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A B S T R A C T

The annotation cost of electrocardiogram (ECG) data is extremely high, resulting in a lack of labeled data.
However, most existing models are based on supervised learning and highly dependent on labeled data.
Therefore, this study proposes a low-cost and stable arrhythmia detection algorithm based on deep active
learning to reduce annotation costs and develop a model with a low dependence on labeled data. The algorithm
first proposes a Skew series query strategy based on the weak stratification of morphological statistical features,
especially for ECG data, including Skew, Skewierste, Skewier-C, and Skewier-C/2, and develops a CNN-based
classifier. Finally, experiments verified that the query strategy proposed in this sstudy has higher stability and
adaptability than other classical ECG strategies, and that the performance of the proposed CNN is also higher
than that of other classical classifiers. The heartbeat detection algorithm based on deep active learning (DAL)
proposed in this study can significantly reduce the dependence on labeled data, significantly reducing annotation
costs.

1. Introduction

Arrhythmia refers to an abnormal heart beat, rhythm, and frequency,
some diseases can cause sudden death if not treated in time, which is
very harmful. Therefore, early diagnosis and appropriate treatment are
required. Electrocardiogram (ECG) is the most important examination
method for diagnosing arrhythmia because it is fast, convenient, and
non-invasive (Wang et al., 2023). With the rapid increase in the number
of arrhythmia patients, research and application requirements for
computer-based arrhythmia-assisted diagnosis are increasing. The
effectiveness of computer-aided diagnosis is determined by the perfor-
mance of the diagnostic model, which is determined by the scale and
quality of the labeled data.

Although massive amounts of ECG data are generated daily, they
remain unlabeled. ECG annotation is different from general target
detection, which only needs to mark whether the animal in the picture is
a “cat” or a “dog,” ECG needs to develop professional annotation soft-
ware and be annotated by ECG experts, which is a cumbersome process
and requires high professionalism. According to research needs, the

annotation content of an ECG includes heartbeat, rhythm, morphology,
and conclusive diagnosis (Wang et al., 2021), which requires precise
positioning and accurate mark. It is a 6 s-long ECG segment that includes
beat, rhythm, and morphology annotation, as shown in Fig. 1. It can be
observed that much content that needs to be located and annotated.
Professional and cumbersome ECG annotation makes the annotation
cost higher than that of general target detection, leading to a lack of ECG
labeled data. This hinders the development of computer-aided intelli-
gent ECG diagnosis to a certain extent; therefore, reducing the annota-
tion cost is an urgent problem to be solved.

Artificial intelligence detection methods in the field of ECG can be
divided into two categories. One is the traditional method based on
feature extraction, the most widely used is the RR interval (RRI), such as
Chazal et al. (2004), Llamedo and Martínez (2010), and Raj et al. (2016)
detected heartbeats based on RRI; Andersen et al. (2019), Li et al.
(2017), and Zhou et al. (2014) detected atrial fibrillation based on RRI;
and Chen et al. (2014) detected obstructive sleep apnea (OSA) based on
RRI by using SVM. For this purpose, wavelet-based methods are typi-
cally used. Kim et al. (2011) divided heartbeats into five categories
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according to the AAMI standard(ANSI/AAMI, 2008), proposed a heart-
beat detection method based on continuous wavelet transform (CWT)
using extreme learning machine (ELM) classifier, and Asgari et al.
(2015) proposed an atrial fibrillation detection method based on sta-
tionary wavelet transform (SWT) using SVM. There are also some other
methods, such as Bozkurt et al. (2020) using KNN, SVM, DT, and
ensemble classifiers for detecting OSA based on Heart Rate Variable
(HRV); Wang et al. (2021) proposed an atrial fibrillation detection al-
gorithm based on gradient set(GDS); Thakor et al. (1990) proposed a
ventricular tachycardia and fibrillation detection method based on
threshold crossing interval(TCI); Yin et al. (2020) proposed an ECG
signal discernment method based on entropy. Geweid and Chen (2022)
detected atrial fibrillation from short single-lead ECG recordings using a
hybrid approach of dual support vector machine (HA-DSVM) based on a
combination of different features.

Another is the point-to-point detection method based on deep
learning (DL), the most commonly used is CNN, such as Kiranyaz et al.
(2015) and Acharya et al. (2017) respectively used CNN to detect
arrhythmia based on beats, Acharya et al. (2017) used CNN to detect
myocardial infarction, Attia et al. (2019) used CNN to predict atrial
fibrillation, Yao et al. (2020) and Ge et al. (2021) used CNN to detect 9
common arrhythmia diseases and ECG signal characteristics. RNN is also
commonly used, such as Saadatnejad et al. (2019) used LSTM to detect
heartbeats, Tan et al. (2018) used LSTM and CNN to detect myocardial
infarction and congestive heart failure, Li et al. (2020) explored multi-
modal emotion recognition using LSTM and RNN, Erdenebayar et al.
(2019) used gated-recurrent unit (GRU) and CNN to detect sleep apnea.
Other deep learning techniques have also been applied to artificial in-
telligence detection of ECG, such as Wang et al. (2021) used DNN to
detect atrial fibrillation, Ribeiro et al. (2020) used DNN to detect 6
common arrhythmia diseases and Taji et al. (2017) detected Atrial
fibrillation by using the Deep belief network (DBN).

Most ECG detection algorithms are based on supervised learning
(Berkaya et al., 2018; Pławiak, 2018), and the model performance is
completely dependent on labeled data, especially in deep learning (Liu
et al., 2021), where excellent detection performance comes from a high
degree of greed for labeled data; therefore, the cost of model training is
high. Repeated annotation of samples with the same interestingness had
little effect on model improvement, but invisibly increased the annota-
tion cost. Therefore, reducing invalid and redundant annotations and
developing models with low dependence on labeled data significantly
reduces annotation costs. Some researchers have proposed building
semi-supervised (Zhai et al., 2020), unsupervised (Jovic & Bogunovic,
2011) and active learning models, in which active learning attempts to
train models with a small amount of labeled data and achieve the per-
formance obtained by training a large amount of labeled data to relieve
the pressure caused by the lack of labeled data. Active learning has been
widely used in image processing (Joshi et al., 2009), and is undoubtedly
a good choice.

