The VNS algorithm was implemented 
using 5 neighborhood operators, including 2-opt*, 2-opt, or-opt, cross 
exchange, and merge route, following standard practices in the liter-
ature. The FCFS, as a greedy heuristic, does not require adjustable 
parameters.

5.4.  Comparison and analysis with other algorithms

5.4.1. Small-scale instance
In this section, small-scale instances with 7 and 10 customers are 

tested to evaluate the effectiveness of the proposed model. Tables  8
and 9 provide a comparison of the objective values and computation 
time (𝐶𝑇 ) for these instances. The metaheuristic algorithm is executed 
10 times for each instance, with the average objective value and 
standard deviation calculated. Additionally, due to the extremely short 
computation time of FCFS for all instances, its computation time is 
denoted as ‘‘-’’. The relative performance difference between the ALNS 
algorithm and the benchmark method is quantified by 𝛥Obj, calculated 
using the following formula: 
𝛥Obj = (ObjALNS − Obj𝑍 )∕Obj𝑍 (32)

where Obj𝑍 and ObjALNS represent the average objective values achieved
by the benchmark method 𝑍 and ALNS, respectively. A negative 𝛥Obj
value indicates that the ALNS algorithm outperforms the benchmark by 
achieving a lower objective value.

As shown in Table  8, for small-scale instances with 7 customers, 
the average 𝛥Obj values for Gurobi, FCFS, SA, and VNS are 0.0%, 
−5.4%, −0.2%, and −3.4%, respectively. In terms of average values 
and standard deviations, GUROBI and ALNS yield the best results, with 
SA closely approximating the optimal values across all 10 instances. 
For instances with 10 customers, Table  9 reports the average 𝛥Obj
values of −0.0%, −44.0%, −13.0%, and −6.1%, indicating that ALNS 
achieves the best performance in nearly all cases. Although ALNS does 
not yield the best solution for all 20 instances, it consistently generates 
solutions that are very close to the results of GUROBI solving for 600 s. 
Furthermore, the algorithm demonstrates remarkable stability across all 
instances. Overall, ALNS proves highly effective for solving this prob-
lem in the small-scale matrix workshop, consistently outperforming 
other algorithms in the comparison.
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Fig. 4. The mean S/N plot for different levels of the parameters for T30I10.
Table 8
Experimental results for the instances with 7 customers.
 Instance Gurobi FCFS SA VNS ALNS vs. Gurobi vs. FCFS vs. SA vs. VNS
 Obj CT Obj CT Obj Obj Obj 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗  
 T7I1 1459.9 150 1643.2 – 1470.7 ± 9.3 1522.9 ± 12.5 1459.9 ± 0.0 0.0% −11.2% −0.7% −4.1% 
 T7I2 1457.7 80 1588.8 – 1463.6 ± 7.6 1497.5 ± 16.1 1457.7 ± 0.0 0.0% −8.1% −0.3% −2.5% 
 T7I3 1429.9 75 1492.9 – 1429.9 ± 0.0 1508.9 ± 20.8 1429.9 ± 0.0 0.0% −4.2% 0.0% −5.2% 
 T7I4 1416.0 60 1458.9 – 1421.0 ± 5.2 1472.4 ± 14.5 1416.0 ± 0.0 0.0% −2.9% −0.3% −3.8% 
 T7I5 1437.7 170 1525.8 – 1437.7 ± 0.0 1495.1 ± 6.5 1437.7 ± 0.0 0.0% −5.8% 0.0% −3.8% 
 T7I6 1448.2 365 1517.5 – 1448.2 ± 0.0 1507.5 ± 13.2 1448.2 ± 0.0 0.0% −4.6% 0.0% −3.9% 
 T7I7 1473.1 115 1484.6 – 1475.0 ± 2.4 1491.3 ± 13.0 1473.1 ± 0.0 0.0% −0.8% −0.1% −1.2% 
 T7I8 1482.7 251 1534.1 – 1482.7 ± 0.0 1521.2 ± 18.4 1482.7 ± 0.0 0.0% −3.3% 0.0% −2.5% 
 T7I9 1451.9 106 1576.6 – 1451.9 ± 0.0 1499.5 ± 11.3 1451.9 ± 0.0 0.0% −7.9% 0.0% −3.2% 
 T7I10 1424.3 106 1498.4 – 1429.3 ± 8.4 1474.3 ± 21.9 1424.3 ± 0.0 0.0% −4.9% −0.4% −3.4% 
 Average 1448.1 147.8 1532.1 – 1451.1 ± 20.4 1501.3 ± 21.3 1448.1 ± 20.3 0.0% −5.4% 0.2% −3.4% 

