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A B S T R A C T

Mobile edge computing (MEC) is crucial in applications such as intelligent transportation, innovative health-
care, and smart cities. By deploying servers with computing and storage capabilities at the network edge,
MEC enables low-latency services close to end users. However, the configuration of edge servers needs to
meet the low-latency requirements and effectively balance the servers’ workloads. This paper proposes an
adaptive layout and dynamic optimization method, modeling the edge server layout problem as a Markov
decision process. It introduces a workload-based server placement rule that adjusts the locations of edge
servers according to the load of base stations, enabling the learning of low-latency and load-balanced server
layout strategies. Experimental validation on a real dataset from Shanghai Telecom shows that the proposed
algorithm improves average latency performance by about 40% compared to existing technologies, and
enhances workload balancing performance by about 17%.
1. Introduction

The proliferation of smart healthcare devices, intelligent driving
ehicles, and various innovative mobile devices has led to denser
ata exchanges between the Internet of Things (IoT) devices (Ning
t al., 2023; Haiyan et al., 2021). However, the limited storage and

computational resources of mobile devices themselves cannot meet the
real-time processing demands of specific tasks, necessitating network
providers to offer faster response solutions (Sun and He, 2023). Mo-
bile Edge Computing (MEC) has recently been regarded a promising
solution. It places storage and computational resources on the demand
side, reducing communication costs and addressing network congestion
issues (Chai et al., 2023).

In recent years, there has been a substantial body of research ad-
dressing challenges in the field of MEC. However, most of these studies
primarily concentrate on problems such as task migration (Dai et al.,
2022; Moon et al., 2022; Liao et al., 2023), task offloading (Carvalho
et al., 2020; Coito et al., 2022; Abbasi and Hadi, 2024), and task
prediction (Ferreira et al., 2023; Wang et al., 2023a), without address-
ing the placement of edge servers. They focus exclusively on resource
scheduling after determining server locations, aiming to provide high-
quality services to users. Nevertheless, the placement of edge servers is
equally critical for delivering high-quality services. A well-structured
edge server placement scheme can reduce latency and optimize load,
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while a suboptimal placement strategy can lead to network congestion
and resource wastage (Karasakal and Karasakal, 2023).

Existing research on edge server placement primarily formulates
the problem as a multi-objective optimization problem and then ad-
dresses it using conventional methods such as mixed integer pro-
gramming algorithms (Jasim and Al-Raweshidy, 2024), heuristic algo-
rithms (Poularakis et al., 2020), etc. However, these algorithms are only
suitable for limited edge server configurations. As the number of edge
servers increases, the computational burden of mixed integer program-
ming algorithms grows exponentially, rendering it infeasible to find the
optimal solution within a limited time. Heuristic algorithms require
parameter reconfiguration and exhibit limited adaptability. Solutions
based on Deep Reinforcement Learning (DRL) frame the edge server
placement challenge as a Markov decision process, where agents can
iteratively enhance their placement strategy through online learning,
providing real-time and flexible solutions (Lu et al., 2022).

Based on the reasons mentioned above, this paper presents an
adaptive placement and dynamic optimization framework. This method
is based on the Deep Q-Network (DQN) algorithm, which facilitates
the optimization of strategies within high-dimensional state and action
environments. Additionally, we present a workload-driven location
selection criterion to dynamically modify the positions of edge servers.
We develop reward and penalty metrics derived from server load
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data mining, AI training, and similar technologies. 
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variability and system average latency, iteratively refining the edge
erver placement strategy. The main contributions of this paper are

summarized as follows:

• We formulate the edge server placement challenge as a Markov
decision process and introduced an innovative adaptive place-
ment and dynamic optimization (APD) strategy to reduce system
average latency and enhance workload balancing performance;

• We develop a novel workload-based placement rule (LSD) that
adjusts the locations of edge servers according to the load of
base stations. This effectively prevents certain base stations from
becoming overloaded, thereby enhancing the overall stability and
reliability of the system;

• We perform comprehensive experiments demonstrating that the
APD algorithm significantly outperforms multiple baseline meth-
ods, highlighting its superior effectiveness and adaptability in
real-world applications.

The remaining sections of the paper are organized as follows: Sec-
tion 2 provides an overview of related work in the field. Section 3
defines the edge server placement problem and formalizes it as a math-
ematical model. Section 4 introduces the APD framework utilized for
solving the problem. Extensive experiments, performance evaluations,
and discussions based on real data are presented in Section 5. Finally,
Section 6 concludes the paper and outlines future research directions.

2. Literature review

2.1. Mathematical methods

Bhatta et al. formulated the problem into a multi-objective inte-
ger programming model and proved its computational NP-hardness.
Subsequently, they proposed a dual-factor approximation algorithm to
address the complexity of the problem (Bhatta and Mashayekhy, 2022).
Tero et al. proposed a block coordinate descent algorithm that opti-

izes the server locations and workload distribution between the min-
mum access points while satisfying capacity constraints (Lähderanta
t al., 2021). Xu et al. proposed a collaborative method for quantifying
nd deploying edge servers. This method first initializes population
trategies through canopy and k-medoid clustering algorithms to esti-

mate the approximate number of edge servers. Then, it utilizes non-
dominated sorting genetic algorithm III to obtain solutions with higher
uality of service (Xu et al., 2021). Cao et al. adopted an offline and
nline two-phase method to study the placement of heterogeneous edge
ervers to optimize the overall system and individual base stations’
xpected response time. In the offline stage, the best placement strategy
or heterogeneous edge servers was generated using integer linear
rogramming techniques. In the online stage, a game theory approach
ased on mobility awareness was employed to handle the dynamic na-
ure of user mobility (Cao et al., 2021). Zhang et al. proposed a two-step
ethod involving clustering algorithms and nonlinear programming.
hey design a joint edge server placement and service placement model
imed at maximizing the total profit of all edge servers under con-

straints such as the number of edge servers, relationships between edge
servers and base stations, storage capacity, and computing capability
of each edge server (Zhang et al., 2022). Do et al. used the mixed-
nteger linear programming technique to model and solve the joint user

association, service function chain placement, and resource allocation
problems in 5G networks composed of decentralized units, centralized
units, and the core network (Do and Kim, 2018). K. Balaji et al.
mployed an improved discrete firefly algorithm to effectively explore
 large search space and find virtual machine placement schemes with
inimal power consumption in data centers (Balaji et al., 2022). Cui

et al. modeled the k-edge server placement problem as a constrained
optimization problem involving joint user coverage and network ro-

bustness optimization. They proposed an optimal method based on

2 
integer programming to determine the optimal solution for the small-
cale k-edge server placement problem (Cui et al., 2022). Song et al.

transformed a nonlinear system into a linear system using a Takagi–
Sugeno (T-S) fuzzy model. They then introduced the concepts of point
measurement and point control to reduce the use of sensors and actua-
ors, thereby conserving communication resources and lowering control
osts (Song et al., 2023). Song et al. employed integral techniques

and the Wirtinger inequality to derive sufficient conditions for system
stability. Their work provides an effective research methodology for
nonlinear systems’ stability analysis and controller design (Song et al.,
2024). Zhang et al. employed Lyapunov stability theory to develop
an adaptive dynamic programming control framework. By designing a
preset-time controller, they ensured the system state stabilizes within a
predetermined time (Zhang et al., 2024).

