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A B S T R A C T   

Previous literature mainly focuses on the vulnerability of high-speed rail network (HSRN) at 
station level. High-speed rail (HSR) lines fail frequently due to disasters, which can cause a 
cascading effect between lines. We propose a novel method to assess the vulnerability of HSR line 
network (HSRLN) from the spatio-temporal perspective. To do that, the lines are described by 
stations, and the relations between lines are defined by train scheduling data. Then, we use the 
passenger volume and travel time cost between lines to assess HSRLN’s vulnerability with di-
sasters’ spatio-temporal characteristics. Finally, the HSRLN in China is taken as a case. When a 
disaster occurs at 11:00 and lasts 6 h or 9 h, it can cause a large vulnerability. The critical lines 
always cover the Beijing-Shanghai and Shanghai-Kunming lines, while the regions with high-level 
vulnerability are mainly distributed in the Yangtze River Delta.   

1. Introduction 

High-speed rail, like civil aviation, has become a convenient and fast mode of transportation chosen by many people (Albalate & 
Bel, 2012; Sun et al., 2021; Wandelt et al., 2023b; Zhang et al., 2018a). Currently, more than 40 countries are operating or planning to 
build HSR (Li et al., 2021; URL, 2023). HSR has been operated as a network after decades of rapid development, consisting of many 
HSR lines since the opening and operation of the first HSR line, the Tokyo-Osaka line in 1964 (Jiao et al., 2017). Furthermore, the 
development of HSRN in many countries was not halted by the pandemic. For example, the length of HSRN in China grew from 35,000 
km in 2019 to 42,000 km in 2022. Globally, the length of HSRN has increased from 44,000 km in 2017 to about 59,000 km in 2022, an 
increase of nearly 34.1 % during this period according to the statistics by UIC in 2023. As we all know, HSR also has a significant impact 
on human travel habits with the increase in network length (Yang & Zhang, 2012). For example, more than 2 billion travelers in 2019 
chose HSR as a travel tool before the pandemic. However, disasters’ negative consequences for HSRN exert a significant impact on 
people’s life and travel (Bugalia et al., 2021; Read et al., 2019; Wang et al., 2022). 

With the scale expansion of HSRN, more HSR lines may experience disasters and consequently suffer serious consequences (Chen & 
Wang, 2019; Jiao et al., 2020; Sanchis et al., 2020; Wandelt et al., 2021). In other words, HSRN may be composed of a few simple HSR 
lines at the early development stage, covering only a small area. After decades of development, many intertwined HSR lines make up 
the present HSRN, covering a wide area (Wang, 2019). This will increase the chances of HSRN being exposed to disasters. Furthermore, 
the consequences of a disaster can spread along some HSR lines to other related lines (Deng et al., 2018). For example, the heavy 
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rainstorm in Zhengzhou on July 20, 2021, led to the failure of the HSR stations located in Zhengzhou, and caused the failure of the 
Beijing-Guangzhou, Xuzhou-Lanzhou, Zhengzhou-Xiangyang, and other HSR lines. Thousands of high-speed (HS) trains passing 
through these lines were suspended, and tens of thousands of passengers were stranded at these HS stations. 

Therefore, ensuring the security of HSRN has not only been highly valued by related administrations but has attracted the attention 
of related scholars (Janić, 2018; Bugalia et al., 2020; Hu et al., 2020). For example, the “14th Five-Year Development Plan of Modern 
Comprehensive Transportation System” issued by the State Council of China centers the safety enhancement of HSRN as an important 
goal and directive for development. Moreover, the number of research about HSRN security has increased by ten times in the last 
decade according to the statistic from ‘Web of Science’. Most of the literature regards the vulnerability analysis of HSRN as the key 
solution for enhancing its safety (Ilalokhoin et al., 2023; Khademi et al., 2021; Li and Rong, 2022; Wandelt et al., 2021, 2023a), 
because HSRN’s vulnerability is an inherent attribute, which can reflect its sensitivity to disasters. The impacts of disasters on HSRN 
and the vulnerable elements in HSRN can be effectively identified from the vulnerability perspective. Therefore, the issue on the 
vulnerability of HSRN has become a hot topic in the field related HSR (Rodríguez-Núñez & García-Palomares, 2014; Nicholson et al., 
2016). 

At present, various methods for network modeling and vulnerability assessment of HSRN have been proposed by different 

Nomenclature 

HS High-speed 
HSR High-speed rail 
HSRN High-speed rail network 
HSRLN High-speed rail line network 
GDP Gross domestic product 
li High-speed rail line i 
si High-speed rail station i 
G High-speed rail line network G 
L Set of high-speed rail lines 
E Set of edges between lines 
F Set of edge weights with train frequency 
T Set of edge weights with travel time 
P Performance of high-speed rail line network 
pfij Passenger volume from line li to lj 
atij Travel time cost from line li to lj 
orij Occupancy rate of the trains from li to lj 
Popi Population of the regions covered by li 
GDPi GDP of the regions covered by li 
Dij Distance between stations covered by li and lj 
nli Number of stations covered by li 
θij Accessibility status between li and lj 
at Total running time of the trains from line li to lj 
at Total transfer time from line li to lj 
m Transfer times from li to lj 
tt Time of each transfer from li to lj 
hazi A disaster i 
th
hazi 

Occurrence time of the disaster i 
td
hazi 

Influence duration of the disaster i 
chazi Occurrence location of the disaster i 
rhazi Influence scope of the disaster i 
tstri Failure status of the train tri 
sssi Failure status of the station si 
lsli Failure status of the line li 
Pno Performance of under its normal operation 
Phazj Performance of HSRLN under the disaster hazj 

Vhazj Vulnerability of HSRLN under the disaster hazj 

plli Performance loss caused by the failure of the line li 
regx Unit of vulnerability regionalization 
SDV Variance of the vulnerability corresponding to all units 
SDC Sum of the variances of all classifications 
GVF Goodness of variance fit  
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researchers, playing an important role in improving the security of HSRN (Chen & Jiang, 2019; Hong et al., 2022). Firstly, HSRN is 
usually described as a station-based network in which the nodes represent HSR stations. For example, Ouyang et al. (2019), Hong et al. 
(2020), Li et al. (2019), Hu et al. (2022), Gao et al. (2023), and Zhang et al. (2023) modeled the HSRN of China as a physical network 
consisting of HSR stations and tracks between stations when analyzing its vulnerability based on the schedule data of HS trains. Hong 
et al. (2019) and Li & Rong (2020, 2021) also described HSR stations as the nodes of HSRN, while the edges of the network denoted the 
service links based on HS trains running between stations. Furthermore, the centrality metrics (such as the accessibility of nodes) and 
structure metrics (such as the shortest path length) are often selected as the indicators of HSRN’s vulnerability. For example, Zhang 
et al. (2016) used the shortest path length to analyze and compare the vulnerability of the HSRN located in China, Japan, and America, 
while Ouyang et al. (2014, 2015) assessed the HSRN’s vulnerability of China by using the daily accessibility. 