 Note: The maximum computation time for SA, VNS, and ALNS is set to 10 s, and the computation time for FCFS is denoted by ‘‘–’’.
Table 9
Experimental results for the instances with 10 customers.
 Instance Gurobi FCFS SA VNS ALNS vs. Gurobi vs. FCFS vs. SA vs. VNS
 Obj CT Obj CT Obj Obj Obj 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗  
 T10I1 1584.8 600 2973.3 – 2751.1 ± 43.1 1653.7 ± 16.2 1586.2 ± 4.5 0.1% −46.7% −42.3% −4.1%  
 T10I2 1580.2 600 2817.4 – 1630.5 ± 90.1 1687.6 ± 41.2 1580.2 ± 0.0 0.0% −43.4% −2.2% −5.6%  
 T10I3 1548.2 600 2942.9 – 1550.1 ± 6.2 1646.4 ± 15.3 1548.2 ± 0.0 0.0% −47.4% −0.1% −6.0%  
 T10I4 1522.5 600 2774.7 – 2637.8 ± 25.8 1600.1 ± 17.7 1524.1 ± 2.0 0.1% −45.1% −42.2% −4.8%  
 T10I5 1592.4 600 2943.7 – 2780.9 ± 73.4 1783.3 ± 359.1 1597.5 ± 5.9 0.3% −45.7% −42.6% −10.4% 
 T10I6 1583.5 600 1604.8 – 1586.9 ± 5.5 1608.7 ± 7.4 1583.5 ± 0.0 0.0% −1.3% −0.2% −1.6%  
 T10I7 1581.9 600 2964.2 – 1595.8 ± 14.1 1682.8 ± 34.2 1581.9 ± 0.0 0.0% −46.6% −0.9% −6.0%  
 T10I8 1579.7 600 2849.8 – 2650.2 ± 19.8 1778.1 ± 352.6 1582.3 ± 4.1 0.2% −44.5% −40.3% −11.0% 
 T10I9 1553.5 600 2857.1 – 1553.4 ± 0.0 1664.6 ± 17.9 1553.4 ± 0.0 0.0% −45.6% 0.0% −6.7%  
 T10I10 1554.1 600 2909.0 – 1570.4 ± 13.4 1662.2 ± 33.2 1554.1 ± 0.0 0.0% −46.6% −1.0% −6.5%  
 T10I11 1543.1 600 2721.9 – 1558.8 ± 15.1 1639.3 ± 40.0 1543.1 ± 0.0 0.0% −43.3% −1.0% −5.9%  
 T10I12 1551.1 600 2790.2 – 1551.1 ± 0.0 1611.8 ± 6.5 1551.1 ± 0.0 0.0% −44.4% 0.0% −3.8%  
 T10I13 1540.7 600 2795.3 – 2631.3 ± 21.0 1640.6 ± 15.9 1540.7 ± 0.0 0.0% −44.9% −41.4% −6.1%  
 T10I14 1560.1 600 2923.5 – 1569.0 ± 14.5 1646.8 ± 19.2 1560.6 ± 1.6 0.0% −46.6% −0.5% −5.2%  
 T10I15 1538.6 600 2784.6 – 1546.7 ± 8.8 1631.2 ± 18.6 1538.6 ± 0.0 0.0% −44.7% −0.5% −5.7%  
 T10I16 1549.9 600 2907.7 – 1557.0 ± 7.7 1639.4 ± 16.0 1549.9 ± 0.0 0.0% −46.7% −0.5% −5.5%  
 T10I17 1535.9 600 3908.7 – 1546.3 ± 11.2 1649.1 ± 26.2 1535.8 ± 0.0 0.0% −60.7% −0.7% −6.9%  
 T10I18 1556.3 600 2901.5 – 1578.0 ± 20.8 1739.9 ± 58.3 1556.3 ± 0.0 0.0% −46.4% −1.4% −10.6% 
 T10I19 1537.2 600 2880.9 – 1541.1 ± 5.2 1641.9 ± 17.4 1537.2 ± 0.0 0.0% −46.6% −0.3% −6.4%  
 T10I20 1549.8 600 2747.9 – 2667.6 ± 24.4 1597.6 ± 30.6 1549.8 ± 0.0 0.0% −43.6% −41.9% −3.0%  
 Average 1549.8 600 2850.0 – 1899.6 ± 510.0 1667.4 ± 145.4 1558.7 ± 21.4 0.0% −44.0% −13.0% −6.1%  