These methods define the server placement problem as a multi-
objective integer programming model and pursue the optimal solution
via constraints. However, such methods are suitable solely for small-
cale server positioning, as they involve significant computational com-
lexity for large-scale server positioning challenges. Although specific
tudies have utilized approximation techniques to identify suboptimal
olutions rapidly, this generally necessitates prior knowledge, and var-
ous challenges may demand the development of new approximation
echniques, leading to restricted algorithm flexibility.

.2. Reinforcement learning methods

Yuan et al. proposed a dynamic virtual edge node deployment
cheme based on deep learning, which utilizes an on-demand comput-
ng model to acquire resources for virtual edge nodes from different
louds, enabling them to be deployed across clouds worldwide (Yuan
t al., 2022). Wang et al. proposed a fault-tolerant control strategy
ased on Iterative Learning Control (ILC) that effectively addresses
ctuator failures. Their approach enables continuous optimization of

system performance by employing real-time fault estimation and dy-
namically adjusting the ILC update law (Wang et al., 2023b). Fur-
thermore, to minimize the long-term average response time of video
analysis tasks, Zhu et al. utilized a Markov decision process to model
the deployment process and employed deep reinforcement learning
to explore the optimal strategy (Zhu et al., 2023). Moreover, Jiang
et al. transformed the edge server deployment problem into a sequen-
tial decision problem based on Markov decision processes and used
heatmaps and grayscale images to convert network states into inputs
directly learnable by agents (Jiang et al., 2023). Additionally, Xue et al.
introduced a deep reinforcement learning-based algorithm to tackle
computation offloading and service caching issues in vehicle edge com-
puting systems. This method effectively utilizes the limited cache and
computing resources at each node through intelligent decision-making
and resource management, achieving low-complexity decision-making
and adaptive resource management (Xue et al., 2023). Kasi et al. also
presented a multi-agent reinforcement learning solution, minimizing
network latency and balancing edge server loads by learning the dy-
namic characteristics of the environment and adopting joint action
strategies (Kasi et al., 2021). Lastly, Luo et al. formalized the state
space, action space, and reward function of the deployment problem
sing deep Q-networks and reinforcement learning methods (DQN-

ESPA), aiming to find the optimal solution by maximizing cumulative
long-term rewards (Luo et al., 2022).

While these studies successfully tackle the edge server placement
problem in large-scale MEC systems, they fall short in modeling dy-
namic and adaptive server deployment. Additionally, to fully exploit
the capabilities of edge computing, all tasks should be optimally pro-
cessed as close to the user as possible, taking into account server
mobility distance. Therefore, this paper proposes an adaptive edge
server placement and dynamic optimization approach and formulates
a workload-based location selection strategy to adjust the positioning

of edge servers dynamically.
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Fig. 1. The diagram of the MEC.
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. Problem definition

In this section, we introduce the server placement problem in MEC
rchitecture, simplified as a network topology consisting of users, base
tations, and servers. We then formalize server load balancing and
ser access delay, which are used to evaluate the efficacy of server
lacement algorithms. Ultimately, we introduce the constraints that the
erver placement problem needs to meet.

.1. Problem description

To overcome the challenge of limited computational resources at
he user end, MEC deploys servers with ample computing resources
loser to users at the network edge. MEC can be represented by a
etwork topology containing 𝑛 base stations, 𝑚 edge servers, and 𝑥
sers, denoted as 𝐵 𝑆 = {𝑏𝑠1, 𝑏𝑠2,… , 𝑏𝑠𝑖,… , 𝑏𝑠𝑛} for the set of base
tations, 𝐸 𝑆 = {𝑒𝑠1, 𝑒𝑠2,… , 𝑒𝑠𝑗 ,… , 𝑒𝑠𝑚} for the set of edge servers, and
 𝑆 = {𝑢𝑠1, 𝑢𝑠2,… , 𝑢𝑠𝑘,… , 𝑢𝑠𝑥} for the set of users. Users transmit their
omputation demands through base stations to edge servers, and the
dge servers return computation results to users through base stations.
herefore, the load of a server is the total load aggregated by all base
tations. As shown in Fig. 1, edge server 𝑒𝑠1 covers base stations 𝑏𝑠1,
𝑠3, 𝑏𝑠7 and 𝑏𝑠9, and the workload of 𝑒𝑠1 is the sum of the loads of
𝑠1, 𝑏𝑠3, 𝑏𝑠7 and 𝑏𝑠9. To achieve optimal MEC architecture through
he strategic placement of edge servers, we propose the following four
ssumptions (Zhao et al., 2021):

• Each edge server has the same computational capacity;
• Each edge server can only coexist with one existing base station

at a location, and edge servers cannot share a location with other
edge servers;

• Each base station can only be served by one edge server;
• The distance between base stations and edge servers represents

delay.

