
Z
a

b

c

e
i
t

h
R

Neurocomputing 620 (2025) 129194

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Dynamic weight reinforcement learning method considering multiple factors
in mobile edge computing system
Shihua Li a, Yanjie Zhou b,∗, Xiangqian Liu a, Ning Wang a, Junqi Wang c, Bing Zhou a,
ongmin Wang a

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China
School of Management, Zhengzhou University, Zhengzhou, 450001, China
School of Information Management, Zhengzhou University of Aeronautics, Zhengzhou, 450016, China

A R T I C L E I N F O

Communicated by J. Xu

Keywords:
Dynamic weight
Multi-objective deep reinforcement learning
Computation offloading

A B S T R A C T

The accelerated advancement of Mobile Edge Computing (MEC) has facilitated significant progressions in
digital medical diagnostic services. However, the multi-region, multi-user, and multi-priority characteristics
in medical diagnostic services within MEC systems make the task of offloading problematic. On the one hand,
the task offloading problem involves multiple conflicting objectives, such as minimizing delay costs, server
load balancing, and user fairness. Some researchers have explored these issues and proposed reinforcement
learning-based methods to tackle such problems. However, existing work often characterizes objectives as
linear scalarizations of multiple objectives, overlooking their conflicts. On the other hand, the preferences
for various objectives in different regions cannot be predicted in advance and may indeed differ, making it
challenging to handle in existing research. To address these challenges, we propose a multi-objective, multi-
agent reinforcement learning approach. In this approach, the reward at each step is a vector, with each scalar
corresponding to an objective. Furthermore, we propose a multi-agent tournament selection method to identify
historically significant preferences. This mechanism considers the strategies of other agents while preserving
the policies previously learned by the current agent. The objective is to achieve cooperative scheduling,
allowing agents to synchronize their decisions based on their historical preferences and those of other agents.
Simulation results demonstrate that the proposed algorithm outperforms several baseline algorithms across
various performance metrics.
1. Introduction

In recent years, the swift progress of communication technolo-
gies and the rapid expansion of mobile applications have led to the
widespread adoption of mobile devices, such as smartphones, smart
bracelets, and wearable medical devices [1]. The expansion of mo-
bile devices has resulted in a substantial increase in the demand for
computing and storage resources. However, the limited computational
resources and battery capacity inherently restrict portable mobile de-
vices, rendering them inadequate for supporting computationally in-
tensive tasks [2]. Cloud computing supports computationally intensive
tasks, but the sheer volume of tasks can overwhelm cloud computing
infrastructure, hindering it from delivering optimal services [3]. Mobile
dge computing (MEC) is emerging as a promising solution by provid-
ng edge servers with increased computational and storage resources in
he proximity of mobile devices [4]. Offloading computational tasks to

∗ Corresponding author (Yanjie Zhou, ieyjzhou@zzu.edu.cn).
E-mail addresses: lishihua@gs.zzu.edu.cn (S. Li), ieyjzhou@zzu.edu.cn (Y. Zhou), liuxiangqian@gs.zzu.edu.cn (X. Liu), WNing@ha.edu.cn (N. Wang),

wangjunqi@zua.edu.cn (J. Wang), iebzhou@zzu.edu.cn (B. Zhou), zmwang@zzu.edu.cn (Z. Wang).

edge servers mitigates the computational burden on cloud servers and
mobile devices and meets user quality of experience requirements [5].

With the continuous advancement of artificial intelligence technol-
ogy, health diagnosis algorithms have made significant progress [6–8].
This breakthrough has made it possible for users to undergo health
monitoring without having to visit a hospital [9]. However, the influx
of a large number of users exerts considerable strain on MEC systems.
Additionally, task offloading in MEC systems typically needs to consider
multiple competing factors, such as task delay cost, server load balanc-
ing, and user fairness. This necessitates the development of scheduling
algorithms for MEC systems that consider multiple conflicting objec-
tives to offload task requests generated by a large number of mobile
devices to edge servers concurrently.