Note: The maximum computation time for SA, VNS, and ALNS is set to 10 s, and the computation time for FCFS is denoted by ‘‘–’’.
12 
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Table 10
Experimental results for the instances with 20 customers.
 Instance FCFS SA VNS ALNS vs. FCFS vs. SA vs. VNS 
 Obj Obj Obj Obj 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗  
 T20I1 4639.4 3110.1 ± 30.1 3189.1 ± 27.4 3055.5 ± 0.7 −34.1% −1.8% −4.2%  
 T20I2 6157.4 3115.9 ± 22.0 3260.1 ± 31.8 3076.3 ± 6.7 −50.0% −1.3% −5.6%  
 T20I3 4510.2 3093.6 ± 49.1 3196.2 ± 29.4 3047.4 ± 6.3 −32.4% −1.5% −4.7%  
 T20I4 4645.2 4243.3 ± 54.1 3243.3 ± 30.6 3072.4 ± 7.1 −33.9% −27.6% −5.3%  
 T20I5 5881.6 3129.9 ± 19.3 3222.3 ± 35.1 3088.3 ± 2.0 −47.5% −1.3% −4.2%  
 T20I6 4588.4 3192.3 ± 57.6 3271.3 ± 48.5 3095.0 ± 4.8 −32.5% −3.0% −5.4%  
 T20I7 4787.4 3161.0 ± 27.8 3254.4 ± 28.2 3088.1 ± 1.4 −35.5% −2.3% −5.1%  
 T20I8 4920.1 3130.0 ± 23.6 3200.0 ± 25.5 3073.1 ± 8.4 −37.5% −1.8% −4.0%  
 T20I9 4599.2 3093.6 ± 15.5 3161.9 ± 18.0 3055.7 ± 9.3 −33.6% −1.2% −3.4%  
 T20I10 4639.3 3073.7 ± 20.6 3181.7 ± 49.2 3038.2 ± 3.2 −34.5% −1.2% −4.5%  
 T20I11 4747.8 3149.8 ± 40.8 3265.7 ± 46.9 3072.9 ± 5.7 −35.3% −2.4% −5.9%  
 T20I12 4690.4 3097.3 ± 16.9 3190.7 ± 15.8 3078.5 ± 3.9 −34.4% −0.6% −3.5%  
 T20I13 4631.2 3102.8 ± 43.1 3203.0 ± 29.0 3045.0 ± 4.5 −34.3% −1.9% −4.9%  
 T20I14 4822.8 3137.2 ± 44.2 3258.0 ± 16.1 3058.4 ± 10.6 −36.6% −2.5% −6.1%  
 T20I15 4672.1 3108.6 ± 45.1 3218.1 ± 29.0 3043.8 ± 0.0 −34.9% −2.1% −5.4%  
 T20I16 4639.3 4296.6 ± 34.9 3209.5 ± 36.4 3103.5 ± 4.0 −33.1% −27.8% −3.3%  
 T20I17 4718.8 4317.4 ± 154.6 3216.4 ± 47.2 3075.0 ± 2.1 −34.8% −28.8% −4.4%  
 T20I18 4622.3 3082.6 ± 20.2 3173.4 ± 1.6 3051.8 ± 7.5 −34.0% −1.0% −3.8%  
 T20I19 4878.0 3145.0 ± 26.3 3200.7 ± 26.9 3072.1 ± 0.0 −37.0% −2.3% −4.0%  
 T20I20 4461.4 3084.1 ± 34.6 3184.9 ± 24.4 3037.7 ± 2.0 −31.9% −1.5% −4.6%  
 Average 4812.6 3293.2 ± 421.7 3215.0 ± 44.5 3066.4 ± 19.6 −35.9% −5.7% −4.6%  
5.4.2. Large-scale instance
Tables  10–13 present a comparative analysis of the computational 