Active learning (AL) can actively select the most valuable unlabeled

samples for annotation with the goal of reducing redundancy and
repeated annotation, and it is expected to achieve the anticipated per-
formance of the model with a small number of labeled samples. Pasolli
and Melgani (2010) applied active learning to ECG intelligence detec-
tion earlier and proposed three query strategies, (1) Margin Sampling
(MS), (2) Posterior Probability Sampling (PPS), and (3) Query by
Committee (QBC). By classifying six common heartbeats on SVM, it was
proven that active learning can significantly reduce the need for labeled
data while ensuring good performance. With the rapid development of
deep learning, some researchers have applied AL to dynamically update
the training of deep learning models to improve their performance
(Rahhal et al., 2016; Shi et al., 2020; Wang et al., 2019). Heartbeat
detection is the most commonly used detection method. For example,
beats are divided into five (Wang et al., 2019; Xia & Xie, 2019) or four
categories (Rahhal et al., 2016; Sayantan et al., 2018) according to the
AAMI standard; supraventricular ectopic beat (S), ventricular ectopic
beat (V), fusion beat (F), unknown beat (Q), and any heartbeat not in S,
V, F, and Q (N). The other is the detection of a single disease, He et al.
(2021) detected myocardial infarction based on beats, whereas Shi et al.
(2020) detected atrial fibrillation based on rhythms. The deep learning
models used in this study were Convolutional Neural Networks (CNN)
(Shi et al., 2020; Xia & Xie, 2019), Recurrent Neural Networks(RNN)
(Wang et al., 2019), Deep Belief Networks(DBN) (Sayantan et al., 2018),
and Deep Neural Networks(DNN) (Rahhal et al., 2016). For the query
strategy in active learning, Wang et al. (2019) used information entropy
and margin sampling, Rahhal et al. (2016) chose Entropy, and Breaking-
Tie (BT) measurements, Sayantan et al. (2018) used BT measurement,
Xia and Xie (2019) used modified BT, He et al. (2021) chose the Least
Confidence, and Shi et al. (2020) used the Modified Entropy(MEN)
measurement.

In summary, the current application of AL in ECG detection primarily
improves the performance of the model, and the number of categories to
be queried is small. Among them, detection based on heartbeat has at
most 5-classification problems, whereas rhythmic-based detection is
also a single disease detection. Most of the query strategies in the
aforementioned studies are simple references or corrections to the un-
certainty measurement and lack systematic comparison and analysis.
When there are many categories of datasets to be queried, the uncer-
tainty measurement has limitations, which may easily lead to local
overfitting.

To reduce the annotation cost and develop a model with low
dependence on labeled data, this study proposes a heartbeat detection
algorithm based on deep active learning (DAL), that is, a CNN-based
DAL model combining AL and DL. By analyzing classical query strate-
gies, a series of stable and high-performance query strategies suitable for
ECG are proposed, which are referred to as weak stratification query
strategies based on morphological statistical features. The algorithm can
reduce the amount of labeled data as much as possible while ensuring
the high performance of the model, avoiding invalid and redundant
annotations, and obtaining high-quality annotations. Simultaneously,

Fig. 1. The image is an annotation interface of the annotation system developed by this paper. The signal in the image is lead I, including beat, rhythm, and
morphology labels. Beat annotation interpretation: L → Left bundle branch block beat. Rhythm annotation interpretation: (N → normal sinus rhythm. Morphological
annotation interpretation: Above the waveform—P → P Wave; T → T Wave; R → R wave peak, representing QRS wave. Below the waveform—PD → P wave bimodal;
TI → T wave inversion.
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data with high interest and contribution to modeling were selected as
the samples to be annotated, which is of great significance in reducing
the annotation cost.

The remainder of this paper is organized as follows. Section 2 pre-
sents related works. Section 3 presents a detailed description of the
proposed algorithm. Sections 4 and 5 present the experimental settings
and results, respectively. Finally, section 6 concludes the paper.

2. Related works

2.1. Deep Learning, active learning and deep active learning

Deep learning (DL) is a type of machine learning that originated from
artificial neural networks and breaks the limitations of traditional neural
networks on the number of layers, and the number of network layers can
be selected according to the designer’s needs. The motivation is to
establish a model to simulate the neural connection structure of the
human brain. When processing data such as images, voice, and text, the
features are described through multiple transformation stages, and then
the interpretation of the data is provided. Compared with the method of
constructing features by artificial rules, using big data to learn features is
more capable of characterizing the rich internal information of the data.
And the performance of deep learning under massive data supply is
much better than machine learning. The commonly used deep learning
models include Recurrent Neural Networks(RNN), Deep Neural Net-
works(DNN), Deep Belief Networks(DBN), Convolutional Neural Net-
works (CNN), Generative Adversarial Networks(GAN), etc.

Active learning (AL) is a subfield of machine learning, which is a
strategy or algorithm that can be interactively queried, also known as
query learning or optimal experimental design(Settles, 2009). The
model can actively select the data it wants to learn, select themost useful
samples from unlabeled datasets, and hand them over to annotators for
annotation, thereby minimizing annotation costs while maintaining
performance.

Deep learning has a powerful learning ability, but it is highly greedy
for labeled data, and its learning ability is completely determined by the
quantity and quality of the labeled data. Active learning (Settles, 2009)
obtains high-value labeled samples by actively selecting samples for
annotation, which can effectively reduce annotation costs. Therefore,
the deep active learning(DAL) model combined by deep learning(DL)
and active learning(AL) is expected to reduce the demand for labeled
data while maintaining a high learning performance.

Fig. 2 shows a comparison of the classical process of AL and DAL,
where U represents the unlabeled dataset and L represents the labeled
dataset (Ren et al., 2021).

Fig. 2(a) shows the AL process, which is directly querying samples in
U according to the query strategy, and gives them to ECG experts for
annotation. After annotation, the newly labeled data were added to L,
the model was trained, while updating U and deleting the queried
samples in U. This process is repeated until the U is empty or a pre-set

termination condition is reached.
Fig. 2(b) shows the DAL process, the samples in U are first extracted

features by the DL model and then queried based on a specific query
strategy and sent to ECG experts for annotation. After annotation, the
newly labeled data were added to L, the DL model was trained on L,
while U is updated and the queried samples are deleted in U. After
annotation, add the newly labeled data to L and train the DL model on L,
while updating U and deleting the queried samples in U. This process is
repeated until the unlabeled dataset is empty or a pre-set termination
condition is reached.