Server placement refers to finding the optimal locations for edge
servers based on historical data of user connections to base stations
over several days, aiming to achieve workload balancing among edge
servers and minimize the average access delay of base stations. The

details of delay and workload balance are described as follows. t

3 
3.2. Average delay

Base stations establish communication links with edge servers
through the communication network, and as mentioned earlier, we
represent the distance between base stations and edge servers as delay.
Let 𝐿𝑛 = [(𝑙 𝑎𝑡1, 𝑙 𝑜𝑛1), (𝑙 𝑎𝑡2, 𝑙 𝑜𝑛2),… , (𝑙 𝑎𝑡𝑖, 𝑙 𝑜𝑛𝑖),… , (𝑙 𝑎𝑡𝑛, 𝑙 𝑜𝑛𝑛)] represent
the set of base station locations, and let 𝐿𝑚 = [(𝑙 𝑎𝑡1, 𝑙 𝑜𝑛1), (𝑙 𝑎𝑡2, 𝑙 𝑜𝑛2), ...,
(𝑙 𝑎𝑡𝑗 , 𝑙 𝑜𝑛𝑗 ),… , (𝑙 𝑎𝑡𝑚, 𝑙 𝑜𝑛𝑚)] represent the set of edge server locations,
where 𝑙 𝑎𝑡 represents latitude and 𝑙 𝑜𝑛 represents longitude, respectively.
Then, the distance 𝑑𝑖𝑗 (km) between base station 𝑏𝑠𝑖 and edge server
𝑒𝑠𝑗 can be calculated by the following equation:

𝑝 = 𝜋
180

, (1)

𝛺 =
1 − 𝑐 𝑜𝑠((𝑙 𝑎𝑡𝑖 − 𝑙 𝑎𝑡𝑗 ) ⋅ 𝑝)

2
+ 𝑐 𝑜𝑠(𝑙 𝑎𝑡𝑖 ⋅𝑝) ⋅ 𝑐 𝑜𝑠(𝑙 𝑎𝑡𝑗 ⋅𝑝) ⋅

1 − 𝑐 𝑜𝑠((𝑙 𝑜𝑛𝑖 − 𝑙 𝑜𝑛𝑗 ) ⋅ 𝑝)
2

,

(2)

𝑑𝑖𝑗 = 2 ⋅ 𝑅 ⋅ ar csin(
√

𝛺), (3)

where 𝑅 is the radius of the earth and 𝑅 = 6378.137 k m.
We calculate the average 𝐷 (km) from each base station to its

corresponding edge server to represent the overall system delay. The
smaller the average distance, the smaller the overall system delay (Luo
t al., 2022). This calculation is expressed by the following equation:

𝐷 = 1
𝑛
⋅

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑑𝑖𝑗 . (4)

3.3. Workload balance

All users’ computation demands are relayed to edge servers through
base stations. Therefore, the workload of server 𝑏𝑠𝑖 is the total workload
of the base stations it covers. Let 𝐵 𝑆𝑗 represent the set of base stations
overed by edge server 𝑒𝑠𝑗 , where 𝐵 𝑆𝑗 ⊂ 𝐵 𝑆, and 𝑤𝑖 denotes the
orkload of base station 𝑏𝑠𝑖, where 𝑏𝑠𝑖 ∈ 𝐵 𝑆𝑗 . Then, the workload 𝑊𝑗
f edge server 𝑒𝑠𝑗 is expressed as shown in Eq. (5):

𝑗 =
∑

𝑏𝑠𝑖∈𝐵 𝑆𝑗

𝑤𝑖, (5)

We define the time a base station serves users as the workload on
he base station (Luo et al., 2022). To demonstrate the performance of
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workload balancing among servers, we calculate the standard deviation
𝑊𝑠𝑑 (𝑠) of the workloads of all edge servers. A smaller standard devia-
ion indicates more balanced workloads across servers. The calculation
f 𝑊𝑠𝑑 is given by Eq. (6):

𝑊𝑠𝑑 =

√

∑𝑚
𝑗=1(𝑊𝑗 −𝑊 )

𝑚
. (6)

3.4. Computational problem

The mathematical model of the studied problem is similar to a facil-
ty location problem (Zhou and Lee, 2020). We have two optimization
oals: one is to achieve a more balanced server load, i.e., minimizing
𝑠𝑑 ; the other is to minimize the average latency of base station access

to the server, i.e., minimizing 𝐷. We calculate 𝑊𝑠𝑑 and 𝐷 based on the
placement of the servers. As mentioned earlier, each base station can
only be served by one server, and all base stations must be covered. We
model the server placement rules as follows:

𝑛
∑

𝑖=1
𝛼𝑖 = 𝑚, (7)

𝑛
∑

𝑗=1
𝛽𝑖𝑗 = 1,∀1 ≤ 𝑖 ≤ 𝑛, (8)

𝛽𝑖𝑗 ≤ 𝛼𝑗 ,∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛, (9)

𝛼𝑖, 𝛽𝑖𝑗 ∈ {0, 1},∀1 ≤ 𝑖 ≤ 𝑛,∀1 ≤ 𝑗 ≤ 𝑛, (10)

indicates whether the base station 𝑏𝑠𝑖 is served by the server deployed
at base station 𝑏𝑠𝑗 . If yes, then 𝛽𝑖𝑗 = 1; otherwise, 𝛽𝑖𝑗 = 0. Notably, there
might be no server deployed at 𝑏𝑠𝑗 ; this representation is for simplicity.
Eq. (7) indicates that the number of edge servers is fixed. Eq. (8) states
that each base station is served by only one server, and all base stations
are ensured coverage. Eq. (9) signifies that no server is deployed at base
station 𝑏𝑠𝑗 . Eq. (10) represents the range of values of 𝛼𝑖 and 𝛽𝑖𝑗 .

4. Edge server placement method

The server placement problem aims to identify the optimal configu-
ration of servers based on the load distribution of base stations within
the system, ensuring equitable server utilization and minimal latency.
This aligns with the interactivity framework between the agent and
the environment in a Markov Decision Process (MDP). In this section,
we formulate the server placement problem as a DRL problem. We
first introduce the environment, state representations, and action space
involved in this problem and then delineate the overall workflow of the
APD algorithm.

4.1. MDP model

tate:
The problem addressed in this paper is to find 𝑚 locations to place

edge servers among 𝑛 base stations. Each placement strategy constitutes
a solution to this problem, where different schemes result in varying
server workloads and system delay. Therefore, the state space com-
prises the set of all server locations. The initial state involves randomly
selecting 𝑚 locations from the 𝑛 base station positions, formalized as
follows:

𝑠 = [(𝑙 𝑎𝑡1, 𝑙 𝑜𝑛1), (𝑙 𝑎𝑡2, 𝑙 𝑜𝑛2),… , (𝑙 𝑎𝑡𝑚, 𝑙 𝑜𝑛𝑚)]. (11)