It is easy to find that these metrics used in previous literature can only reveal the topological vulnerability (such as the sensitivity of 
topology structure) of HSRN against disasters (Feng et al., 2021; Mattsson & Jenelius, 2015; Reggiani et al., 2015; Wandelt et al., 
2023a). However, the vulnerability of HSRN is affected not only by the changes in its topology structure but also by the changes in its 
function (Li & Rong, 2021). For the planners and administrators of HSR, the topology structure of HSRN is designed to fulfill its 
function, which includes services for passengers. As a result, an increasing number of studies have begun to focus on the functional 
vulnerability of HSRN or other transportation networks. Furthermore, most previous works only analyze the static vulnerability of 
HSRN by taking the disasters it suffering from as a static scenario (Li & Rong, 2020). In other words, these studies ignore HSRN’s 
component failure caused by disasters with complex spatio-temporal characteristics. The occurring time and location, and lasting time 
and scope of the HSRN’s component failure depend on the occurring time and location, and influencing time and scope of the disaster 
(Xu et al., 2024), and therefore HSRN may expose different vulnerabilities when suffering from disasters at different times cross various 
locations (Khademi et al., 2018). For example, disasters occurring at different times cross various locations can lead to the failure of 
HSR trains operating at that time and location. For the HSRN in China, disasters occurring during the daytime can usually cause more 
train failures than those occurring at night, because there are very few trains running at night overall. 

Additionally, a clear limitation of these research findings is that only the scenario of an HSR station failing independently due to 
disasters is taken into account (Wang et al., 2015). In fact, the failure of an HSR station often results in the failure of an HSR line or 
multiple HSR lines covering the station, which may further lead to the failure of other HSR lines. This is because the operation of HSRN 
depends on many HS trains running along an HSR line or multiple lines and crossing between different HSR stations. Therefore, when 
the HSR stations covered by an HSR line fail, it will not only affect the HS trains running along that line, but also affect other lines 
associated with that line. Then, the failures caused by a disaster can spread across different lines. From the news issued by the 
operation department of HSRN, it can be found that the disaster consequences are usually represented by the failure of an HSR line or 
multiple lines after HSRN suffering from a disaster. For example, many HSR lines are disrupted by the heavy rainstorm in Zhengzhou in 
2021, and the Beijing-Shanghai HSR line, Xiamen-Shenzhen HSR line, and dozens of other lines are shut down due to Super Typhoon 
Lekima in 2019. 

To fill these gaps with considering the security management demands, we investigate the vulnerability of HSRN from the following 
three issues. (1) How can the HSR lines and the relations between different lines be described when modeling the HSRN from the HSR 
line perspective? (2) How can the vulnerability of HSRN consisting of HSR lines be assessed under considering the complex spatio- 
temporal characteristics of disasters? (3) How can the critical HSR line be identified, and the differences of the vulnerability 
exposed by HSRN in different regions along HSR lines be recognized? 

In this study, we propose a novel method to describe HSRN and assess its vulnerability from the HSR line perspective. The main 
contributions of our study are illustrated as follows. (1) HSRN is first described as a network consisting of HSR lines, in which an HSR 
line is modeled as a sequential array of multiple HSR stations. The relations between HSR lines are defined based on the HS trains 
running between them. (2) The passenger volume and travel time cost between HSR lines are selected as the vulnerability metrics of 
HSRN at the HSR line level. The method for assessing the vulnerability is developed by considering the topology structure and function 
of HSRLN. (3) The spatio-temporal variability of HSRLN’s vulnerability is first revealed by considering the occurrence time and 
location, and influence duration and scope of disasters. Furthermore, multiple failure states of HSRLN’s components are taken into 
account. (4) The method for identifying the critical HSR lines and regionalizing the vulnerability is proposed to support the accurate 
enhancement of HSRLN security. 

The rest of this study is organized as follows. Section 2 introduces the methods of HSRLN description, vulnerability assessment, 

Fig. 1. An example of the description process of HSR lines.  
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critical line identification, and vulnerability regionalization. Section 3 shows the case of HSRLN in Mainland China from the HSR line 
perspective. Section 4 presents the obtained results and discussions. Section 5 illustrates the conclusions and management 
implications. 

2. Methodology 

2.1. Network description of HSRLN 

Usually, a network is composed of nodes and edges according to complex network modeling method (Li & Rong, 2022; Xu et al., 
2023a), and therefore the description process of HSRLN necessitates first defining the nodes and edges of the network. In this study, we 
define an HSR line as a node, which is composed of multiple HSR stations and tracks connecting these stations, as shown in Fig. 1(a). 
From the perspective of providing functions, the main purpose of constructing an HSR line is to achieve effective connections between 
several HSR stations covered by the line, and therefore an HSR line lx can be described as a sequential array of multiple HSR stations, 
such as lx=(si,sj,…,sy), illustrated in Fig. 1. The relation between HSR stations and lines is many-to-many. In other words, an HSR 
station can be covered by multiple HSR lines and a line can cover multiple HSR stations, as shown in Fig. 1(b). For example, the line l01 
in Fig. 1 is composed of the stations s04, s03, s01, and the blue dotted line connecting these stations, which can be described as l01=(s04, 
s03,s01), and the station s04 can be covered by the line l01, l03, l04. 

The edges between HSR lines are defined based on HS trains running with HSRN. If an HS train crosses two HSR lines, there is an 
edge between these two lines, because an HSR line is described by multiple HSR stations, whether an HSR line is crossed by an HS train 
can be determined by whether the train passes through the HSR stations covered by the line. If an HS train passes through two HSR 
stations covered by an HSR line, then we assume that the train crosses the line. Afterwards, the relation between HSR lines and HS 
trains can be obtained based on the relation between HSR stations and lines and the relation between HSR stations and HS trains, 
illustrated in Fig. 2. For example, the HS train D001 in Fig. 2 passes through the HSR station s03 and s01, s04 and s05, and these stations 
are respectively covered by the HSR line l01 and l03 so these two lines are crossed by D001. Then there is an edge between the lines l01 
and l03. However, if the lines l01 and l02 cannot be passed through by the same train, there is no edge between them. 

Furthermore, the HSRLN can be described as G=(L, E, F, T) in which L={lx |0 < x ≤ n} represents the set of HSR lines, n is the 
number of HSR lines, E={exy |0 < x,y ≤ n, x ∕= y} denotes the set of edges between HSR lines, F={fxy |0 < x,y ≤ n, x ∕= y} represents the 
set of edge weights with HS train frequency, and T={txy |0 < x,y ≤ n, x ∕= y} denotes the set of edge weights with travel time by HS 
trains, indicated by the in-vehicle time. For example, the set of HSR lines, L, can consist of the line l01, l02, l03, l04, and the set of edges, E, 
can consist of the edge e13 connecting l01 to l03, e14 connecting l01 to l04, and so on, illustrated in Fig. 1 and Fig. 2. The HS train frequency 
weight of an edge connecting a pair of HSR lines indicates the number of trains crossing these two lines, and the travel time weight of 
the edge indicates the shortest running time between these two lines by HS trains. In other words, the travel time indicates the shortest 
time a train takes to depart from a station of one line to reach a station of another line. For example in Fig. 2, f13 represents the train 
frequency weight of the edge e13 connecting the line l01 to l03, equal to 1, and t13 represents the travel time weight of e13 between l01 and 
l03 by the train D001. As shown in Fig. 2, the train D001 arrives at the station s01 at time t21, meaning that it departs from the line l01 at 
time t21, and departs from the station s04 at time t24, meaning that it arrives at the line l03 at time t24. Therefore, the travel time weight 
of the edge e13 between l01 and l03, t13, is equal to t24-t21. 