In summary, the most significant difference between AL and DAL is
that DAL first extracts features through DL and then selects samples
based on a specific query strategy, thus making full use of DL’s powerful
data processing and feature extraction capabilities of DL.

2.2. Query strategies

The most widely used classical query strategies are Least Confidence
(Wang & Shang, 2014), Margin Sampling (Wang & Shang, 2014), En-
tropy Sampling (Wang & Shang, 2014), K-Means Sampling, and K-
Centers Greedy (Sener & Savarese, 2018).

(1) Least Confidence: Select the sample with the largest prediction
probability but low reliability of the model, denoted as lc. The
calculation method is shown in Eq. (1).

lc = argmaxi=1,...,n(1 - P(ŷ|xi) ) ŷ = argmaxj=1,...,mP
(
yj|xi

)
(1)

where xi represents the i-th sample, yj the j-th class, and ŷ the largest
posterior probability among the classes.

(2) Margin Sampling: Select the samples with the smallest proba-
bility difference between the largest and the next largest pre-
dicted by the model, denoted as Margin, and the calculation
method is shown in Eq. (2).

Margin = argmini=1,...,n(P(ŷ1|xi) − P(ŷ2|xi)) (2)

where xi represents the i-th sample, ŷ1 and ŷ2 represent the two largest
posterior probabilities across all the classes.

(3) Entropy Sampling: Entropy can be used to measure the uncer-
tainty. A higher entropy indicates greater uncertainty, whereas a
lower entropy indicates less uncertainty. Therefore, a sample
with a higher entropy can be selected as the data to be annotated,
denoted as Entropy. The calculation method is shown in Eq. (3).

Entropy = argmini=1,...,n −
∑

j
P
(
yj|xi

)
(3)

where xi represents the i-th sample, yj represents the j-th class.

U

L

Query strategy

Update dataset

Training
model

L U

Training model

Query strategy

Update dataset

Fig. 2. Comparison of typical AL and DAL models.
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(4) K-Means Sampling: According to the K-Means clustering algo-
rithm, the dataset is divided into k clusters, and the calculation
method for the newly added sample u to be labeled is shown in
the calculation Eq. (4).

u = argmin
∑k

i=1

∑

x∈Ci

‖x − μi‖
2 (4)

where μi is the centroid of the cluster Ci.

(5) K-Centers Greedy: The strategy selects b samples in each round,
finding the current best dataset by sequentially selecting b sam-
ples from the unlabeled dataset U and adding them to L. The
newly added sample umust have the largest distance from L. The
method for determining u is shown in Eq. (5).

u = argmaxi∈[n]\Lminj∈LΔ
(
xi, xj

)
(5)

where xi is the i-th sample in U, n is the total number of samples, xj is
the j-th sample in L. Newly added sample u must have the largest dis-
tance from L, and the method for determining the distance between u
and L is to calculate the minimum distance between u and each sample
of L.

3. Methodology

3.1. Overview of the algorithm

This study proposes a DAL beat detection algorithm based on the
weak stratification query strategy for morphological statistical features.
Fig. 3(Wang et al., 2021) shows the DAL-based ECG detection process,
where U, L, and L0 represent the unlabeled dataset, labeled dataset, and
initially labeled dataset, respectively. The specific steps are as follows:

(1) To initialize the model, the CNNmodel was first pre-trained using
the initially labeled training set L0.

(2) Each iteration queries a specific number of samples from the
unlabeled dataset U according to the weak stratification query
strategy of morphological statistical features and is then anno-
tated by ECG experts.

(3) After annotation, they were placed into labeled database L, the
CNN model was trained and optimized again, while updating U
and deleting the queried samples in U;

(4) Steps (2) and (3) are repeated continuously until the pre-set
target is reached or the number of unlabeled data samples is zero.

In this study, the deep learningmodel used in the proposed algorithm
is CNN. The structure of the CNN classifier includes four convolutional
layers and two fully connected layers, as shown in Fig. 4, and the acti-
vation function used is ReLU.

3.2. Weak stratification query strategy based on morphological statistical
features

The most obvious difference in the signals of various arrhythmias is
the morphological difference, which is also the main basis for diagnosis.
Therefore, this study proposes a query strategy based on weak stratifi-
cation of morphological statistical features. Skewness is a digital feature
of the asymmetry of a statistical data distribution. The skewness and
direction of distribution were determined by measuring the skewness
coefficient. Therefore, the skewness fully reflects the morphological
characteristics of the signal. This study considers skewness as the main
analysis object and proposes the following five query strategies based on
skewness, setting the number of samples for each round of query as N
and the number of arrhythmia types as C (which also represents the
number of beat classes). To query samples in various distribution states
as much as possible, five stratification strategies are proposed, including
precise stratification, and strategy (3) “Skewhier-C” is divided into C
layers; as well as general layering, strategy (1) “Skew” is divided into 1
layer, strategy (2) “Skewhierste” is divided into 2 layers, strategy (4)
“Skewhier-C/2″ is divided into C/2 layers; also tried combining with
other strategies like strategy (5) ”EntropySkw“ combined with infor-
mation entropy. Detailed descriptions of the five strategies are as
follows.

(1) Skew

The core idea of the “Skew” query strategy is to first calculate the
skewness value of all the unlabeled samples {u1, u2, ..., um}, denoted as
the set Skew, then sort the Skew. Finally, the first n samples were taken as
samples to be labeled.

It is assumed that each sample contains t sampling points, denoted as
{x1, x2, ..., xt}, where xi represents the i-th sampling point of the sample.
The calculation method of the skewness value of the sample is shown in
Eq. (6), and is denoted as skew:

skew =

∑t
i=1(xi − μ)3

(t − 1)σ3 μ =
x1 + x2 + ...+ xt

t
σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑t

i=1
(xi − μ)2

t − 1

√
√
√
√
√

(6)

Then the description of the “Skew” query strategy is shown in

U

L

L0
Weak Stratification Query Strategy of Morphological Statistical Features

Fig. 3. The process of the DAL-based heartbeat detection algorithm proposed in this paper.
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Algorithm 1.
Algorithm 1. “Skew” query strategy

Input: The set of containing m unlabeled samples U = {u1, u2, ..., um}.
Output: The set A containing n samples to be labeled.
1. Calculate the skew of all unlabeled samples in U according to formula (6), and

obtain the set Skew:
Skew = {skew1, skew2, ..., skewm}

2. Normalized set Skew.
Sort the set Skew and get the set Oskew: Oskew = sort(Skew);

3. A = Oskew[0:n]
4. Return A

(2) Skewhierste

The core idea of the “Skewierste” query strategy is to first calculate
the skew of all unlabeled samples, sort them, and take n/2 samples at the
head of the sequence and n/2 at the tail as the samples to be annotated.
This process is presented in Algorithm 2.