Action:
The initial state determines the positions of 𝑚 edge servers, but

his placement scheme is not optimal at this stage and requires relo-
cating the edge servers to achieve the optimal solution. If the action
4 
space is modeled as all possible locations where edge servers can be
oved, it would be too large, increasing computational complexity.
o standardize the action space, we move only one edge server to a
easonable location at a time. Let 𝐴1 = (0, 1, 2,… , 𝑚) represent the
ction space for selecting the candidate edge servers, where 𝑚 denotes
he number of servers. Let 𝐴2 = (0, 1, 2, 3) represent the action space for
irections, where 0 represents moving east, 1 represents moving west, 2
epresents moving south, and 3 represents moving north. We combine
hese two actions into one, i.e., the Cartesian product of 𝐴1 and 𝐴2,
esulting in an action space 𝐴 = (0, 1, 2,… , 4𝑚 − 1). When the network
elects the current action 𝑎 from the action space, we compute the
erver that needs to be moved, denoted as 𝑒𝑠𝑗 , using Eq. (12). We then
etermine the direction in which server 𝑒𝑠𝑗 should move using Eq. (13).
t is important to note that we determine movement directions by
omparing latitude and longitude values. For example, if the longitude
f base station 𝑏𝑠𝑖 is greater than the longitude of server 𝑒𝑠𝑗 , regardless

of the latitude of base station 𝑏𝑠𝑖, we consider base station 𝑏𝑠𝑖 to be east
f server 𝑒𝑠𝑗 . Additionally, if there are no available movable positions
n the determined direction, no action is executed.

𝑒𝑠𝑗 =
𝑎

, (12)

𝑜 = 𝑎% . (13)

where  = 4 indicates the four directions, the sign ‘%’ is used as a
modulus operator.

While determining the direction 𝑜 for the edge server 𝑒𝑠𝑗 to move,
there may be more than one movable position along direction 𝑜.
Therefore, we propose a workload-based location selection rule (LSD).
Firstly, we compute all feasible positions along direction 𝑜 for the edge
server 𝑒𝑠𝑗 based on (𝑒𝑠𝑗 , 𝑜), and then we read the workload data of
the movable positions’ base stations to construct the workload matrix
𝐸. Simultaneously, we establish a binary feasibility position matrix
𝐻 , with the same dimensions as the workload matrix 𝐸. If a position
already has a server, it is 0; otherwise, it is 1. The Hadamard product of
the workload matrix 𝐸 and the movable position matrix 𝐻 represents
the potential moving domain for 𝑒𝑠𝑗 . Finally, we sort the non-zero
elements in the moving space to obtain the position with the highest
workload as the next move for the edge server 𝑒𝑠𝑗 .

For example, if the edge server 𝑒𝑠𝑗 has five base stations in the east
direction as candidate positions, and the workload matrix 𝐸 obtained
by reading the base station workload is [4, 7, 10, 5, 2]. Based on the
current positions of all servers, the movable position matrix 𝐻 for these
five base stations is [1, 1, 0, 1, 0]. The Hadamard product of the two
matrices is [4, 7, 0, 5, 0]. After sorting the non-zero elements, we obtain
the base station in the east direction with a workload of 4 units as the
next move for the edge server 𝑒𝑠𝑗 .

Reward:
We compute two metrics, the average delay 𝐷 and the standard

deviation of edge server workload 𝑊𝑠𝑑 , to measure the performance of
server placement and calculate reward 𝑟. A smaller average delay and
 smaller standard deviation of edge server workload indicate better
erver placement performance. Each movement of an edge server to
 new position represents a new placement scenario. Therefore, after

each action execution, we store the current average delay 𝐷 into a
delay pool 𝐵𝑙 and the current scenario’s edge server workload standard
deviation 𝑊𝑠𝑑 into a workload pool 𝐵𝑤. We then utilize the min–max
normalization method to standardize the average delay and workload
standard deviation to the same order of magnitude. For example, let 𝑋
represent the normalized sequence of the workload pool, where 𝑥 is an
element in the workload pool 𝐵𝑤 and 𝑥 is the normalized value of 𝑥.

𝑋 = {𝑥|𝑥 =
𝑥 − 𝑚𝑖𝑛(𝐵𝑤)

𝑚𝑎𝑥(𝐵𝑤) − 𝑚𝑖𝑛(𝐵𝑤)
,∀𝑥 ∈ 𝐵𝑤}, (14)
𝑟 = −(𝜇𝐷 + 𝜂𝑊𝑠𝑑 ), (15)
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Fig. 2. The diagram of the APD algorithm.
where 𝐷 and 𝑊𝑠𝑑 represent the average delay and the normalized
values of the server workload standard deviation, respectively. 𝜇 and 𝜂
denote the coefficients of the two factors, which sum up to 1. Since this
work does not focus on analyzing the weights of different objectives,
here 𝜇 and 𝜂 are each set to 0.5.

4.2. APD algorithm

In this section, we provide a comprehensive description of the APD
lgorithm, as illustrated in Fig. 2. The specific procedural steps are

outlined in Algorithm 1.
Firstly, we initialize the main Q-network, target Q-network, and

necessary parameters. Due to the large state and action spaces in the
problem addressed in this paper, we utilize a Q-network for decision-
making to mitigate the curse of dimensionality. Neural networks are
used to estimate Q-values, and the action with the maximum Q-value is
selected to obtain the optimal edge server layout. The Q-network struc-
ture of our main Q-network is described in the Q-network section of
Fig. 2. The dimensions of the states are consistent. In our experiments,
the input layer has a specific dimension of 𝑚, which equals the number
of servers, with each dimension representing the position of an edge
server. The two hidden layers have 64 and 32 neurons, respectively,
both using ReLU activation functions. The output layer consists of 4𝑚
neurons, representing the action space 𝐴. Finally, the Q-values for each
action are computed, and the argmax function is used to map the Q-
values to the action 𝑎. The target Q-network mainly calculates the loss,
updates the main Q-network, and improves the convergence of the
algorithm. The parameters of the main Q-network are synchronized

ith those of the target Q-network every 𝐶 steps.
Then, from the 𝑛 positions of the base stations, 𝑚 positions are

andomly selected to place the edge servers, and the positions of the
servers, 𝑠1 = [(𝑙 𝑎𝑡1, 𝑙 𝑜𝑛1), (𝑙 𝑎𝑡2, 𝑙 𝑜𝑛2),… , (𝑙 𝑎𝑡𝑚, 𝑙 𝑜𝑛𝑚)], are initialized as

the initial state. At the t-th iteration, the agent selects action 𝑎𝑡 based
on the 𝜀-greedy policy, as shown in lines 6–10. From 𝑎𝑡, the server 𝑒𝑠𝑗
to be relocated and its movement direction 𝑜 are determined, and then
the server’s movement position 𝑝𝑜𝑠 is calculated using the LSD method.
The server is then moved, and the reward 𝑟𝑡, and next state 𝑠𝑡+1 are
observed. Next, we employ the experience replay mechanism of the
DQN algorithm, sampling a batch from the experience pool for training,
as shown in lines 14–20. The loss is then computed using the Huber
loss function, and the gradient descent method is utilized to update the
main Q-network. The specific method for updating 𝜀 is as follows: if 𝜀
is greater than 𝜀 , 𝜀 = 0.99𝜀. If the current step is a multiple of 𝐶, the
𝑚𝑖𝑛