performance of ALNS, FCFS, VNS, and SA on large-scale instances 
with 20, 30, 40, and 50 customers, respectively, to evaluate the pro-
posed ALNS algorithm. Gurobi is excluded from the comparison due 
to preliminary tests demonstrating its inability to solve large-scale 
instances within reasonable computation times. Additionally, since the 
computation time for FCFS is extremely short and the metaheuristic 
methods are executed with a fixed runtime, 𝐶𝑇  is no longer used 
as a performance metric. The metaheuristic algorithm was run 10 
times for each instance, and the corresponding average objective values 
and standard deviations were computed. These tables also present the 
average objective values for all methods across different instance sizes 
at the bottom. To visually illustrate the differences in objective values 
among these metaheuristics, Fig.  5 depicts the mean, maximum, and 
minimum objective values for each instance of each table.

A comparison of Tables  10–13 highlights the superiority of the 
proposed ALNS method over the other three approaches. In terms of 
objective values, ALNS consistently achieves the best results across 
all instances, underscoring its effectiveness in solving the problem. 
Stability is also a critical factor in all scenarios, and ALNS demon-
strates the smallest standard deviations in every case, showcasing its 
remarkable stability and reliability in providing high-quality solutions. 
Additionally, the FCFS method, currently used in factories and based on 
call time for AGV routing, yields suboptimal results. Its computational 
inefficiency further confirms that FCFS is unsuitable for addressing 
this problem. Overall, ALNS consistently achieves strong performance 
across all instances. Thus, ALNS remains the best-performing method.

Fig.  5 presents a comparison of the maximum, minimum, and aver-
age objective values for all instances across various customer sizes. As 
shown in Fig.  5, ALNS consistently outperforms other methods, achiev-
ing both lower average and minimum objective values, underscoring its 
strong optimization capability. Moreover, ALNS demonstrates remark-
able robustness, as reflected by the notably narrower gap between its 
maximum and minimum objective values compared to SA and VNS. The 
results confirm that ALNS not only excels in solution quality but also 
ensures reliability across varying instances, affirming its suitability for 
practical, large-scale optimization tasks. Consequently, ALNS remains 
the best-performing method.
13 
5.4.3. Convergence curve comparison
Fig.  6 illustrates the convergence trends of ALNS, SA, and VNS 

on four instances: T20I6, T30I6, T40I6, and T50I6. The convergence 
curves are generated using the transportation costs at different time 
points within a calculation phase to clearly illustrate the convergence 
behavior of the algorithms across various instance scales. FCFS is 
excluded from this comparison because, as a heuristic method, it lacks 
a convergence process and is therefore unsuitable for analysis in this 
context.

The convergence curves highlight the advantages of the ALNS algo-
rithm in terms of both convergence speed and solution quality. At the 
initial stages, ALNS rapidly reduces the objective value, reflecting high 
search efficiency. Across all tested instances, ALNS achieves superior 
solution quality within a short period. In contrast, SA and VNS exhibit 
slower convergence and produce lower-quality solutions, particularly 
for larger instances, where ALNS maintains stable performance and 
superior results. Although SA and VNS may occasionally show com-
parable early convergence rates to ALNS, their final solutions fall 
short of reaching the same level, indicating that ALNS exhibits strong 
adaptability and superior performance across different instance scales.

In summary, ALNS excels in both convergence speed and final solu-
tion quality, underscoring its effectiveness and adaptability in solving 
this problem.