Algorithm 2. “Skewhierste” query strategy

Input: The set of containing m unlabeled samples U = {u1, u2, ..., um}.
Output: The set A containing n samples to be labeled.
1. Calculate the skew of all unlabeled samples in U according to formula (6), and

obtain the set Skew:
Skew = {skew1, skew2, ..., skewm}

2. Normalized set Skew.
3. Sort the set Skew and get the set Oskew:

Oskew = sort(Skew);
3. For j = 1, 2, 3, …, n/2

aminj = min(Oskew); Amin.append(aminj); Oskew.remove(aminj);
amaxj = max(Oskew); Amax.append(amaxj); Oskew.remove(amaxj);

EndFor
4. The set A is the sum of the minimum set and the maximum set: A = Amin + Amax;
5. Return A

(3) Skewhier-C

The strategy first calculates the skew of all the unlabeled samples and
sorts them. C is the number of classes; the sequence is divided into C
segments from beginning to end, each segment takes n/C samples, and n
samples are taken as samples to be labeled. This process is presented in

Algorithm 3.
Algorithm 3. “Skewhier-C” query strategy

Input: The set of containing m unlabeled samples U = {u1 , u2, ..., um}
Parameters: The number of classes: C.

Output: The set A containing n samples to be labeled.
Calculate the skew of all unlabeled samples in U according to formula (6), and obtain
the set Skew:
Skew = {skew1, skew2, ..., skewm}

Normalized set Skew.
Sort the set Skew and get the set Oskew:
Oskew = sort(Skew);

The number of unlabeled samples in each segment is sn = m/C, and the number of
samples to be labeled in each segment is ssn = n/C;
For j in range(0, m, sn)

Bj = Oskew[j: j + sn] Aj = Bj[0: ssn] A.append(Aj)
EndFor
Return A

(4) Skewhier-C/2

The strategy first calculates the skew of all unlabeled samples and
sorts them, then divides the sequence into C/2 segments from the head
to the end, and takes n/(C/2) samples from each segment, a total of n
samples were taken as the samples to be annotated. This process is
presented in Algorithm 3, where C is changed to C/2.

(5) EntropySkw

The strategy first calculates the skew and information entropy (En-
tropy) of all unlabeled samples, assigns weights w1 and w2, respectively,
and calculates EntropySkw= skew *w1+ Entropy *w2. Sort EntropySkw
and finally select the first n samples as the samples to be annotated.

The sample sequence was set to {x1, x2, ..., xt}, and the symbol sets of
the sequence, that is, the set of all values of the sampling point, were {q1,
q2, ..., qr} and t ≥ r. The information entropy of the sample, denoted as
entro, is calculated as shown in Eq. (7).

entro = -
∑r

i=1
p(qi)log2

(
p(qi)

)
(7)

The specific description of query strategy EntropySkw is shown in

Fig. 4. The structure of CNN.
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Algorithm 4.
Algorithm 4. “EntropySkw” query strategy

Input: The set of containing m unlabeled samples U = {u1, u2, ..., um}.
Parameters: weights w1, w2.

Output: The set A containing n samples to be labeled.
1. Calculate the skew of all unlabeled samples in U according to formula (6), and

obtain the set Skew:
Skew = {skew1, skew2, ..., skewm}

2. Normalized set Skew.
3. Calculate the entro of all unlabeled samples in U according to formula (7), and

obtain the set Entropy:
Entropy = {entro1 , entro2, ..., entrom}

4. Calculate the entroskew, and get the set EntropySkew:
entroskewi = skewi ∗ w1 +entroi ∗ w2 I = (1,2,…,m)EntropySkew =

{entroskew1 , entroskew2 , ..., entroskewm}

5. Sort the set EntropySkew and get the set SoEntropySkew:
SoEntropySkew = sort(EntropySkew)

6. A = SoEntropySkew[0:n]
7. Return A

4. Experiment settings

4.1. Data collection

The database chosen for this study is the most widely used MIT-BIH
arrhythmia database (Goldberger et al., 2000; Moody & Mark, 2001),
collected from 47 subjects between 1975 and 1979. It contained 48 two-
lead ECG recordings with a duration of half an hour and a sampling rate
of 360 Hz. This database covers all the common cardiac arrhythmias and
has become the gold standard for artificial intelligent ECG analysis.

To obtain a complete heartbeat, with a heart rate of 75 as the
benchmark, the duration of each heartbeat is about 0.8 s. Therefore,
taking the R wave peak as the center take 110 sampling points to the left
and 175 sampling points to the right, then a heartbeat contains 286
sampling points. The specific heartbeat segmentation description is
shown in Fig. 5. Using this method, 109,415 heartbeats were cut, thus
covering 14 types of arrhythmias.

The beat distribution is shown in Table 1, wherein there are 75,019
“normal” beats, and 2 beats for “premature supraventricular or ectopic,”
it is obvious that the initial dataset is extremely unbalanced. To reduce
the imbalance, and taking into account the largest number of abnormal
heartbeats is “left bundle branch block,” which is 8072. Therefore, it is
determined that 8000 heartbeats are randomly selected from the
“normal” heartbeats to participate in the experiment, and the rest of the

categories use the number of real heartbeats. Ultimately, 42,396 beats,
which cover 14 arrhythmia types, were obtained.

The test set was obtained from 42,396 heartbeats at a ratio of 33 %,
and the remainder were used as the training set. The test set comprised
13,991 heartbeats. To facilitate iterative training, the training set was
rounded off to 28,000 heartbeats. The experimental settings are listed in
Table 2. First, 1000 heartbeats were extracted from the training set as
the initial labeled dataset, and the rest were input into the unlabeled
dataset. The model was first pre-trained using the initially labeled
dataset. Each iteration queries 1000 heartbeats from the unlabeled
dataset according to a specific query strategy and puts them into the
labeled dataset with labels. Then, the labeled and unlabeled datasets
were updated, and the model was retrained on the labeled dataset.
Finally, the model is tested using the test set. Therefore, the classifier
underwent 28 rounds of training and testing, as well as 27 rounds of
querying, and the changes in model performance could be clearly
observed as the sample size of the training set increased.