5 
Algorithm 1 APD algorithm

1: Initialize 𝑄(𝑠; 𝑎; 𝜃), 𝑄(𝑠; 𝑎; 𝜃).
2: Initialize the experience replay buffer 𝐵 and the policy parameter

𝜀.
3: Randomly select 𝑚 locations to place edge servers.
4: t=1. Initialize the state 𝑠1 = [(𝑙 𝑎𝑡1, 𝑙 𝑜𝑛1), (𝑙 𝑎𝑡2, 𝑙 𝑜𝑛2), ..., (𝑙 𝑎𝑡𝑚, 𝑙 𝑜𝑛𝑚)] .
5: While 𝑡 ≤ 𝑇 do
6: Generate a random number 𝑧 ∈ [0, 1].
7: If 𝑧 ≤ 𝜀 then
8: Randomly select an action 𝑎𝑡.
9: Else

10: Select 𝑎𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑠𝑡; 𝑎; 𝜃).
11: Calculate 𝑎𝑡 → {𝑒𝑠𝑗 , 𝑝𝑜𝑠} by LSD method.
12: Move the server 𝑒𝑠𝑗 and observe 𝑟𝑡, 𝑠𝑡+1.
13: Store the experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in experience replay buffer 𝐵.
14: Sample a mini batch from experience replay buffer 𝐵.
15: For each sampled transition do
16: If 𝑡 + 1 = 𝑇 then
17: 𝑦 = 𝑟𝑡
18: Else
19: 𝑦 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑄(𝑠𝑡+1, 𝑎, 𝜃), 𝜃)
20: End For
21: 𝛿 = 1. Calculate 𝐿𝑜𝑠𝑠 =

{

1
2 (𝑦 −𝑄(𝑠𝑡, 𝑎𝑡, 𝜃))2, |𝑦 −𝑄(𝑠𝑡, 𝑎𝑡, 𝜃)| ≤ 𝛿

𝛿 ⋅ (|𝑦 −𝑄(𝑠𝑡, 𝑎𝑡, 𝜃)| − 1
2 𝛿), otherwise

22: Update 𝑄(𝑠; 𝑎; 𝜃) by Adam optimizer and Update 𝜀.
23: If 𝑡%𝐶 = 0 then
24: Synchronize 𝑄(𝑠; 𝑎; 𝜃) = 𝑄(𝑠; 𝑎; 𝜃).
25: 𝑡 = 𝑡 + 1.
26: End While

parameters of the main Q-network are synchronized with those of the
target Q-network.

4.3. Complexity analysis

The time complexity of the APD algorithm primarily encompasses
two facets: the training complexity of the Q-network during the training
phase, and the computational complexity of the Q-network during the
testing phase. We will first analyze the time complexity of the training
process. As illustrated in Fig. 2, the Q-network comprises an input,
output, and three fully connected layers. The number of neurons in
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Fig. 3. Description of base station information of Shanghai Telecom data set.
b
s
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he input layer is 𝑚, where 𝑚 denotes the number of servers, and the
umber of neurons in the output layer is 4 × 𝑚. Let 𝑓𝑖 denote the

number of neurons in the 𝑖th layer of the Q-network; thus, 𝑓1 = 𝑚,
𝑓2 = 64, 𝑓3 = 32, and 𝑓4 = 4 × 𝑚. Let 𝑇 represent the maximum
number of iterations. The time complexity for the training process is
𝑂(𝑚 × 𝑇 ×

∑4
𝑖=1 𝑓𝑖−1 × 𝑓𝑖).

When training is completed, the trained Q-network makes schedul-
ing decisions for each task at every time step during the testing phase.
Therefore, the time complexity of the APD testing phase is 𝑂(𝑚 ×
∑4

𝑖=1 𝑓𝑖−1 × 𝑓𝑖).

5. Experimental results and discussions

This section presents the experimental results. We first compare the
training results with different core parameters. Then, we conduct ab-
lation experiments using DQN-ESPA as the baseline algorithm. Finally,
we test the performance of several comparative algorithms. All exper-
imental results were obtained by training with randomly generated
seeds and averaging the results.

5.1. Experimental environments

In this section, we outline the experimental setup and results. We
use the standard deviation of workload balance and system average
delay as evaluation metrics to verify the performance of the APD
algorithm and compare it with several advanced algorithms. All experi-

ents are implemented in Python 3.7 and executed on a computer with
n Intel i7-12700KF CPU and 32 GB of memory.

The dataset used in the experiments is sourced from Shanghai
elecom.1 It comprises over 7.2 million records of 9481 mobile phones
ccessing the internet through base stations over a period of 6 months.
he dataset provides detailed geographic locations of the base stations,
rom which we selected valid data from 3000 base stations. Fig. 3
hows the base station location information and load information of the
hanghai TV data set. The darker the color, the higher the complexity.
ll other parameters are presented in Table 1.

1 The dataset set can be accessed by http://sguangwang.com/TelecomData
set.html.
6 
Table 1
Parameters.

Definition Value

The number of base stations 𝑛 3000
The number of servers 𝑚 [100,200,300,400,500]

The number of layers in Q-network 4
The sample size 𝑏 32
The memory size 𝑀 10 000
The learning rate 𝑙𝑟 0.001
The discount rate 𝛾 0.9
The initial value of 𝜀 1
The minimum value of 𝜀 0.01
The iteration coefficient of 𝜀 0.99
The synchronization period of the target network 𝐶 100

5.2. Baselines

Before discussing the experimental results, we provide a brief
overview of several comparative algorithms.

K-means (Lhderanta et al., 2021): A classical unsupervised method
that categorizes base stations into 𝑚 clusters based on their distance
similarities, with each cluster representing the coverage area of an edge
server. Here, 𝑚 denotes the number of edge servers.

Top-k (Wang et al., 2019): This algorithm ranks the workload of
each base station and selects the position with the highest workload as
the server’s location. Then, it determines the coverage of this server
ased on distance and removes the covered base stations from the
orted queue. This process is repeated until 𝑚 server positions are
ound.
Random (Wang et al., 2019): This method randomly selects 𝑚

positions from 𝑛 available base station locations to place servers.
QMC (Mazloomi et al., 2023): This method discretizes the contin-

uous state space, allowing the algorithm to learn and make decisions
effectively within a finite state space.