5.5.  Sensitivity analysis

This section evaluates the performance of the ALNS algorithm and 
two benchmark algorithms, SA and VNS, through sensitivity analysis 
conducted on large-scale instances commonly encountered in practice, 
namely instances T20I6, T30I6, T40I6, and T50I6. The three algorithms 
were tested across these four instances to provide managerial insights. 
Sensitivity analysis was conducted by varying each experimental pa-
rameter independently while keeping all other conditions constant, 
ensuring a rigorous evaluation of their impacts on scheduling perfor-
mance. Each algorithm was executed ten times for each instance, and 
the average total cost was calculated for analysis. We analyze the effect 
of battery thresholds in 5.5.1, computation time in 5.5.2, and present 
managerial insights in 5.5.3.
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Fig. 5. Comparison of the maximum and minimum values and average results corresponding to the experimental results.
Table 11
Experimental results for the instances with 30 customers.
 Instance FCFS SA VNS ALNS vs. FCFS vs. SA vs. VNS 
 Obj Obj Obj Obj 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗  
 T30I1 7680.9 4689.7 ± 43.2 4734.8 ± 9.9 4556.3 ± 6.9 −40.7% −2.8% −3.8%  
 T30I2 7733.0 4633.3 ± 36.5 4759.9 ± 20.3 4537.3 ± 9.1 −41.3% −2.1% −4.7%  
 T30I3 6375.1 4592.1 ± 24.1 4697.5 ± 17.4 4536.2 ± 7.2 −28.8% −1.2% −3.4%  
 T30I4 7412.9 4613.8 ± 26.9 4673.6 ± 25.4 4516.6 ± 16.7 −39.1% −2.1% −3.4%  
 T30I5 7642.0 4693.8 ± 37.0 4782.4 ± 32.4 4578.5 ± 8.2 −40.1% −2.5% −4.3%  
 T30I6 6304.2 5802.4 ± 52.3 4743.3 ± 26.1 4569.3 ± 7.4 −27.5% −21.3% −3.7%  
 T30I7 6528.3 5796.4 ± 152.6 4725.3 ± 39.5 4538.6 ± 4.3 −30.5% −21.7% −4.0%  
 T30I8 7631.0 4623.3 ± 29.6 4729.8 ± 33.3 4531.4 ± 3.3 −40.6% −2.0% −4.2%  
 T30I9 7503.4 4629.9 ± 26.6 4737.0 ± 54.5 4518.7 ± 3.8 −39.8% −2.4% −4.6%  
 T30I10 6423.3 4634.2 ± 31.2 4752.0 ± 37.5 4528.8 ± 4.7 −29.5% −2.3% −4.7%  
 T30I11 7791.9 4685.5 ± 93.6 4857.7 ± 46.4 4523.2 ± 11.5 −42.0% −3.5% −6.9%  
 T30I12 6398.9 4660.6 ± 24.6 4719.4 ± 16.4 4564.1 ± 6.9 −28.7% −2.1% −3.3%  
 T30I13 7435.1 5747.7 ± 69.8 4752.5 ± 54.2 4540.0 ± 12.2 −38.9% −21.0% −4.5%  
 T30I14 7788.8 4645.0 ± 45.3 4814.9 ± 46.4 4535.7 ± 9.9 −41.8% −2.4% −5.8%  
 T30I15 8861.5 5760.4 ± 51.4 4730.1 ± 54.1 4557.2 ± 10.1 −48.6% −20.9% −3.7%  
 T30I16 6224.1 4678.9 ± 22.2 4751.9 ± 34.3 4569.0 ± 6.9 −26.6% −2.4% −3.8%  
 T30I17 7489.3 4650.1 ± 46.6 4752.8 ± 18.5 4522.1 ± 7.9 −39.6% −2.8% −4.9%  
 T30I18 7721.9 5845.6 ± 79.4 4782.6 ± 32.2 4550.2 ± 11.5 −41.1% −22.2% −4.9%  
 T30I19 7677.2 4641.8 ± 26.2 4740.9 ± 31.8 4531.5 ± 4.6 −41.0% −2.4% −4.4%  
 T30I20 6299.4 5768.7 ± 86.4 4731.8 ± 31.0 4512.8 ± 7.6 −28.4% −21.8% −4.6%  
 Average 7246.1 4989.7 ± 527.1 4748.5 ± 51.4 4540.9 ± 20.6 −36.7% −8.1% −4.4%  
14 
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Table 12
Experimental results for the instances with 40 customers.
 Instance FCFS SA VNS ALNS vs. FCFS vs. SA vs. VNS 
 Obj Obj Obj Obj 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗  
 T40I1 11884.2 6259.9 ± 53.7 6327.5 ± 30.2 6088.0 ± 13.9 −48.8% −2.7% −3.8%  
 T40I2 9540.8 6206.7 ± 55.2 6294.9 ± 22.8 6069.3 ± 11.5 −36.4% −2.2% −3.6%  
 T40I3 9434.9 6181.2 ± 42.8 6282.5 ± 33.8 6045.2 ± 19.3 −35.9% −2.2% −3.8%  