2.2. Metric of vulnerability 

From the supply–demand perspective, the basic function of various transportation networks is to provide customers with conve-
nient travel services. HSRLN is built and developed for the function of providing services. In other words, the function of HSRLN can be 
described as a service output over connected HSR lines. The service flow between HSR lines is ultimately reflected by passenger flow, 
and therefore maintaining this service or passenger flow is the function of HSRLN. Furthermore, the ability to maintain this passenger 

Fig. 2. A description example of the relation between HSR lines and HS trains based on train schedule data.  
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flow is defined as the performance of HSRLN from the perspective of its function feature (Mattsson & Jenelius, 2015; Li & Rong, 2021). 
When suffering from disasters, the HSRLN’s performance will be affected, exposing its vulnerability. 

In this study, the vulnerability of HSRLN can be defined as the loss degree of HSRLN’s performance due to disasters based on the 
vulnerability definition of transportation in previous literature (Mattsson & Jenelius, 2015; Hong et al., 2020; Li & Rong, 2021, 2022; 
Zhang et al., 2023). In other words, the large performance loss of HSRLN caused by disasters indicates that it is more sensitive to 
disasters and exposes a large vulnerability. Thus, the vulnerability of HSRLN is determined by its performance loss. To assess the 
vulnerability of HSRLN, we first need to measure its performance and then calculate its performance loss caused by disasters. 
Therefore, the performance can be selected as the metric of the vulnerability. The passenger volume and travel time cost can be used to 
reflect the performance of HSRLN since its ability to maintain passenger flow depends on the volume and the cost (Sun et al., 2017; Jiao 
et al., 2020; Wandelt et al., 2023a; Li et al., 2024). Based on previous literature (Jiao et al., 2020; Li & Rong, 2020, 2021, 2022), the 
performance of HSRLN, P can be denoted as, 

P =
1

n(n − 1)
∑n

i=1,i∕=j

∑n

j=1,j∕=i

pfij

atij
(1)  

where pfij represents the passenger volume from HSR line li to lj, and atij represents the travel time cost from li to lj. pfij and atij can be 
calculated by the following steps and equations, in which pfij indicates the train frequency with relative occupancy rate and atij in-
dicates the travel time in hours. Then the performance of HSRLN, P, indicates the passenger volume per unit of travel time cost, that is, 
the number of trains per hour. 

In the normal case, the more frequent the train operation between two HSR lines and the higher the train occupancy rate, the 
greater the passenger volume between these two lines. Therefore, the passenger volume between two HSR lines is related to the 
frequency and occupancy of the trains running between these two lines. The train frequency can be obtained from the set of edge 
weights of HSRLN, and the train occupancy is typically related to the travel demand that can often be estimated by the gravity model as 
a whole in the case of limited data (Zhang & Zhang, 2016; Zhang et al., 2018b; Yu et al., 2021; Li & Rong, 2021). In gravity model, the 
closer the distance between two HSR lines and the larger the population and the GDP (Gross Domestic Product) of the regions covered 
by these lines, the higher the demand for travel between the two lines and the greater the occupancy rate of the trains running between 
these lines. On the basis of the above analysis, the passenger volume, pfij, can be calculated as, 

pfij = tfij × orij × θij (2)  

orij =
log

(
orij

)

log(max(or))
(3)  

orij = γ

(
(Popi)

α
× (GDPi)

β
)
×
((

Popj

)α
×
(
GDPj

)β
)

(
Dij

)λ (4)  

Dij =
1

nli nlj

∑

sx∈li

∑

sy∈lj

Dsxsy (5)  

Popi =
1
nli

∑

sx∈li

Popsx (6)  

GDPi =
1
nli

∑

sx∈li

GDPsx (7)  

θij =

{ 1 The line i is accessible to line j

0 The line i is inaccessible to line j
(8)  

where tfij represents the train frequency from HSR line li to lj, orij represents the relative value of the occupancy rate orij of the trains 
running from li to lj, max(or) is the maximum value of the occupancy rate of the trains running between all pairs of the lines, Popi and 
Popj respectively indicate the population of the regions covered by li and lj, GDPi and GDPj respectively indicate the GDP of the regions 
covered by li and lj, Dij represents the spatial distance between li and lj, Dsxsy represents the spatial distance between the HSR station sx 

covered by li and the HSR station sy covered by lj, nli ,nlj respectively indicate the number of HSR stations covered by li and lj, Popsx ,GDPsx 

respectively indicate the population and GDP of the station sx covered by li, γ, α, β, and λ respectively indicate the gravity constant, the 
control parameter of the population, GDP, and spatial distance, and θij represents the accessibility status between li and lj. If the HSR 
line li is directly accessible to lj without transferring, tfij is equal to the train frequency weight of the edge connecting them, fij. Since an 
HSR line is described by a sequential array of multiple HSR stations, a line can consist of multiple stations and there is a clear difference 
in the number of stations covered by different lines. To avoid the influence of that difference on the obtained results, we adopt the 
mean value for calculating GDPi, GDPj and Dij. In other words, GDPi is calculated by the average GDP of the regions covered by li, and Dij 
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is calculated by the average spatial distance between the HSR stations covered by li and the stations covered by lj. 
Based on previous literature, the travel time cost can be described as the shortest travel time, composed of the pure running time of 

trains (in-vehicle time) and transfer time at the transfer stations, and measured in hours (Corman et al., 2014; Gentile and Noekel, 
2016; Wang et al., 2016; Sun et al., 2017; Jiao et al., 2020; Wandelt et al., 2023a; Li et al., 2024). The pure running time refers to the 
time passengers spend on trains and transfer time refers to the time passengers spend on transferring from one train to another at 
transfer stations. Thus, the travel time cost, atij, can be denoted as, 

atij = min
(

atr
ij + att

ij

)
(9)  

atr
ij = tiz1 + tz1z2 +⋯+ tzmj (10)  

att
ij = m × tt (11)  

where at, at respectively indicate the total running time of the trains and the total transfer time from the HSR line li to lj at the transfer 
station sz, m, tt respectively indicate the transfer times and the time of each transfer from li to lj. If the HSR line li is directly accessible to 
lj without transferring, at and m are equal to 0, and at is equal to the travel time weight of the edge connecting them, tij. If the HSR line li 
is inaccessible to lj, atij is infinite. 