TDMC (Mazloomi et al., 2023): This method leverages the concept
of Temporal Difference Learning (TD Learning) to update the value
estimation of the current state by predicting the difference between
future rewards and actual rewards, thereby optimizing the strategy.

DQN-ESPA (Luo et al., 2022): This approach utilizes reinforcement
learning, considering only the positions with the smallest changes in
latitude and longitude when moving servers.
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Fig. 4. Comparison of different learning rates.
Fig. 5. Comparison of different sample sizes.
Fig. 6. Comparison of different memory sizes.
5.3. Sensitivity analysis

As shown in Figs. 4–8, to test the performance of the APD algorithm
under different parameters, we set up an instance with 300 servers
placed among 3000 base stations. We evaluated various configurations,
including different learning rates 𝑙𝑟, sample sizes 𝑏, memory sizes 𝑀 ,
the Huber loss parameter 𝛿, and the target Q-network synchronization
period 𝐶.
7 
Figs. 4(a) and 4(b) correspond to the average delay and workload
balance under different learning rates, respectively. It can be observed
that a smaller learning rate leads to slower convergence but also
minimizes the average delay, whereas larger learning rates exhibit the
opposite behavior. Fig. 4(b) indicates that smaller learning rates result
in slower convergence and may lead to local optima without finding
the true optimal solution, while larger learning rates, although making
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Fig. 7. Comparison of different 𝛿.
Fig. 8. Comparison of different C.
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the workload more balanced, perform poorly in terms of average
delay. Considering these factors, we adopt 𝑙𝑟 = 0.01 in subsequent
experiments.

Figs. 5(a) and 5(b) correspond to the average delay and workload
balance under different sample sizes, respectively. From Fig. 5(a), it
can be observed that both a large and a small sample size affect
the convergence speed. A large sample size includes redundant data
that can influence the agent’s decision-making, while a small sample
size lacks comprehensive information, similarly affecting the agent’s
decisions and thus the convergence speed. However, the final average
delay converged to a satisfactory level. From Fig. 5(b), it can be seen
that a smaller sample size results in a larger and more fluctuating
workload balance, whereas a larger sample size leads to a smaller

orkload balance. Considering all factors into account, we adopted a
ample size of 32 for the subsequent experiments.

Figs. 6(a) and 6(b) correspond to the average delay and workload
balance under different sizes of experience pools, respectively. From
Fig. 6(a), it can be seen that a larger experience pool, while speeding up
convergence, causes the algorithm’s average delay to get trapped in a
local optimum. In contrast, a smaller experience pool, although result-
ing in slower convergence, achieves a lower average delay. Fig. 6(b)
shows that with a smaller experience pool, the algorithm performs
poorly in terms of workload. This is because the two optimization ob-
jectives — average delay and workload balance — are conflicting. With
a smaller experience pool, it is difficult to comprehensively observe past
training experiences, leading to the optimization of one objective at the
expense of the other. Although a better average delay is achieved, it
8 
results in severe load imbalance. When the experience pool size is set to
10,000, it slightly sacrifices average delay but achieves more balanced
workloads. Taking all factors into account, we adopted a memory size
of 10,000 for the subsequent experiments.

Figs. 7(a) and 7(b) correspond to the average latency and workload
balancing performance for different parameter values of 𝛿, respectively.
It is evident that varying d has little impact on load balancing per-
formance, but the average latency is minimized when 𝛿 = 1. This is
because, as d increases, the characteristics of the Huber loss cause the
loss to be calculated using Mean Squared Error (MSE), which amplifies
the impact of outliers. Therefore, we opted to use 𝛿 = 1 in subsequent
experiments.

Figs. 8(a) and 8(b) correspond to the average latency and work-
oad balancing performance for different synchronization periods 𝐶,
espectively. It is observed that with 𝐶 = 50, the convergence speed
s relatively fast, but the average latency and workload balancing
erformance are poor. When 𝐶 = 100, although the convergence speed
s slower, the average latency and workload balancing performance
re the best. When 𝐶 = 200, while average latency and workload
alancing performance improve, the convergence speed is the slow-
st. A more minor synchronization period results in less knowledge
eing learned in each cycle, leading to insufficient comprehensiveness.
onversely, a larger learning period introduces excessive redundant

nformation, causing slower convergence and deteriorating decision-
aking performance. Therefore, we opted to use 𝐶 = 100 in subsequent

xperiments.
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Fig. 9. Comparison of average delay.
Fig. 10. Comparison of workload balance.
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.4. Ablation experiments

This subsection presents ablation experiments to validate the ef-
ectiveness of the proposed LSD method. Since this work is based on
QN-ESPA, we use DQN-ESPA as the baseline for our ablation experi-
ents. Both algorithms are implemented using the parameters outlined

n Table 1. Figs. 9 and 10 show the comparison of the average delay and
orkload balance between APD and DQN-ESPA, with 100, 200, 300,
00, and 500 servers placed across 3000 base stations, respectively. It is
vident that the APD algorithm outperforms DQN-ESPA in both average
 r

9 
elay and workload balance across all instances. This is because DQN-
SPA only considers the position with the least latitude and longitude
ovement when relocating servers, neglecting the impact on workload.
ur proposed LSD method not only selects the servers that need to be
oved and their direction of movement but also identifies the optimal
osition in that direction to further reduce average delay and workload
alance.

Additionally, we find that both the APD and DQN-ESPA algorithms
educe the average delay and workload balance standard deviation



S. Li et al.

t

s

t
T
h
w
a
o
T
E
a

Engineering Applications of Artiϧcial Intelligence 139 (2025) 109662 
across all instances. When the number of servers is small, the per-
formance improvement of the APD algorithm over the DQN-ESPA
algorithm is less pronounced. However, as the number of servers in-
creases, the optimization performance of the DQN-ESPA algorithm for
both metrics significantly declines, while the APD algorithm maintains
strong performance. This is because, with fewer servers, the DQN-ESPA
algorithm has fewer positions to move to in different directions when
making decisions, making it more likely to choose the position with
he least latitude and longitude movement to balance the server load.