 T40I4 9145.3 6182.9 ± 43.5 6262.2 ± 30.0 6065.4 ± 11.0 −33.7% −1.9% −3.1%  
 T40I5 9428.0 7372.7 ± 75.1 6330.4 ± 37.0 6078.2 ± 8.2 −35.5% −17.6% −4.0%  
 T40I6 7959.6 6245.0 ± 47.1 6366.9 ± 26.5 6113.9 ± 22.4 −23.2% −2.1% −4.0%  
 T40I7 9453.9 6266.5 ± 93.6 6314.7 ± 46.3 6040.7 ± 10.7 −36.1% −3.6% −4.3%  
 T40I8 9425.1 6249.1 ± 56.8 6294.9 ± 41.9 6060.8 ± 8.9 −35.7% −3.0% −3.7%  
 T40I9 9417.7 6199.9 ± 69.6 6248.1 ± 66.7 6045.3 ± 5.2 −35.8% −2.5% −3.2%  
 T40I10 7983.2 6190.6 ± 26.1 6325.0 ± 28.1 6053.1 ± 9.0 −24.2% −2.2% −4.3%  
 T40I11 9510.2 6182.0 ± 52.6 6241.8 ± 21.7 6059.8 ± 12.4 −36.3% −2.0% −2.9%  
 T40I12 9385.2 6230.6 ± 44.0 6282.8 ± 17.7 6078.2 ± 4.7 −35.2% −2.4% −3.3%  
 T40I13 9430.3 6202.4 ± 34.4 6309.4 ± 41.3 6070.3 ± 14.8 −35.6% −2.1% −3.8%  
 T40I14 9755.2 7307.5 ± 61.0 6325.4 ± 41.0 6060.4 ± 12.1 −37.9% −17.1% −4.2%  
 T40I15 10539.0 6226.5 ± 59.0 6281.9 ± 35.7 6067.2 ± 11.4 −42.4% −2.6% −3.4%  
 T40I16 9336.3 6218.2 ± 31.0 6288.4 ± 27.0 6111.2 ± 7.7 −34.5% −1.7% −2.8%  
 T40I17 9321.4 6203.8 ± 62.3 6282.6 ± 76.7 6034.2 ± 9.5 −35.3% −2.7% −4.0%  
 T40I18 9274.8 7360.2 ± 67.6 6345.2 ± 41.7 6089.5 ± 12.3 −34.3% −17.3% −4.0%  
 T40I19 9290.1 6227.3 ± 51.2 6331.2 ± 40.5 6057.5 ± 10.5 −34.8% −2.7% −4.3%  
 T40I20 9249.3 6205.7 ± 65.8 6290.7 ± 54.5 6050.6 ± 11.2 −34.6% −2.5% −3.8%  
 Average 9438.2 6385.9 ± 409.1 6301.3 ± 49.9 6066.9 ± 23.9 −35.3% −4.7% −3.7%  
Table 13
Experimental results for the instances with 50 customers.
 Instance FCFS SA VNS ALNS vs. FCFS vs. SA vs. VNS 
 Obj Obj Obj Obj 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗  
 T50I1 13561.4 7748.8 ± 62.7 7759.7 ± 46.5 7561.9 ± 17.8 −44.2% −2.4% −2.5%  
 T50I2 12223.3 7720.2 ± 36.5 7816.0 ± 47.1 7540.6 ± 17.7 −38.3% −2.3% −3.5%  
 T50I3 12473.4 7664.6 ± 59.3 7779.7 ± 67.3 7507.3 ± 14.0 −39.8% −2.1% −3.5%  
 T50I4 10823.0 7697.9 ± 26.8 7814.6 ± 46.1 7527.9 ± 13.4 −30.4% −2.2% −3.7%  
 T50I5 12400.9 7691.6 ± 61.7 7807.8 ± 50.1 7530.7 ± 15.0 −39.3% −2.1% −3.5%  
 T50I6 11119.8 7780.2 ± 43.1 7792.6 ± 46.8 7546.6 ± 9.0 −32.1% −3.0% −3.2%  
 T50I7 13679.0 7761.6 ± 131.5 7784.9 ± 75.7 7516.5 ± 15.8 −45.1% −3.2% −3.4%  
 T50I8 12366.5 8895.1 ± 75.1 7762.3 ± 64.3 7527.2 ± 10.8 −39.1% −15.4% −3.0%  
 T50I9 12204.1 7720.7 ± 38.6 7780.6 ± 56.3 7505.8 ± 9.9 −38.5% −2.8% −3.5%  
 T50I10 10936.9 7672.2 ± 62.0 7722.9 ± 56.9 7526.9 ± 10.5 −31.2% −1.9% −2.5%  
 T50I11 12398.5 7711.2 ± 73.1 7751.1 ± 37.5 7521.7 ± 10.4 −39.3% −2.5% −3.0%  
 T50I12 12340.3 7721.8 ± 65.7 7798.7 ± 59.1 7537.2 ± 15.2 −38.9% −2.4% −3.4%  
 T50I13 11168.1 7725.1 ± 77.9 7863.1 ± 47.5 7541.3 ± 13.3 −32.5% −2.4% −4.1%  
 T50I14 12364.4 7715.5 ± 60.2 7853.0 ± 45.4 7535.3 ± 8.4 −39.1% −2.3% −4.0%  
 T50I15 10929.7 7696.0 ± 38.8 7801.5 ± 32.6 7546.9 ± 14.1 −31.0% −1.9% −3.3%  
 T50I16 11114.2 7748.8 ± 45.3 7836.6 ± 41.8 7567.0 ± 11.6 −31.9% −2.3% −3.4%  
 T50I17 12218.3 7706.3 ± 68.2 7821.8 ± 92.5 7530.9 ± 30.7 −38.4% −2.3% −3.7%  
 T50I18 12542.4 7663.9 ± 26.5 7748.2 ± 37.5 7528.4 ± 15.7 −40.0% −1.8% −2.8%  
 T50I19 12402.1 7724.6 ± 55.0 7800.6 ± 20.3 7538.8 ± 10.7 −39.2% −2.4% −3.4%  
 T50I20 11027.9 7719.4 ± 74.0 7762.7 ± 53.0 7534.8 ± 26.9 −31.7% −2.4% −2.9%  
 Average 12014.7 7774.3 ± 266.3 7792.9 ± 61.9 7533.7 ± 21.1 −37.0% −3.0% −3.3%  
5.5.1.  Impact of battery thresholds
The battery threshold is defined as the minimum residual battery 