2.3. Assessment of vulnerability 

According to the vulnerability definition of HSRLN, the prerequisite for assessing the vulnerability is to first identify the perfor-
mance loss of HSRLN in a disaster scenario. Once a disaster occurs, the HSR trains and stations within HSRLN will be negatively 
affected, and the HSR lines will fail. Then the edges between these lines and the weights of these edges within HSRLN will change and 
the passenger volume and travel time cost within the network will also change. Therefore, the performance loss of HSRLN is related to 
the disaster it suffers and the failure status of the trains, stations, and lines within the network. Firstly, the disasters suffered by HSRLN 
have a typical complexity with spatio-temporal characteristics. The impact of a disaster on HSRLN’s performance varies across 
different occurrence time and location, influence duration and scope of the disaster. For example, a disaster occurring in southeast 
China with dense HSR lines and lasting for a long time often has a greater impact on HSRLN than one occurring in western China with 
sparse HSR lines and lasting for a short time. In this study, a disaster, hazi, is described as, 

hazi =
(

th
hazi

, td
hazi

, chazi , rhazi

)
(12)  

where th
hazi

,td
hazi

,chazi ,rhazi represent the occurrence time, influence duration, occurrence location, and influence scope of hazi, 
respectively. 

Secondly, the failure status of the trains, stations, and lines within HSRLN can be divided into different categories according to the 
disaster scenarios. For example, the failure status of trains can be categorized into limit-speed operation and suspension, described as 
tstri , 

tstri =
(

hazj, sptri

)
(13)  

where sptri represents the percentage of the speed limit of the train tri under the disaster hazj. If sptri is equal to 1, the failure status of tri 
is suspension. Similarly, the failure status of stations can be categorized into functional failure and physical failure, described as sssi, 

sssi =
(

hazj, pfsi

)
(14)  

pfsi =

{ 1 Functionalfailure

2 Physicalfailure
(15)  

where pfsi represents the failure status of the station si under the disaster hazj. If pfsi is equal to 2, the failure status of si is complete 
suspension. However, the failure status of an HSR line depends on the failure status of the trains running on the line and the stations 
covered by the line. If all the stations covered by a line or all trains running on a line are completely out of service, the line is also 
completely out of service. The failure status of lines can be categorized into partial and complete outage, described as lsli , 

lsli =
(

hazj, lfli

)
(16)  

lfli =

{ 1 Completeoutage

σ ∈ (0, 1) Partialoutage
(17)  

where lfli represents the failure percentage of the line li under the disaster hazj. If lfli is equal to 1, the failure status of li is complete 
outage. 
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Finally, the nodes, edges and the weights of these edges within HSRLN under the disaster hazj can be remodeled. Then the per-
formance of HSRLN under disaster hazj, Phazj , can be calculated by Eq.(1) and the performance loss can also be calculated. Based on the 
performance loss, the vulnerability of HSRLN under the disaster hazj, Vhazj , can be assessed, 

Vhazj =
Pno − Phazj

Pno
(18)  

where Pno represents HSRLN’s performance under its normal operation before suffering from the disaster hazj. 

2.4. Critical lines identification and vulnerability regionalization 

The important purpose of assessing the vulnerability of HSRLN is to reduce the impact of disasters on it by protecting the critical 
lines and areas within the network. The critical HSR lines are the lines whose failure causes a larger performance loss to HSRLN than 
the failure of other lines. In this study, the critical lines can be identified by the enumeration method which assumes that each line of 
HSRLN fails in turn, and then the performance loss caused by the failure, plli , can be calculated as, 

plli = Pno − Pli (19)  

where Pli represents HSRLN’s performance under the complete outage of the line lj. The critical lines can be identified by comparing the 
performance loss plli corresponding to each line. 

The identification of critical lines is only to recognize the role of these lines in HSRLN, while the vulnerability regionalization is to 
recognize the role of the regions along HSR lines in the network. In other words, the difference between the regions with high 
vulnerability and the regions with low vulnerability can be distinguished by dividing the vulnerability level of all regions along HSR 
lines. The process of vulnerability regionalization includes the following steps. 

Step 1: Set the unit of the regionalization, regx. The regionalization unit is the smallest area that can be shown on a regionalization 
map. The prefecture-level city where the stations covered by HSR lines are located is selected as the regionalization unit in this study. 

Step 2: Select the indicator of the regionalization. The vulnerability that HSRLN exposes on the regionalization units is selected as 
the regionalization indicator since the purpose of this study focuses on the vulnerability regionalization. Specially, the vulnerability, 
Vregx , exposed by HSRLN under the complete failure of all lines and trains passing through a regionalization unit after a disaster, is used 
as the basis for regionalizing, 

Vregx =
Pno − Pregx

Pno
(20)  

where Pregx represents HSRLN’s performance under the disaster occurring in the unit regx and causing the complete failure of all lines 
and trains passing through regx. 

Step 3: Visualize the regionalization results. The natural breakpoint method is applied to determine the classification of region-
alization units based on the magnitude and variance of the vulnerability corresponding to all units and the sum of the variances of 
different classifications (Chen et al., 2023). The variance of the vulnerability corresponding to all units, SDV, and the sum of the 
variances of all classifications, SDC, can be calculated as, 

SDV =
1

nreg

∑nreg

x=1

(
Vregx − Vreg

)2 (21)  

SDC =
∑nc

y=1

1
ny

reg

∑n
y
reg

x=1

(
Vregxy − Vregy

)2
(22)  

GVF = 1 −
SDC
SDV

(23)  

where nreg and nc respectively indicate the number of regionalization units and their classifications, Vreg represents the mean of the 
vulnerability corresponding to all units, n y reg represents the number of the units within the classification y, Vregxy and Vregy respectively 
indicate the vulnerability corresponding to the unit regx with the classification y and the mean of the vulnerability corresponding to all 
units with the classification y, and GVF represents the goodness of variance fit. In general, a GVF greater than 0.7 is acceptable. Finally, 
the regionalization map of HSRLN’s vulnerability can be obtained and visualized based on the classification and its criteria of the units. 

3. Case study 

3.1. Case and data 

To verify the validity of the proposed method, the HSRLN located in Mainland China is taken as the case study. As of May 2021, the 
HSRLN of Mainland China has covered 22 provinces, 5 autonomous regions, and 4 municipalities, which includes more than 1,300 
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HSR stations. In this study, we select the stations located in prefecture-level and above cities and trains passing through these stations 
as the components of the HSRLN. There are 263 prefecture-level and above cities operating HSRLN. 

Furthermore, there are five types of data used for the case study, containing the HS train timetable, HSR line, HSR station coor-
dinate, urban socio-economic statistics, and vector map. First, the train timetable can be obtained from 12,306 China Railway. In this 
paper, we use the daily train timetable in May 2021. Second, the data of the HSR line comes from the planning map of the medium-long 
term HSRN issued by the Chinese government as of May 2021. Third, the coordinate data of HSR stations is acquired from Google Maps 
as of May 2021. Finally, the urban socio-economic statistics can be collected from the China city statistical yearbook in 2022. 