4.2. Normalization

Due to the fact that the proposed Skew series query strategies are all
based on skewness, and the range of skewness values is (− ∞,+∞).
Therefore, to generalize and unify the statistical distribution of the
samples and limit the preprocessed data to a certain range for subse-
quent processing, it is necessary to normalize the skewness set Skew=
{skew1, skew2,…, skewm}. The most commonly used normalization
methods are Z-score normalization, Decimal Scaling normalization, and
Min-max normalization, as shown in Eqs. (8)-(10), respectively, where
skewḿ represents the normalized data.

(1) Z-score normalization: Also known as standard deviation
normalization, the processed data followed a standard normal
distribution. However, it is difficult to map data to a fixed interval
using this method. The calculation is as follows, where μSkew and
σSkew are the average and standard deviation of the set Skew,
respectively.

110
175

286

Fig. 5. Heart beat segmentation diagram.

Table 1
Description of beat distribution in MIT-BIH arrhythmia database.

Label Description Real
beats

Used
beats

N Normal beat 75,019 8000
L Left bundle branch block beat 8072 8072
R Right bundle branch block beat 7255 7255
e Atrial escape beat 16 16
j Nodal (junctional) escape beat 229 229
A Atrial premature beat 2546 2546
a Aberrated atrial premature beat 150 150
J Nodal (junctional) premature beat 83 83
S Supraventricular premature or ectopic beat

(atrial or nodal)
2 2

V Premature ventricular contraction 7129 7129
E Ventricular escape beat 106 106
F Fusion of ventricular and normal beat 802 802
/ Paced beat 7024 7024
f Fusion of paced and normal beat 982 982
Total  109,415 42,396

Table 2
Experiment Settings.

Training Set (Unlabeled dataset) Test Set

Total Initial
labeled
data set

Samples queried per round
(manually annotated
samples)

Total rounds 13,991

1000 1000 28
28,000
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skewʹ
m =

skewm − μSkew

σSkew
(8)

(2) Decimal Scaling normalization: Move the decimal point to scale
the data proportionally to fit within a specific range, calculated as
follows, where j is the smallest integer that satisfies a maximum
of

⃒
⃒skewḿ

⃒
⃒ less than 1.

skewʹ
m =

skewm

10j
(9)

(3) Min-max normalization: This is a linear normalization method
that maps data to the [0,1] interval and is calculated as follows:

skewʹ
m =

skewm − minSkew
maxSkew − minSkew

(10)

To compare the three normalization methods, the “Skew” query
strategy was used, and the performance trends of classifiers K-nearest
neighbor classifier (KNeighborsClassifier) and SVMwith gaussian kernel
(svm.SVC(kernel=’rbf’)) were compared and analyzed as the number of
query rounds increased. To enhance the visualization effect, a 3D line
chart was selected. The comparison results are shown in Fig. 6, it is
obvious that the performance trends of the two classifiers are basically
consistent, and the Min-max normalization is more stable. Min-max
normalization also has the advantages of simple calculation, retaining
the distribution characteristics of the original dataset, and mapping the
data to fixed intervals for convenient subsequent processing. Therefore,
in this study, Min-max normalization is chosen as the normalization
method.

4.3. Model preparation

To verify the performance of the proposed DAL model and the
applicability and stability of the proposed query strategies, we used
classical machine learning algorithms for comparison and analysis. The
model used was obtained from the Sklearn machine learning library
(Pedregosa et al., 2011). Sklearn, also known as Scikit-learn, is a free
machine learning library for the Python programming language. It
contains various classical classification, regression, and clustering al-
gorithms. The classifiers selected in this experiment include the decision
tree classifier (DecisionTreeClassifier) and the regression tree classifier
(DecisionTreeRegressor) in the decision tree category, as well as the
random forest classifier (RandomForestClassifier), multilayer percep-
tron classifier (MLPClassifier), stochastic gradient descent classifier
(SGDClassifier), SVM with linear kernel (svm.SVC(kernel=’linear’)),
SVM with gaussian kernel (svm.SVC(kernel=’rbf’)), and K-nearest
neighbor classifier (KNeighborsClassifier). The classifier used in the DAL

model proposed in this study was based on CNN.

5. Experiment results

To comprehensively and deeply analyze the proposed DAL algo-
rithm, three aspects were experimentally verified: (1) comparison and
analysis of the proposed query strategies, (2) comparison and analysis of
the proposed and classical strategies on various classifiers, and (3)
performance comparison between the proposed CNN and other classical
classifiers in active learning.

5.1. Distribution analysis of morphological statistical feature

The proposed Skew series query strategies are based on morpho-
logical statistical feature skewness, with the goal of querying samples in
various distribution states. Therefore, the distribution of skewness
directly determines the sample queried in each round under a specific
querying strategy. From sections 3.2 and 4.2, it can be seen that after
calculating the skewness of each sample, to facilitate subsequent pro-
cessing, it is necessary to map the skewness to the interval [0,1] and
record it as skew′. The training set contains 28,000 samples, firstly, 1000
samples are extracted as the initial labeled dataset, and the rest 27,000
are put into the unlabeled dataset. Therefore, the first round of querying
requires calculating the skew′of 27,000 samples. As shown in Fig. 7. and
Table 3, the distribution histograms of Skew’ and corresponding analysis
tables are presented. To make the analysis more intuitive, the interval
with length of 0.028 is taken as the statistical unit, and the number of
samples falling into the interval is counted. It is obvious that except for
the 3 intervals close to “1″with sample numbers of 20, 0, and 3, the skew′
values in all other intervals are above 200, with the highest reaching
1694. By dividing the interval [0,1] into three intervals with a spacing of
approximately 0.336, we can obtain that the interval [0,0.336] contains
15,230 samples, (0.336, 0.672] contains 7730 samples, and (0.672, 1]
contains 4040 samples. It can be concluded that the number of samples
in the latter interval is about half of that in the previous interval.

Under such a distribution, which query strategy for extracting data
can enable the model to achieve the highest stable performance fastest
needs to be analyzed and verified by subsequent experiments.