As the number of servers increases, the number of potential positions
in different directions also increases, greatly impacting the decision
accuracy of the DQN-ESPA algorithm. The LSD method proposed by the
APD algorithm is not influenced by the number of servers; regardless of
the instance or the number of possible positions in different directions
during decision-making, it can consistently select strategies that reduce
both average delay and workload balance standard deviation.

5.5. Comparison of different servers

Table 2 describes the system delay performance of different algo-
rithms when placing different numbers of servers, measured by the
average delay of servers as shown in Eq. (4). Table 3 describes the
workload balance performance of different algorithms when placing
different numbers of servers, measured by the variance of server work-
load as shown in Eq. (5). The data in boldface indicates the top
two rankings. The results show that the K-means algorithm has the
lowest average delay because it considers the similarity of distances
between base stations when placing servers. However, this also neglects
workload balancing, resulting in the largest variance in server workload
for this algorithm. In most instances, the Top-k algorithm achieves
more balanced server workloads because it sorts server workloads to
balance them, but it overlooks the spatial relationships of servers,
leading to a higher average delay. Although the Random algorithm
makes decisions easily, its randomness prevents it from accurately find-
ing better solutions. Therefore, in several tests with different random
seeds, both the average delay and workload balance performance of
this algorithm are poor. The QMC algorithm quantizes the state space
to simplify the problem, while the TDMC utilizes temporal difference
learning to dynamically adjust the value estimates of states. Both of
them enhance the performance of the algorithms, but they do not
consider the load on the base station. DQN-ESPA outperforms K-means,
Top-k, Random, QMC and TDMC overall, especially with fewer servers.
This is because DQN-ESPA considers moving servers only when there
are minimal changes in latitude and longitude. With fewer servers,
there are fewer servers in the moving direction, and the probability
of the nearest server being the appropriate one is higher. However,
as the number of servers increases, this strategy cannot consider the
workload of servers in the moving direction, leading to a decrease in
performance. The APD algorithm not only considers moving servers
in four directions but also utilizes the LSD algorithm to thoroughly
evaluate the workload of servers in the moving direction. Therefore,
it exhibits better performance even as the number of servers increases.

5.6. Comparison of different base stations

To verify the robustness of the APD algorithm, we tested instances
where the number of servers was fixed, but the number of base stations
varied. The results are shown in Tables 4 to 7, with the data in
boldface indicating the top two performances in each instance. From
these tables, it is evident that, with a constant number of servers, the
average latency and server load variance also increase as the number
of base stations increases. Tables 4 and 5 respectively, present the
average latency and load balancing performance of placing 100 servers
in instances with varying numbers of base stations. Tables 6 and 7 re-
spectively show the average latency and load balancing performance of
placing 300 servers in instances with varying numbers of base stations.
10 
Table 2
Average delay of placing different numbers of servers with 3000 base stations.

m K-means Top-k Random QMC TDMC DQN-ESPA APD

100 2.32 12.24 11.69 11.06 10.42 10.04 3.66
200 1.38 6.78 8.69 7.23 6.33 4.95 2.28
300 1.04 5.67 8.92 7.15 6.01 5.59 1.89
400 0.84 4.45 11.65 6.75 5.83 5.41 1.44
500 0.70 3.96 8.41 6.13 5.42 5.84 1.10

These four tables show that the K-means algorithm improves average
latency performance at the expense of load balancing performance,
regardless of the instance. This also confirms our previous discussion
that this algorithm focuses on the similarity of distances between base
tations when placing servers, ignoring the server load. In contrast,

the Top-k algorithm sacrifices average latency performance to improve
load balancing performance because it focuses on server load, ignoring
server distances. Although the Random algorithm performs well in
load balancing when placing 100 servers among 2000 base stations,
it performs poorly in both metrics in most instances. The DQN-ESPA
algorithm’s mobile server strategy outperforms K-means, Top-k, and
random algorithms. The QMC and TDMC algorithms perform reason-
ably with fewer base stations, but as the number of base stations
increases, their overall performance surpasses that of DQN-ESPA. Addi-
tionally, the temporal difference learning concept introduced by TDMC
adjusts the value of the current state at each step based on the value
estimates of the current and next states, optimizing the policy. Although
the APD algorithm does not achieve the best performance in every
instance, it consistently ranks in the top two for each metric across
different instances, indicating the best overall performance of the APD
algorithm.

5.7. Comprehensive evaluation

Furthermore, we introduce the Comprehensive Evaluation Index
(CEI) to compare the overall performance of various algorithms (Luo
et al., 2022). A lower CEI value signifies better overall performance
for an algorithm. Due to the magnitude differences between the two
evaluation metrics, average delay and load balancing, we use two
different methods to standardize these metrics. Since the average de-
lay typically remains below 10, we standardize it using the method
outlined in Eq. (16). The load balancing data varies significantly, so
we standardize it using the method described in Eq. (14). The compre-
hensive evaluation index is then obtained using Eq. (17). 𝑋 represents
the set of standardized average delays for each algorithm, 𝑥 represents
the standardized average delay value for each algorithm,  represents
the set of average delays for each algorithm, 𝐷 and 𝑊𝑠𝑑 represent
the standardized average delay and load balancing standard deviation,
respectively, and both 𝜇 and 𝜂 are set to 0.5.

𝑋 = {𝑥|𝑥 = 𝑙 𝑜𝑔10(𝑥)∕𝑙 𝑜𝑔10(𝑚𝑎𝑥()),∀𝑥 ∈ }, (16)

𝐶 𝐸 𝐼 = 𝜇𝐷 + 𝜂𝑊𝑠𝑑 , (17)

The results of the comprehensive evaluation are shown in Fig. 11.
The characteristics of the K-means and Top-k algorithms enable them
o excel in one specific metric, but their overall CEI is relatively poor.
he Random algorithm, which randomly selects servers for placement,
as the worst overall CEI. The DQN-ESPA algorithm performs well
ith a small number of servers, but its overall performance declines
s the number of servers increases, further indicating that DQN-ESPA
nly considers the nearest servers and ignores the impact of load.
he QMC and TDMC algorithms perform slightly worse than DQN-
SPA, although they map state–action pairs to a Q-table, this nonlinear
pproximation in larger spaces can lead to poorer results. The CEI of

the APD algorithm consistently maintains the lowest in most cases.
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Table 3
Workload balance of placing different numbers of servers with 3000 base stations.