3.2. Description of the HSRLN 

We collect 109 HSR lines, among which 8 lines are isolated and not related to other lines, and 7 lines are duplicates and subsets of 
other lines, and therefore these 15 lines are eliminated from the 109 lines and the stations covered by the 8 isolated lines are also 
eliminated. Finally, the HSRLN in Mainland China consists of 94 lines that cover 251 stations and 5,144 trains running on a certain day, 
as shown in Fig. 3 illustrating the relations between these lines, stations, and trains. 

As shown in Fig. 3, the HSR lines located in central and eastern regions are usually busier and have a higher frequency of trains 
passing them than others. There are only a few lines on which the frequency of trains exceeds 500, and most of these lines are hub lines 
and longer lines that cover a larger number of stations. For example, the Beijing-Guangzhou line (blue line located in the middle of 
Fig. 3) covers 24 stations and the Shanghai-Kunming line (blue line lying flat in the lower middle of Fig. 3) covers 23 stations. However, 
most of the lines’ length is relatively short, covering fewer stations, and the frequency of trains passing them is usually less than 500. 

Furthermore, the left part of Fig. 4 reveals that the number of stations covered by most of the lines is no more than 4 and the number 
of lines covering more than 7 stations is small as a whole. The right part of Fig. 4 shows that there is a certain linear relation between 
the number of stations covered by a line and the train frequency on it, which means that the more stations covered by a line, the higher 
the frequency of trains running on it. But the lines covering a relatively small number of stations may also be stopped by many trains. 
For example, the Beijing-Shanghai line (red line in Fig. 3) covers only 18 stations while the frequency of trains running on it is the 
highest. Fig. 5 illustrates that more than half of the 5,144 trains only pass through 2 lines, running less than 5 h, while a small number 
of trains only pass through more than 6 lines, running more than 16 h. 

There are 682 edges between these 94 lines in the HSRLN, as shown in Fig. 6. As can be seen from Fig. 6, the cross-provincial lines, 
which connect economically developed and densely populated regions, often have greater node degree. For example, the Beijing- 
Guangzhou, Beijing-Shanghai, and Shanghai-Kunming lines play the role of bridge throughout the north and south, the east and 
west in the HSRLN, making up important parts of the “four vertical and four horizontal” and “eight vertical and eight horizontal” 
channels in the network. However, the lines connecting the stations located in the same provincial region usually have few connecting 
edges, such as the Wuhan-Huanggang, Dandong-Dalian, and the branches of other lines. 

The probability distribution of the degree of the lines as a node in the HSRLN tends to follow the characteristic of power law 

Fig. 3. Spatial distribution of the HSR lines in the frequency of trains passing them.  
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distribution, illustrated in the left part of Fig. 7. In other words, the degree of most lines is relatively small while only a few lines have a 
great degree. Additionally, there is a clear positive correlation between the degree of the line and the train frequency on it, meaning 
that the lines with a great degree can be stopped by many trains in the HSRLN, as shown in the right part of Fig. 7. Table 1 reveals that 
each line in the HSRLN covers at least 4 stations and is directly connected with at least 14 other lines on average. Although the lines are 
busy as a whole, their busyness varies greatly. That is to say that the maximum and minimum of train frequency on the lines are 1,350 
and 2, respectively. 

4. Results 

Referring to previous literature on the evaluation of train occupancy rate and passenger flow demand based on the gravity model, 
the gravity constant, the control parameter of the population, GDP, and spatial distance are set as 1 for balancing their impacts on the 
calculated results (Zhang & Zhang, 2016; Zhang et al., 2018b; Yu et al., 2021; Li & Rong, 2021). Moreover, the transfer time at each 
transit station is set as 0.5 h, referencing previous research and acknowledging that many stations have set up fast transit channels 
(Wang et al., 2016; Li & Rong, 2020). The performance of the HSRLN in Mainland China under normal operation is 66.81, indicating 
that there are 66.81 HS trains with relative occupancy rate per unit hours between all lines in the network. In other words, there are an 
average of 66.81 trains running between all lines in the HSRLN every hour. The ability to maintain this “train flow” can reflect the 
performance of the HSRLN in normal operation. 

4.1. Spatio-temporal vulnerability variability of the HSRLN 

The disaster scenario needs to be set first when analyzing the vulnerability of the HSRLN. Firstly, the Monte Carlo method is used to 

Fig. 4. Distribution of the HSR lines frequency in the number of stations they include, and the relations between the number and the frequency of 
trains passing a line. 

Fig. 5. Distribution of the HSR lines frequency in the number of stations they include, and the relations between the number and the frequency of 
trains passing a line. 
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simulate the disaster with random characteristics that the occurrence time thhazi 
and location chazi , influence duration td

hazi 
and scope rhazi 

are random, and 10 types of random disaster scenarios are set. The first type is that the disaster occurs at 0:00 and lasts for 24 h, and the 
other types are characterized by the occurrence time th

hazi 
belonging to 7:00, 11:00, or 15:00 and the influence duration tdhazi 

belonging 
to 3 h, 6 h, or 9 h. For each type of disaster scenario, its occurrence location chazi is determined by the randomly selected lines, stations 

Fig. 6. Visualization of the HSRLN located in Mainland China. The larger size of the text and dots indicate the greater degree of the line as a node in 
the HSRLN, the curve represents the edges between lines. 

Fig. 7. Distribution of the HSR lines frequency in the number of stations they include, and the relations between the number and the frequency of 
trains passing a line. 
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or trains, and its influence scope rhazi is determined by the fraction of the number of these lines, stations or trains to the total lines, 
stations or trains within the HSRLN. The fraction is set to range from 0 to 1 with an interval of 0.0125. 

Furthermore, the selection of a line, a station or a train means that it is located in the scope of the disaster, and so will fail. If the 
failure status of a line is a complete outage, the trains passing through it will fail. If the failure status of a line is set as partial outage and 
the failure status of its covering stations is a physical failure, the trains passing through these stations will fail; otherwise, the trains will 
not be affected. If the failure status of a station is a physical failure, the trains passing through it will fail; otherwise, the trains will not 
be affected. In this study, the partial failure status of a train is set as only 50 % limit-speed operation, and the failure impacts of the lines 
and trains on the HSRLN’s vulnerability are investigated separately for easy analysis. 

Fig. 8 reveals that the HSRLN is more vulnerable to the random failure of lines (denoted by ‘LINE’ in Fig. 8) than the random failure 
of stations and trains (respectively denoted by ‘STA’ and ‘TRA’ in Fig. 8), caused by the random disasters. Since a line can cover 
multiple stations, its failure can often lead to the failure of multiple trains, which can have a great impact on the performance of the 
HSRLN. Additionally, the random failure of stations can result in a larger vulnerability than that of trains. This is because a station can 
be passing through by multiple trains. If a station fails, it can cause the failure of multiple trains. 