5.2. Comparison and analysis of Skew series query strategies

The Skew series query strategies proposed in this study, are Skew,
Skewierste, Skewier-C, Skewier-C/2 and EntropySkw. Because there
were 14 types of heartbeats in the dataset, the value of C was 14. To
obtain a comprehensive and systematic analysis, five strategies were
applied to the deep learning CNN classifier and eight traditional ma-
chine learning classifiers. The performances obtained from each round
of queries for the five strategies are shown in Fig. 8. It was set such that

Fig. 6. Performance comparison of three normalization methods based on Skew query strategy on classifiers KNeighborsClassifier and SVM with gaussian kernel
(svm.SVC(kernel=’rbf’)).
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there were 28,000 samples in the training set, the initial labeled samples
were 1,000, and 1,000 samples were queried in each round. Therefore,
the model underwent a total of 28 rounds of training, as shown on the
abscissa. After each round of training, the same test set was used for
testing, and the accuracy is shown on the vertical axis in Fig. 8.

From Fig. 8, the stability of the Skew series query strategies and their
impact on performance can be clearly observed. EntropySkew, which is
combined with entropy, has the lowest performance, on most classifiers,
it fluctuates significantly and cannot achieve the same high performance
as that of the other strategies until the number of iterations reaches 26 or

even 28. The strategies of Skewierste, Skewier-C (C = 14 in this exper-
iment), and Skewier-C/2 were all relatively stable without major fluc-
tuations, especially CNN, which almost reached the performance of the
28-th round in the 9-th round. For most classifiers, the performance of
the Skew strategy is excellent; however, on the CNN, there is a large
fluctuation in the 13-th iteration, which shows that its stability is slightly
lower than that of Skewierste, Skewier-C and Skewier-C/2. Notably, in
the SGDClassifier, all the strategies before the 14-th round of queries had
different degrees of fluctuation, indicating that the model did not fully
learn the knowledge before the 14-th round, and the high performance
was accidental. In the 14-th round, the performance reached a steady
state. Therefore, using the Skew query strategy on the SGDClassifier,
only 50 % of the data achieved the performance obtained by training
with all the data.

It can be seen that EntropySkew is not worth considering again,
whereas Skew, Skewierste, Skewier-C, and Skewier-C/2 all perform
well. In conclusion, based on the morphological statistical characteris-
tics of Skew, taking one-way extreme values (Skew), taking the largest
and smallest two-way extreme values (Skewhierste), precise stratifica-
tion (Skewhier-C), and rough stratification (Skewhier-C/2) are all
desirable solutions. Therefore, it is called a query strategy based on the
weak stratification of morphological statistical features.

5.3. Comparison and analysis of Skew series and classical strategies

To analyze and verify the stability of the proposed strategy, twomore
representative strategies in the Skew series proposed in this paper,
Skewierste and Skewier-C, were selected for comparison with the five
most classical and widely used query strategies, namely, Margin Sam-
pling(MarginSampling in the experiment), Least Confidence(LeastCon-
fidence), Entropy Sampling(EntropySampling), K-Centers Greedy
(KCenterGreedy), and K-Means Sampling(KMeansSampling). To obtain
a more comprehensive verification and analysis, seven query strategies
were combined with the CNN and eight classical classifiers, and the
performances are shown in Fig. 9(a) and Fig. 9(b), respectively.

Fig. 9(a) and Fig. 9(b) show that EntropySampling is the worst,with
lowest performance, excessive fluctuations on most classifiers and
insufficient stability. Most classifiers do not achieve a performance as
high as that of the other strategies until the number of iterations reaches
26 or 28. While LeastConfidemce and MarginSampling are better than

Fig. 7. Histogram of skew′distribution.

Table 3
Distribution analysis of morphological statistical feature skew′.
Large interval

[0, 0.336] (0.336, 0.672 ] (0.672, 1]

Short
interval

No. of
skew′

Short
intervals

No. of
skew′

Short
interval

No. of
skew′

[0, 0.028] 956 (0.336,
0.364 ]

1162 (0.672, 0.7
]

274

(0.028,
0.056]

1045 (0.364,
0.392 ]

728 (0.7, 0.728
]

588

(0.056,
0.084]

1208 (0.392, 0.42
]

551 (0.728,
0.756 ]

805

(0.084,
0.112 ]

1260 (0.42, 0.448
]

541 (0.756,
0.784 ]

674

(0.112,
0.14 ]

1168 (0.448,
0.476 ]

534 (0.784,
0.812 ]

502

(0.14,
0.168 ]

928 (0.476,
0.504 ]

568 (0.812,
0.84 ]

431

(0.168,
0.196 ]

1014 (0.504,
0.532 ]

760 (0.84,
0.868 ]

330

(0.196,
0.224 ]

1307 (0.532, 0.56
]

908 (0.868,
0.896]

298

(0.224,
0.252 ]

1568 (0.56, 0.588
]

829 (0.896,
0.924]

115

(0.252,
0.28 ]

1541 (0.588,
0.616 ]

591 (0.924,
0.952]

20

(0.28,
0.308 ]

1541 (0.616,
0.644 ]

355 (0.952,
0.98]

0

(0.308,
0.336 ]

1694 (0.644,
0.672 ]

203 (0.98, 1] 3

Total
(27000)

15,230  7730  4040
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EntropySampling, they are not sufficiently stable and not only fluctuate
before reaching final stability, but most classifiers require more query
rounds to reach the final stable state. Particularly, LeastConfidemce
requires 18 rounds of query on KNeighborsClassifier, 22 rounds on
DecisionTreeClassifier, 24 rounds on DecisionTreeRegressor, 18 rounds
on svm.SVC(kernel=’linear’), and 23 rounds on svm.SVC(kernel=’rbf’)
to reach the highest stable state. The KCenterGreedy performs better
than LeastConfidemce and MarginSampling, and achieves the best per-
formance on the classifier KNeighborsClassifier, but is unstable and
fluctuates on multiple classifiers, such as classifiers CNN, Decision-
TreeClassifier, SGDClassifier, svm.SVC (kernel=’linear’) and the
MLPClassifier, especially on svm.SVC(kernel=’linear’), did not reach a

steady state until the number of rounds reached 20. KMeansSampling is
the best among several classical strategies; however, fluctuations still
remain in SGDClassifier and MLPClassifier.