level, expressed as a fraction of the total battery capacity, that an 
AGV must maintain upon arriving at the warehouse, ensuring adequate 
energy reserves for subsequent operations. To assess the impact of this 
parameter, the battery threshold was systematically varied from 0.1 to 
0.5 in increments of 0.1 while all other parameters remained constant.

Fig.  7 presents several noteworthy trends. A battery threshold of 0.3 
consistently provides optimal or near-optimal performance, frequently 
yielding the lowest average total cost or costs close to the best val-
ues across all instances. In contrast, a threshold of 0.1 consistently 
results in inferior performance, primarily due to insufficient charging, 
leading to increased penalty costs for early arrivals. Similarly, the 
15 
highest threshold setting of 0.5 also leads to poorer performance, as it 
triggers premature or redundant charging, leading to excessive charg-
ing events and unnecessary travel. Regarding algorithm performance, 
ALNS consistently demonstrates superior results with relatively stable 
behavior. Specifically, for ALNS, higher thresholds (0.3, 0.4, and 0.5) 
consistently outperform lower thresholds (0.1 and 0.2), with a notable 
cost reduction typically observed between thresholds of 0.2 and 0.3. For 
VNS, the most significant reductions in average cost generally occur 
earlier, between thresholds of 0.1 and 0.2. Meanwhile, SA exhibits a 
threshold sensitivity similar to that of ALNS in most instances, with 
cost reductions from thresholds of 0.2 to 0.3, except for instance T30I6, 
where changes in the battery threshold have minimal impact on cost 
performance for all algorithms.
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Fig. 6. Convergence curves of algorithms.
5.5.2.  Impact of computation time
To investigate the impact of computation time on solution quality, 