It can be seen from Fig. 8 that the HSRLN exposes different vulnerabilities when the occurrence time and influence duration of the 
lines or trains failure caused by random disasters are different. Specially, when the influence duration td

hazi 
of the failure is 6 h and 9 h 

Table 1 
Basic attributes of the HSRLN.  

Attribute Number of stations covered 
by line 

Degree of 
line 

Train frequency on 
line 

Number of lines stopped by 
train 

Train-frequency 
weight 

Travel-time 
weight 

Maximum 24 56 1350 9 384  24.0 
Average 2 1 2 2 1  0.02 
Minimum 4.2 14.5 154.1 2.8 23.7  3.1  

Fig. 8. Vulnerability of the HSRLN in the case of random failure of the HSR lines/stations/trains under different disaster scenarios.  
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(separately denoted in Fig. 8 by ‘LINE-6′ and ‘LINE-9′ for lines, and by ‘TRA-6′ and ‘TRA − 9′ for trains), the random failure occurring at 
11:00 of both the lines and trains can cause a greater vulnerability than that occurring at other times. When td

hazi 
is 3 h (denoted in Fig. 8 

by ‘LINE-3′ for lines, and by ‘TRA-3′ for trains), the failure occurring at 15:00 can cause a large vulnerability. Furthermore, when the 
failure occurring at 7:00, the vulnerability exposed by the HSRLN varies greatly as td

hazi 
increasing, which indicates that the HSRLN’s 

vulnerability is sensitive to the influence duration of the failure. Nevertheless, the vulnerability is slow to the increase of tdhazi 
when the 

failure occurs at 15:00. 
Secondly, to simulate the disaster with malicious characteristics that the occurrence time th

hazi 
and location chazi , influence duration 

tdhazi 
and scope rhazi are malicious, 10 types of malicious disaster scenarios are also set based on th

hazi 
and td

hazi
. In other words,th

hazi 
and td

hazi 

are set to be similar to the random disaster scenarios, and chazi ,rhazi are respectively determined by the selected lines, stations or trains 
and the fraction of the number of these lines, stations or trains. However, the lines, stations or trains are selected according to their 
importance rather than randomly selected. When selecting a line, a station or a train in each type of malicious disaster scenario, the one 
with the high importance is preferred. 

The importance of a line is determined by its degree (denoted by ‘LINE-D’ in Fig. 9) or the train frequency (denoted by ‘LINE-F’ in 
Fig. 9). The higher the degree or frequency of a line, the more important the line is. The importance of a station is determined by its 
degree (denoted by ‘STA-D’ in Fig. 9) or the train frequency (denoted by ‘STA-F’ in Fig. 9). The higher the degree or frequency of a 
station, the more important the station is. The importance of a train depends on its running time (denoted by ‘TRA-R’ in Fig. 9). The 
greater the total running time of a train, the more important it is. Moreover, the failure status of the lines and stations, and trains is set 
as a complete outage and suspension respectively for our examination of the serious impacts of malicious disaster scenarios. 

Fig. 9 shows that the HSRLN can expose high vulnerability against a small fraction of the malicious failure, while the change in the 
vulnerability gradually slows down as the failure fraction increases. For example, the vulnerability of the HSRLN is close to 1 when the 
failure fraction is equal to 0.3, which means the network essentially loses all its performance. The failure fraction of lines is equal to 
about 0.05, causing the vulnerability to be about 0.8, while the failure fraction of stations is equal to about 0.6, causing the 

Fig. 9. Vulnerability of the HSRLN in the case of malicious failure of the HSR lines/stations /trains under different disaster scenarios.  
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vulnerability to be about 0.8. This reveals that the HSRLN is more vulnerable against the malicious failure of lines than that of stations. 
Furthermore, the HSRLN exposes larger vulnerability against the malicious failure occurring at 11:00 than that at other times when the 
influence duration td

hazi 
of the failure is 6 h and 9 h (in Fig. 9, ‘LINE-D-6′ and ‘LINE-F-6′ respectively denote td

hazi 
equal to 6 h based on the 

importance in the degree and train frequency for lines, ‘TRA-R-9′ denotes td
hazi 

equal to 9 h based on the importance in the running time 
for trains). It is clear that the impacts of the malicious failure based on the degree and train frequency of the lines on the vulnerability is 
basically the same regardless of the failure occurring time, because there is an evident correlation between the line degree and train 
frequency on it, as shown in Fig. 7. Additionally, the vulnerability changes greatly as td

hazi 
increases from 3 h to 6 h when the malicious 

failure of lines or trains occurs at 11:00. 
Thirdly, most disasters occur within a local space, which needs to be simulated based on typical disaster cases. For example, ty-

phoons as the typical and main disaster threatening the HSRLN have always been highly emphasized by administrations. Typhoon 
‘Lichima’ landing in China on August 10, 2019, caused the failure of dozens of lines and thousands of trains within the HSRLN. In this 
study, the localized disaster scenarios are set based on the typhoon ‘Lichima’. That is to say, Hangzhou, Yancheng, and Qingdao are 
taken as the center points chazj in the typhoon path, and the influence scope rhazi is set as 100 km and 200 km, as shown in Fig. 10. For 
each chazj and rhazi , the influence time range is set asth

hazi 
= 0:00 andtd

hazi 
= 24 h (0:00 ~ 24:00), th

hazi
=6:00 andtd

hazi 
= 6 h (6:00 ~ 12:00), 

thhazi
=12:00 andtd

hazi 
= 6 h (12:00 ~ 18:00), thhazi

=18:00 andtd
hazi 

= 6 h (18:00 ~ 24:00). 
Table 2 illustrates that the HSRLN can be affected differently with the changing of chazj and rhazi when the influence time range of the 

typhoon is set from 0:00 to 24:00. There are 5 lines and 786 trains failure caused by the typhoon located in Hangzhou withrhazi = 100 
km, resulting in the vulnerability to be equal to 0.2388. However, when its center shifts to Qingdao withrhazi = 200 km, the typhoon 
can cause the failure of 4 lines and 356 trains and the vulnerability to be equal to 0.1012. Hangzhou among the three centers has the 
greatest impact on the HSRLN’s vulnerability, because the lines passing through Hangzhou play a greater role in the HSRLN, such as 

Fig. 10. Influence spaces and scopes of the disaster scenarios based on super typhoon Lekima.  
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the Shanghai-Kunming, Beijing-Shanghai, and Hangzhou-Shenzhen lines, compared to the lines around Yancheng and Qingdao. 
Furthermore, when the spatio-temporal influence of the typhoon is different, its impact on the HSRLN’s vulnerability is also 

different, as shown in Table 3. In other words, the influence time ranging from 12:00 to 18:00 of the typhoon located in Hangzhou can 
lead to a larger vulnerability (equal to 0.3297) than the other two influence time ranges, and its influence time ranging from 6:00 to 
12:00 has the smallest impact on the vulnerability, regardless whether therhazi = 200 km or 100 km. Nevertheless, when the typhoon’s 
center is located in Qingdao, the impact of its influence time ranging from 18:00 to 24:00 on the vulnerability is smallest. In addition, it 
is not difficult to find whether the center of the typhoon is located in Hangzhou or Yancheng, or Qingdao and its influence scope is 100 
km or 200 km, its influence time ranging from 12:00 to 18:00 always results in a large vulnerability. This is because there are many 
trains running between the lines passing through Hangzhou, Yancheng, and Qingdao during the above period. The typhoon occurring 
at this time can cause many trains to fail and large performance losses. 