The proposed strategies, Skewierste and Skewier-C, are stable over-
all, except for the fluctuations in the SGDClassifier, which are more
minor than those of the other strategies, indicating that the query per-
formance of the proposed strategies is very stable. Notably, compared to
other classical strategies, Skewierste and Skewier-C achieved the highest
stable performance faster. Some classical strategies, such as KCen-
terGreedy, only perform well on one classifier, whereas the strategies
proposed in this study can quickly reach the highest stable state for all
the classifiers.

Fig. 8. The comparison between the proposed Skew series query strategies. (a) Line chart of the performance of Skew series query strategies on classifier CNN; (b)
Line chart of the performance of Skew series query strategies on 8 classical classifiers.
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5.4. Performance comparison and analysis of CNN and classical
classifiers

To verify the performance of the CNN classifier proposed in this
paper, it is compared with 8 classical classifiers, which are Decision-
TreeClassifier, DecisionTreeRegressor, RandomForestClassifier,
MLPClassifier, SGDClassifier, svm.SVC (kernel = ’linear’), SVM.SVC
(kernel = ’rbf’) and NeighborsClassifier from the Sklearn machine
learning library. At the same time, to make the comparison and analysis
more comprehensive, the two most representative strategies Skewierste
and Skewier-14, Additionally, the widely used classical strategy Least-
Confidence with excellent performance are selected to analyze the

performance and change trend obtained by each round of query on nine
classifiers to verify the performance of the classifier CNN proposed in
this paper. Fig. 10 shows the line chart of the performance analysis of the
CNN and eight classical machine learning classifiers: Fig. 10(a) shows
the line chart of the performance comparison between the CNN and
eight classical classifiers on the Skewierste and Skewier-C strategies, and
Fig. 10(b) shows the line chart that compares the performance of the
CNN and eight classical classifiers on the LeastConfidence strategy.

To make the analysis more comprehensive and detailed, the accuracy
of the LeastConfidence strategy in each round of query on the CNN and
eight classical classifiers is liste in Table 4. In the table, KNeighbor-
sClassifier is abbreviated as KNC, DecisionTreeClassifier is abbreviated

Fig. 9. Comparison of the proposed and the classical strategies. (a) Line chart of the performance of the proposed and the classical strategies on CNN. (b) Line chart
of the performance of the proposed and the classical strategies on 8 classical classifiers.
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Fig. 10. Performance comparison of CNN and 8 classical machine learning classifiers. (a) Line graph of the performance of CNN and 8 classical classifiers on the
proposed strategies Skewierste and Skewier-C; (b) Line graph of the performance of CNN and 8 classical classifiers on the strategy LeastConfidence.
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as DTC, DecisionTreeRegressor is abbreviated as DTR, SGDClassifier is
abbreviated as SGD, svm.SVC(kernel=’linear’) is abbreviated as SVML,
svm.SVC(kernel=’rbf’) is abbreviated as SVMR, RandomForestClassifier
is abbreviated as RFC, and MLPClassifier is abbreviated as MLP.

As shown in Fig. 10, among three query strategies, the accuracy of
the classifier CNN in each round is higher than that of the other eight
classical classifiers, and the overall performance is also significantly
higher than other classifiers. This indicates that CNN has advantages
over classical classifiers in terms of performance. At the same time, it can
be observed that the performance of the three strategies is greatly
improved in the first few queries, and then tends to be stable with a small
increase, which is more obvious for the Skewierste and Skewier-14
strategies. Fig. 10(a) is smoother than Fig. 10(b), again indicating that
Skewierste and Skewier-14 are more stable than LeastConfidence.
Particularly, LeastConfidence performed very well on the CNN, but not
as well as Skewierste and Skewier-14 on other classifiers.

Notably, as seen from Table 4, the accuracy of the strategy Least-
Confidence on the classifier CNN reached 98.8 % in the 4-th round, and
the subsequent iterations are only slightly improved on the basis of it. In
other words, the CNN can use only 4,000 samples to achieve the per-
formance obtained by training the model with 28,000 samples, thus
saving (28000–4000)/28000*100 %=85.7 % of the labeled samples and
annotation workload. Additionally, it can be observed that the that DAL
plays a pivotal role in reducing annotation costs. For the Skewierste and
Skewier-14 strategies, the accuracy reached 98.0 % in the 7-th or 8-th
round, and the subsequent iterations were also slightly improved. To
justify, it is determined that the 9-th iteration reached a stable conver-
gence state, so that 67.9 % of the labeled samples and annotation costs
can be saved. In summary, it is of great practical and scientific value to
query out the samples with the highest interest and greatest contribution
to the model improvement as the samples to be annotated.

5.5. Discussion

According to the above experimental analysis, compared with the
classical strategies Margin Sampling, Least Confidence, Entropy Sam-
pling, K-Centers Greedy, and K-Means Sampling, the query strategies

Skew, Skewierste, Skewier-C and Skewhier-C/2 proposed in this paper
based on weak stratification of morphological statistical features, have
better overall stability and less fluctuation and achieves the highest
stable state as a faster rate. Moreover, compared with the classical
strategy, the Skew series strategy proposed in this paper has better
adaptability to a variety of classifiers.

Active learning has been applied to artificial intelligence detection of
ECG. Table 5 shows the analysis and comparison of previous methods
since 2010 and the method proposed in this study. For a more
comprehensive analysis, the detection type, query strategies, classifiers
used in the active learning, specific numbers of classes, and performance
analysis are listed in detail for each method. The query strategies of the
listed previous methods were mostly the same as those in the compar-
ative experiments in this study, where EN denotes Entropy, LC denotes
Least Confidence, MS denotes Margin Sampling. K-CG is the abbrevia-
tion for K-Centers Greedy and K-MS is short for K-Means Sampling. As
for other strategies, MEN represents Modified Entropy, HAC is the
abbreviation for Hierarchical Clustering, BT (Breaking-Ties) is the same
as PPS (Posterior Probability Sampling), both are based on posterior
probability sampling, MBT represents modified BT, and QBC is a query
based on committee votes. The classifiers are all deep learning classi-
fiers, except Pasolli and Melgani (2010) and Wiens and Guttag (2010),
who chose SVM, where DBN stands for deep belief network and BiLSTM
stands for bidirectional long short-term memory. In performance anal-
ysis, the research focus is also different: some analyze how much
annotation cost is reduced, some analyze how much contribution to
performance improvement is made, and others pursue howmuch overall
performance is achieved. Among them, SVEB represents “S”(supraven-
tricular) class to all other classes, and VEB represents “V”(ventricular)
class to all other classes, which are essentially binary classifications.