experiments were conducted by varying the maximum allowed com-
putation time from 5 to 25 s in increments of 5 s. The performance of 
three algorithms, ALNS, SA, and VNS, was quantified by calculating the 
relative performance gap, which measures the deviation between the 
solution obtained at a given computation time limit and the best-known 
solution achieved at the computation time limit of 25 s.

Fig.  8 shows that the relative performance gap decreases with in-
creased computation time limit, confirming that extended computation 
time limit enables a more thorough exploration of the solution space 
and improves solution quality. Notably, most improvements occur in 
the initial time increments, particularly between 5 and 10 s, where 
a steep reduction in the gap is observed, suggesting that significant 
enhancements in solution quality can be achieved rapidly. Moreover, 
ALNS consistently outperforms both SA and VNS by achieving substan-
tially smaller gaps and demonstrating robust stability across all test 
instances.

5.5.3.  Managerial insights for industrial managers
The sensitivity analysis results provide several practical managerial 

insights:
(1) A moderate battery threshold (approximately 0.3) balances 

charging frequency and cost-efficiency, avoiding penalties associated 
with either excessive or insufficient charging.
16 
(2) The ALNS algorithm consistently provides superior solution 
quality and robustness across various parameter settings, making it 
particularly suitable for real-world applications where consistent per-
formance is crucial.

(3) Allocating moderate computation resources, specifically be-
tween 10 and 15 s, is sufficient to yield high-quality solutions. This 
insight is valuable for decision-makers seeking an optimal balance 
between computational efficiency and solution quality in practical 
applications.

Collectively, these insights highlight the importance of selecting 
appropriate battery thresholds, employing robust algorithms such as 
ALNS, and strategically allocating computational resources. Such con-
siderations optimize operational strategies, thereby enhancing the over-
all efficiency and reliability of AGV scheduling systems in industrial 
contexts.

6. Conclusions and future work

In conclusion, this study addressed an AGV routing problem that 
incorporates fast charging to extend the endurance range of AGVs. 
To tackle this issue, an MILP model was formulated to minimize 
the total transportation costs. However, due to the complexity of the 
investigates problem, commercial solvers such as Gurobi handle the 
MILP model efficiently only on small instances. Therefore, an improved 
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Fig. 7. Sensitivity analysis for battery threshold.
ALNS algorithm, which includes a charging station insertion heuristic, 
was developed. Furthermore, comprehensive numerical experiments 
demonstrated the effectiveness of this approach, highlighting its com-
petitiveness against existing state-of-the-art heuristics and metaheuris-
tic algorithms. All algorithms were tested on 110 instances derived 
from a matrix manufacturing workshop in the real-world electron-
ics equipment manufacturing industry. The results indicate that the 
solutions generated by the proposed ALNS algorithm closely approx-
imate the exact solutions for small-scale instances and significantly 
outperform the other three methods for larger instances. These findings 
emphasize the significance of the proposed approach in enhancing the 
utilization of AGVs in matrix manufacturing workshops.

Nonetheless, several limitations remain. First, our current model 
assumes a constant AGV speed and dual-lane pathways, which may 
not accurately reflect the variability in real-world production environ-
ments. Second, the problem setting in this paper omits consideration of 
unforeseen events and the associated adaptive strategies. To implement 
the proposed method in a dynamic production format, future research 
should focus on integrating real-time data and adaptive scheduling 
mechanisms. For instance, incorporating online learning algorithms or 
real-time optimization techniques could enable continuous updating 
of routing decisions based on current production conditions, thereby 
further enhancing operational responsiveness and efficiency.
17 
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Fig. 8. Sensitivity analysis for computation time.
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