4.2. Lists of critical lines under different periods 

Four different periods of the line failure are set to identify the impact of the failure influence time range on the rank list of the 
critical lines within the HSRLN. The periods of the line failure include the all-day period (0:00 to 24:00) and three different periods of 
the day (6:00 to 12:00, 12:00 to 18:00, and 18:00 to 24:00), 

Table 4 reveals that a line failure under different periods and different lines failure under the same period can cause the HSRLN to 
expose different vulnerabilities. For example, the Beijing-Guangzhou line failure under the all-day period can result in the vulnerability 
to be equal to 0.1801, while its failure under the period from 12:00 to 18:00 and from 18:00 to 24:00 can result in the vulnerability to 
be equal to 0.1610 and 0.1105 respectively. As the period from 6:00 to 12:00, the failure of the Beijing-Guangzhou and Beijing-Harbin 
lines can result in the vulnerability to be equal to 0.1275 and 0.0905 respectively. This is because the number of stations covered by 
different lines is different, leading to different train frequencies on the lines and different relations with other lines under different 
periods. 

Although the rank lists of the critical lines under different periods are different, some lines are always listed in the top 10 ranks 
under different periods. For example, the Lianyungang-Zhenjiang line is listed as the critical line under the all-day period but not under 
other periods. Hangzhou-Shenzhen line ranks 4th under the all-day period while it respectively ranks 5th and 3rd under the period 
from 6:00 to 12:00 and from 18:00 to 24:00. The rank lists always include Beijing-Shanghai, Shanghai-Kunming, Shangqiu-Hangzhou, 
and Beijing-Guangzhou lines. These lines are the hubs of the HSRLN, which can exert significant impacts on the network. 

Furthermore, it can be seen from Table 4 that the HSRLN exposes different vulnerabilities against the line failure under the three 
different periods of the day. The line failure under the period from 12:00 to 18:00 always causes a larger vulnerability than that under 
other periods. For example, the Beijing-Shanghai line failure under the period from 12:00 to 18:00 leads to the vulnerability to be equal 
to 0.3141, while the failure under the period from 6:00 to 12:00 and from 18:00 to 24:00 respectively cause the vulnerability to be 
equal to 0.2074 and 0.2185. This is because the trains and their frequency running on a line vary across different periods. 

4.3. Vulnerability regionalization on whole space 

The vulnerability,Vregx , corresponding to each regionalization unit in Mainland China can be obtained by the proposed method in 
Section 2.4. After calculation, the maximum and minimum of Vregx are equal to 0.3043 and 0 respectively. The Vregx is equal to 0 due to 
the weak failure impacts of the lines and trains covered by a regionalization unit on the HSRLN’s performance, which is rounded to 
0 under retained four decimal places. According to the natural breakpoint method, the Vregx corresponding to all regionalization units 
can be divided into five levels or categories when GVF is greater than 0.7, as shown in Table 5. For example, if Vregx is larger than 
0.1591, it belongs to level 5 with high vulnerability. 

As can be seen from Fig. 11, the spatial distribution of the regionalization units with high, medium–high, and medium vulnerability 
is relatively clustered. In other words, the units with high vulnerability are mainly located in the Yangtze River Delta region, while the 
units with medium–high and medium vulnerability are mainly distributed in the east coastal regions of China. It is easy to find that the 
vulnerability level of the units located in the eastern regions is usually higher than that of other units. In particular, the vulnerability 
level of the units along the Beijing-Harbin, Chengdu-Chongqing, Beijing-Shanghai, and Zhengzhou-Xi’an lines is usually higher than 
that of other units. Furthermore, the units distributed in the urban agglomerations, such as the Beijing-Tianjin-Hebei, Chengdu- 
Chongqing, and central plains agglomerations, always belong to the high and medium–high vulnerability category. It reveals that the 

Table 2 
Failure situation and vulnerability of the HSRLN under different spaces of the typhoon.  

Center Influence scope Number of failed lines Number of failed trains Vulnerability 
(0:00 ~ 24:00) 

Hangzhou 100 km 5 786  0.2388 
200 km 10 1640  0.4064 

Yancheng 100 km 5 362  0.1298 
200 km 8 954  0.2657 

Qingdao 100 km 3 259  0.0706 
200 km 4 356  0.1012  
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disasters occurring in these regions can cause many lines and trains failure and can result in a great performance loss of the HSRLN. 
Nevertheless, the number of high and medium–high vulnerability units is significantly smaller than that of other category units as a 
whole. 

5. Conclusions 

This study investigates the vulnerability of HSRLN from a spatio-temporal perspective. First, a network model method is proposed 
to describe the HSRLN, in which an HSR line is first described as a sequential array of multiple HSR stations. The edges between the 
lines are established by the relations between the lines and HS trains. Next, the passenger volume and travel time cost are selected as 
the vulnerability indicators of HSRLN from the perspective of its function feature. Although the data of passenger volume is difficult to 
obtain, it can be estimated by its relation with the frequency and occupancy of HS trains. Furthermore, we develop a method for 
assessing the vulnerability of HSRLN based on its performance loss caused by disasters. In this study, a disaster is described from four 
dimensions, including its occurrence time and location, influence duration and scope. Then we propose a method for the identification 
of critical lines and the regionalization of vulnerability to protect HSRLN and reduce its performance loss. Finally, the HSRLN located 
in Mainland China is taken as the case study, and the obtained results can be summarized as follows. 

Firstly, the HSRLN has the characteristic of a scale-free network in which the probability distribution of node degree follows to 
power law distribution. In the HSRLN, most of the lines are less connected to other lines, while a few lines are connected to many other 

Table 3 
Vulnerability of the HSRLN under differently spatio-temporal scenarios of the typhoon.  

Center Influence scope Influence time range 

6:00 ~ 12:00 12:00 ~ 18:00 18:00 ~ 24:00 

Hangzhou 100 km  0.1185  0.1889  0.1251 
200 km  0.2228  0.3297  0.2316 

Yancheng 100 km  0.0612  0.1040  0.0736 
200 km  0.1461  0.2203  0.1533 

Qingdao 100 km  0.0474  0.0665  0.0446 
200 km  0.0628  0.0925  0.0618  

Table 4 
Rank of top 10 critical HSR lines within the HSRLN under different periods.  