From Table 5, it can be observed that the application targets of active
learning in artificial intelligence detection of ECG can be divided into
the following three categories. Firstly, reduce the annotation cost, such
as Pasolli and Melgani (2010), Wiens and Guttag (2010) and this paper;
The second is to improve the detection performance of specific tasks,
such as Rahhal et al. (2016), Sayantan et al. (2018), Wang et al. (2019)
and Xia and Xie (2019); The third is to improve the overall detection

Table 4
The accuracy of CNN and 8 classical classifiers on the strategy LeastConfidence per query round (%).

Round CNN KNC DTC DTR SGD SVML SVMR RFC MLP

1 91.9 91.0 83.0 82.0 81.1 89.3 89.1 87.9 92.1
2 96.3 91.9 83.6 81.9 70.7 89.2 91.1 90.2 91.2
3 98.4 92.2 82.8 82.1 74.0 89.0 90.7 88.8 92.0
4 98.8 93.1 82.7 83.5 74.3 89.7 92.7 90.2 92.3
5 98.7 93.3 83.9 84.9 68.3 89.8 92.9 90.7 92.6
6 98.9 93.9 84.3 83.8 76.6 89.9 92.7 91.9 93.7
7 99.0 94.6 85.8 86.3 64.7 89.8 93.5 92.5 94.1
8 99.0 94.8 86.8 85.8 61.6 89.7 93.7 93.2 93.9
9 98.9 95.0 86.7 87.6 78.4 90.1 93.8 93.8 93.7
10 99.0 95.2 88.9 88.3 69.9 90.1 93.7 93.9 94.5
11 99.0 95.9 88.5 88.4 66.2 90.9 94.6 94.7 95.1
12 99.0 96.0 89.6 87.8 69.1 90.6 94.5 94.7 95.3
13 98.9 96.4 89.3 89.2 79.4 91.3 94.8 95.2 94.6
14 98.9 96.5 90.2 89.0 73.3 91.8 95.0 95.0 95.3
15 99.0 96.7 89.5 89.9 76.8 91.8 95.2 95.2 95.4
16 98.9 96.9 89.9 89.1 77.3 91.9 94.9 95.4 95.6
17 98.6 96.9 91.4 90.7 78.8 92.4 95.1 95.8 95.7
18 98.9 97.1 91.7 90.7 82.5 93.2 95.3 95.8 95.9
19 98.9 97.2 91.6 90.9 73.9 93.4 95.5 95.7 96.6
20 99.0 97.2 92.2 91.4 83.1 93.4 95.5 95.8 96.7
21 98.9 97.3 92.2 91.7 83.9 93.7 95.6 96.1 96.6
22 99.0 97.5 92.5 91.4 84.4 93.7 95.8 96.1 96.7
23 99.0 97.7 92.7 92.1 85.3 93.9 95.9 96.4 96.7
24 98.8 97.7 92.7 92.9 82.6 93.9 95.9 96.4 96.7
25 99.0 97.6 93.1 92.4 82.2 94.2 96.0 96.3 96.9
26 98.9 97.7 92.9 93.0 86.8 94.2 96.0 96.4 96.9
27 98.8 97.7 93.2 93.3 85.1 94.2 96.1 96.6 96.4
28 99.0 97.7 93.3 93.1 85.0 94.1 96.2 96.4 96.7
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performance of the model, such as Xia and Xie (2019), Jin et al. (2021)
and this paper. Table 5 details the querying strategies and classifiers
used by each study, as well as analyzes and compares the performance of
each study under different class numbers. The number of classifications
in this study was 14, which is the highest, and other studies ranged from
binary classification to 6-classification. The highest annotation cost
saved in this study was 85.7 %, although lower than that of Pasolli and
Melgani (2010) and Wiens and Guttag (2010), and the labeled sample
size required for 14-classification must be higher than that for binary
classification and 6-classification. This is because 14-classification re-
quires 14 types of labeled samples, whereas binary classification re-
quires only two types of labeled samples. Obviously, the method
proposed in this paper is highly advantageous in terms of saving anno-
tation costs and reducing the annotation workload. Although the overall
accuracy was not the highest, 99 % of the 14-classification were very
competitive compared to 99.21 % of the 4-classification by Xia and Xie
(2019) and 99.34 % of the 4-classification by Jin et al. (2021).

6. Conclusions and future directions

The annotation cost of ECG data is much higher than that of ordinary
target recognition, which leads to a shortage of ECG label data in terms
of both quantity and type, thus significantly limiting the construction of
excellent models. Reducing the annotation cost and model demand for
labeled data is an urgent problem to be solved. Therefore, this study
introduces active learning and proposes a heartbeat detection algorithm
based on DAL. Based on the characteristics of ECG signals, the Skew
series of query strategies based on weak stratification of statistical fea-
tures suitable for ECG was proposed, namely, Skew, Skewierste,
Skewier-C and Skewier-C/2. Simultaneously, to ensure the desired
performance, a CNN-based classifier was constructed. The experiments
verified that the query strategy proposed in this study has higher sta-
bility and adaptability compared to other classical strategies and that
the performance of the proposed CNN is also higher than that of other
classical classifiers. Compared to previous research, it has a higher
competitive advantage in terms of the number of classifications and cost
savings of annotation.

With the increasing demand for daily ECG monitoring applications,
computer-aided wearable ECG diagnostic technology has become a
research focus. Due to the fact that in the field of daily ECG monitoring,
computer-assisted detection targets long-term ECG segments, research
cannot be limited to heart beats. Rhythm annotation and computer-
assisted rhythm diagnostic techniques should also be considered.

In the future, it is necessary to continue to research rhythm detection
algorithms based on DAL and further verify whether the Skew series
strategies proposed in this paper are suitable for rhythm detection. For
rhythms, we will focus on intelligent annotations and diagnostic algo-
rithms. Based on this study, we optimize the proposed Skew series query

strategies or propose new query strategies suitable for rhythm, and
research better DAL models to reduce the cost of rhythm annotation and
achieve high-performance rhythm detection. In clinical applications,
one ECG segment may contain multiple arrhythmias, multi-label rhythm
detection should also be the focus of future research.
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