m K-means Top-k Random QMC TDMC DQN-ESPA APD

100 231 507.04 171 129.49 194 943.24 172 238.21 166 723.36 161508.46 105801.9
200 103 164.61 77 735.22 95 904.44 93 678.75 92 852.76 90922.88 68352.64
300 65 563.04 44420.76 65 659.84 64 984.18 62 372.25 61 538.99 51805.95
400 51 110.23 28897.75 50 707.16 49 218.52 47 218.98 48 216.18 35765.9
500 41 279.23 21390.24 40 566.48 43 231.54 42 218.38 41 609.61 32079.09
v
B

A

Table 4
Average delay of placing 100 servers with different numbers of base stations.

n K-means Top-k Random QMC TDMC DQN-ESPA APD

500 1.07 16.20 16.25 10.25 9.24 10.74 3.93
1000 1.71 8.86 13.99 9.25 8.23 9.96 4.48
1500 1.82 10.88 13.15 10.43 9.35 10.16 3.80
2000 2.31 13.54 14.28 9.23 8.18 8.72 4.83
2500 2.31 12.71 13.39 8.83 7.24 6.69 5.94
3000 2.32 12.24 13.03 10.31 9.27 10.04 1.10

Fig. 11. CEI comparison for different numbers of servers placed at 3000 base stations.

ombined with previous conclusions, the LSD method proposed by the
APD algorithm comprehensively considers both average delay and load
alancing and effectively mitigates the service.

.8. Server distribution

Finally, we visualize the server locations and workload information
to further compare the performance of several algorithms. Fig. 12
shows the locations and workload information of servers placed among
100 server instances for 3000 base stations. In the figure, dots represent
ervers, and the darker the color, the higher the server’s workload.

From Fig. 12(a), we can see that the servers placed by the K-means
lgorithm are more evenly distributed, covering all areas. This allows
ase stations in all areas to connect to the nearest server, resulting
n lower average latency for the K-means algorithm. However, this
pproach causes servers in high workload areas to bear a significant
oad, leading to poor workload balance. From Fig. 12(b), it can be seen
hat the Top-k algorithm concentrates servers in high workload areas,
chieving better load balancing but also causing higher access latency
or base stations in peripheral areas. From Fig. 12(c), it can be seen
hat the distribution characteristics of servers chosen by the Random
lgorithm align with those of the base stations, with more servers
laced in denser base station areas. However, the randomly selected lo-
ations do not effectively reduce average latency and workload balance
tandard deviation. Fig. 12(d) illustrates that the QMC algorithm can
oncentrate servers in load-intensive areas to reduce latency; however,
his approach compromises load balancing performance. Fig. 12(e)
11 
demonstrates that the TDMC algorithm optimizes load balancing per-
formance based on QMC, but the disparity in server load remains
significant. Figs. 12(f) and 12(g) demonstrate that the DQN-ESPA and
APD algorithms can place more servers in high workload areas to
reduce the server workload balance standard deviation and fewer
servers in peripheral areas to reduce average latency. Nevertheless,
their performance varies. It is evident that the server workloads placed
by the DQN-ESPA algorithm are mainly concentrated on a few key
servers, while the APD algorithm distributes the servers more evenly
in high workload areas, resulting in more balanced server loads.

6. Conclusions

This paper presents an adaptive placement and dynamic optimiza-
tion (APD) method to effectively address the server placement issue in
mobile edge computing systems. Firstly, we model the server placement
challenge as a Markov decision process and formalize the state space,
action space, and reward function. Then, we propose a workload-based
location selection rule to adjust edge servers’ positions, significantly
reducing the average delay and server workload variance. We use real
datasets from Shanghai Telecom to compare the APD algorithm with
classic algorithms such as K-means, Top-k, Random, QMC, TDMC and
DQN-ESPA. Experimental results demonstrate that the APD algorithm
outperforms several baseline algorithms. The APD method proposed
in this paper enhances user experience in communication networks
while meeting the load-balancing requirements of operator servers.
By employing reinforcement learning-based decision-making and the
proposed LSD scheme to adjust server locations, the method adapts to
dynamically changing network environments. However, our study has
certain limitations. In our scenarios, servers are homogeneous, but in
practical applications, server capabilities and resources can be tailored
to different regional needs. Future research could explore the perfor-
mance of APD algorithms with heterogeneous servers. Additionally,
with the high-density base station layouts anticipated for future 6G
networks, exploring base station sleep technologies to improve energy
efficiency is essential. Under the context where base stations can enter
sleep mode, optimizing server placement could be a potential area for
improvement.
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Fig. 12. Distribution of 100 servers.
Table 5
Workload balance of placing 100 servers with different numbers of base stations.

n K-means Top-k Random QMC TDMC DQN-ESPA APD

500 66 346.03 34832.25 123 386.91 752 458.59 73 328.57 85 547.68 54695.12
1000 105 006.94 98643.32 146 996.29 113 358.24 110 923.38 125 343.51 103242.37
1500 162 346.29 118340.78 151 952.22 147 295.83 140 753.59 148 571.35 138193.26
2000 205 807.21 163 866.80 160655.75 170 284.50 168 673.29 168 048.12 158260.58
2500 212 781.71 170 316.27 162 679.68 168 295.65 159 294.26 162 502.78 157420.07
3000 231 507.04 171 129.49 194 943.24 150 834.67 148 267.85 161508.46 105801.9
Table 6
Average delay of placing 300 servers with different numbers of base stations.

n K-means Top-k Random QMC TDMC DQN-ESPA APD

500 0.20 10.58 12.07 3.16 2.25 3.19 1.08
1000 0.72 6.40 11.27 4.73 4.38 5.16 1.39
1500 0.83 5.99 10.68 6.47 7.26 6.28 2.02
2000 1.06 5.98 10.39 9.02 8.54 9.62 2.97
2500 1.03 5.60 9.33 7.98 8.51 8.73 2.94
3000 1.04 5.67 8.92 5.26 4.25 5.59 1.89
12 
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Table 7
Workload balance of placing 300 servers with different numbers of base stations.

n K-means Top-k Random QMC TDMC DQN-ESPA APD

500 20784.69 11635.96 43 107.40 36 148.27 306 475.79 316 045.23 25 388.25
1000 39 298.73 17003.52 51 977.36 47 182.49 45 247.22 48 944.25 35751.15
1500 54 452.83 28472.85 55 718.32 53 874.25 52 936.24 50 473.56 41801.81
2000 65 576.59 42519.02 60 722.18 54 290.37 57 826.04 58 839.51 49945.91
2500 64 176.84 44222.96 61 148.65 58 356.93 56 832.14 60 888.16 50280.63
3000 65 563.04 44420.76 65 659.84 62 589.26 58 457.26 61 538.99 51805.95
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