Rank All-day period 6:00 ~ 12:00 12:00 ~ 18:00 18:00 ~ 24:00 

Critical lines Vulnerability Critical lines Vulnerability Critical lines Vulnerability Critical lines Vulnerability 

1 Beijing-Shanghai  0.3694 Beijing-Shanghai  0.2074 Beijing-Shanghai  0.3141 Beijing-Shanghai  0.2185 
2 Shanghai-Kunming  0.2488 Shanghai- 

Kunming  
0.1512 Shanghai- 

Kunming  
0.2171 Shanghai- 

Kunming  
0.1561 

3 Shangqiu- 
Hangzhou  

0.2076 Beijing- 
Guangzhou  

0.1275 Shangqiu- 
Hangzhou  

0.1831 Hangzhou- 
Shenzhen  

0.1210 

4 Hangzhou- 
Shenzhen  

0.2072 Shangqiu- 
Hangzhou  

0.1118 Hangzhou- 
Shenzhen  

0.1637 Shangqiu- 
Hangzhou  

0.1183 

5 Beijing-Guangzhou  0.1801 Hangzhou- 
Shenzhen  

0.1106 Beijing- 
Guangzhou  

0.1610 Beijing- 
Guangzhou  

0.1105 

6 Nanjing-Chengdu  0.1567 Xuzhou-Lanzhou  0.1036 Nanjing- 
Chengdu  

0.1424 Nanjing- 
Chengdu  

0.1007 

7 Beijing-Harbin  0.1490 Beijing-Harbin  0.0905 Xuzhou-Lanzhou  0.1271 Xuzhou-Lanzhou  0.1001 
8 Xuzhou-Lanzhou  0.1399 Nanjing- 

Chengdu  
0.0896 Beijing-Harbin  0.1264 Beijing-Harbin  0.0883 

9 Nanjing-Hangzhou  0.0963 Tianjin- 
Tangshan  

0.0562 Nanjing- 
Hangzhou  

0.0868 Nanjing- 
Hangzhou  

0.0571 

10 Lianyungang- 
Zhenjiang  

0.0875 Chengdu- 
Chongqing  

0.0514 Hefei-Fuzhou  0.0722 Hefei-Fuzhou  0.0547  

Table 5 
Vulnerability classification of the HSRLN.  

Level Category Standard 

Level 1 Low vulnerability ≤0.0171 
Level 2 Medium-low vulnerability 0.0171 ~ 0.0416 
Level 3 Medium vulnerability 0.0416 ~ 0.0796 
Level 4 Medium-high vulnerability 0.0796 ~ 0.1591 
Level 5 High vulnerability >0.1591  
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lines. Moreover, the frequency of trains running on most of the lines is obviously smaller than that on a few lines. Therefore, the HSRLN 
is robust when suffering from the random failure of the lines or trains, while it is vulnerable under the malicious failure of the lines or 
trains. 

Secondly, the disaster scenarios suffered by the HSRLN are very complex. The impact of a disaster on the HSRLN varies with its 
occurrence time and location, influence duration and scope. When the occurrence time and location, influence duration and scope of a 
disaster are different, the HSRLN can expose different vulnerabilities. For example, when the influence duration of a disaster is 6 h and 
9 h, its occurrence at 11:00 can cause a larger vulnerability than that at other times. The disaster occurring in Hangzhou and Qingdao 
can result in the HSRLN’s vulnerability to be equal to 0.1889 and 0.0665 respectively when its influence scope equals to 100 km and its 
influence time ranges from 12:00 to 18:00. 

Thirdly, the criticality of different lines under different periods is different. A line failing at different times and different lines failing 
at the same time can make the HSRLN expose various vulnerabilities. For example, the failure of the Beijing-Guangzhou line during the 
period from 12:00 to 18:00 and from 18:00 to 24:00 can cause the HSRLN’s vulnerability to be equal to 0.1610 and 0.1105 respec-
tively. The failure of the Beijing-Guangzhou and Beijing-Harbin lines during the period from 6:00 to 12:00 can cause the vulnerability 
to be equal to 0.1275 and 0.0905 respectively. 

Fourthly, different regions of Mainland China play different roles in the HSRLN’s vulnerability. The regions with the high-level 
vulnerability of the HSRLN are mainly distributed in the Yangtze River Delta, while the regions with the medium–high-level and 
medium-level vulnerability are mainly located in the east coastal regions of China. The vulnerability level of the regions located in 
western China is usually lower than that of other regions. 

Furthermore, some management implications can be obtained from the above findings. First, the administrators of HSR should 
recognize the unique characteristics and significance of HSRN from the HSR line perspective. The connections between HSR lines can 
exert critical impacts on the cascade failure within HSRLN. It is important to identify the difference of a new HSR line from others and 
its relation with others when planning or constructing it. Second, the spatio-temporal distinction of HSRLN’s vulnerability should be 

Fig. 11. Vulnerability regionalization map of the HSRLN.  
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emphasized by administrators when developing the emergency planning of HSR. For example, the risk of the lines and trains failure 
occurring at 11:00 can be reduced, or even avoided by laying out more maintenance resources during this period. Third, more 
attention should be paid to the critical lines, essentially the lines ranked at the top in different periods, such as the Beijing-Shanghai, 
Shanghai-Kunming, Shangqiu-Hangzhou, and Beijing-Guangzhou lines within the HSRLN in Mainland China. Additionally, the layout 
of the maintenance resources for a line should focus on the critical time since the impact of its failure at the critical time on the 
vulnerability of HSRLN is larger than that at other times. At last, the regions with high-level vulnerability should be allocated more 
maintenance resources to monitor them. For example, the emergency rescue and resource reserve center of HSR can be set up to 
improve its capacity to respond to different disasters according to the vulnerability regionalization map. 

However, many issues can be further explored from the limitations of this study. For the vulnerability evaluation, we do not account 
for the performance recovery under the disaster restoration measures when calculating the performance loss of HSRLN. If the data on 
the repair measures for the lines and trains after disasters is available, the performance recovery of HSRLN can be considered in future 
work. Although this work selects the passenger volume and travel time cost as the vulnerability metric from the function feature 
perspective of HSRLN, its vulnerability may involve multiple factors and dimensions, such as accessibility and size of the giant 
component (Sun et al., 2020a; Wandelt et al., 2024a). Therefore, more factors and dimensions can be taken into account from other 
perspectives in future studies. Nevertheless, the HSRLN is often described as an isolated network without consideration of its relations 
with other transportation networks. With the raid development of HSR, the relations between HSR lines and other transportation lines 
(such as airlines) are getting closer and closer (Xu et al., 2023b; Li et al., 2024), and therefore assessing the vulnerability of the 
comprehensive transportation network composed of HSR and other transportation with modal schedulings may be an interesting 
direction. Recently, the resilience of transportation networks, such as air and railway, has received increasing attention (Sun et al., 
2020b; Ilalokhoin et al., 2023; Wandelt et al., 2024a, 2024b). Future works can investigate the resilience of HSRLN or HSRN. The case 
study and obtained results are limited to China. Other countries, such as Germany, also have developed HSR (Wandelt & Sun, 2022), 
which deserves to be investigated in the future as well. 
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