Due to the computational complexity of task scheduling problems,
most research efforts on multi-objective problems are based on heuristic
ttps://doi.org/10.1016/j.neucom.2024.129194
eceived 26 April 2024; Received in revised form 21 October 2024; Accepted 14 D
vailable online 21 December 2024
925-2312/© 2024 Elsevier B.V. All rights are reserved, including those for text and
ecember 2024

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:ieyjzhou@zzu.edu.cn
mailto:lishihua@gs.zzu.edu.cn
mailto:ieyjzhou@zzu.edu.cn
mailto:liuxiangqian@gs.zzu.edu.cn
mailto:WNing@ha.edu.cn
mailto:wangjunqi@zua.edu.cn
mailto:iebzhou@zzu.edu.cn
mailto:zmwang@zzu.edu.cn
https://doi.org/10.1016/j.neucom.2024.129194
https://doi.org/10.1016/j.neucom.2024.129194

S. Li et al.

t
w
s

i
D
s
r
A
g
o
d
s

l
i
o
s
P
M
o
a
r
t
i
a
b
t
a
m
p

o
t
e
n
p
a
p
p
p

t
a
M
r

2

o
a

2

t
s
r
d
b

u

o

i
p

d

2

e
c
S
o

c
p
c

Neurocomputing 620 (2025) 129194
or meta-heuristic algorithms [10]. However, these approaches are effec-
ive for static task scheduling, such as in manufacturing environments
here all task order information is available in advance. They are not

uitable for dynamically generated tasks in MEC systems.
Deep reinforcement learning (DRL) algorithms have shown promis-

ng performance in dynamically scheduling tasks in MEC scenarios [11].
RL can establish a Markov decision process based on the MEC system

cenario. The Markov model can adjust its decision mechanism in
esponse to the dynamic nature of tasks and the environment [12].
dditionally, DRL can pre-train and save models, enabling the rapid
eneration of scheduling plans. This capability enhances the quality
f experience for users [13]. These considerations form the basis for
esigning a reinforcement learning-based algorithm to address task
cheduling issues in MEC scenarios.

In fact, there have been numerous multi-objective reinforcement
earning-based solutions for offloading dynamic tasks in MEC scenar-
os [14]. These studies mainly focus on predefined weights for multiple
bjectives, transforming the weighted sum of multiple objectives into a
ingle objective, or optimizing the weights of multiple objectives to find
areto-optimal solutions. However, in most real-world applications of
EC systems, several issues arise: (1) Multiple objective preferences are

ften unpredictable and may change over time. (2) There are conflicts
mong multiple objectives, the minimum delay cost, the minimum
ange of server occupancy time, and the minimum range of user waiting
ime are three important criteria for evaluating MEC systems, and
mproving one of these objectives may worsen the others. For example,
 smaller variance in user waiting time means a fairer user experience,
ut this can increase the waiting time for some users and increase
he cost of delays. (3) Different regions focus on different factors
t the same time [15]. These factors have prompted us to design a
ulti-objective reinforcement learning approach to address the specific
roblem considered in this paper.

Based on the aforementioned issues, this paper introduces a multi-
bjective, multi-agent scheduling algorithm. The algorithm partitions
he areas covered by the MEC system into multiple blocks, with each
dge server responsible for one block. Each intelligent agent is desig-
ated to a block and holds its own dynamic preferences. The agent takes
references and system states as inputs to make scheduling decisions,
nd employs the multi-agent tournament (MT) method to select a
reference from its own set and those of other agents as the historical
reference for updating the network. The main contributions of this
aper are summarized as follows.

• We define a framework for multi-objective scheduling of multi-
priority tasks in MEC systems. The model simultaneously consid-
ers three conflicting objectives including total delay cost, server
occupancy time range, and user waiting time range.

• We propose a real-time scheduling algorithm based on multi-
agent reinforcement learning, considering dynamic weights across
multiple regions and multiple objectives, termed multi-objective
reinforcement learning with multiple objectives (MORL-MOT).
We also develop a multi-agent tournament (MT) method. MT
enables each agent to consider local historical preferences and
those of other agents comprehensively. It selects the most suitable
historical preference to optimize the Q-network while mitigating
the risk of converging to local optima.

• We conduct extensive experiments. Simulation results demon-
strate that the MORL-MOT algorithm achieves a favorable balance
among the three objectives and exceeds the current state-of-the-
art approaches on various evaluation metrics.

The remaining sections of the paper are organized as follows: Sec-
ion 2 discusses related work. In Section 3, we present the system model
nd problem definition. Section 4 provides a detailed explanation of the
ORL-MOT algorithm. Section 5 showcases the experimental setup and

esults. Finally, Section 6 concludes the paper.
2
. Related work

The multi-objective scheduling problem is common across vari-
ous industries, and many notable researchers have employed different
approaches to address this issue. In this section, we examine the multi-
bjective scheduling problem, focusing on solutions based on heuristic
lgorithms and those based on reinforcement learning algorithms.

.1. Multi-objective scheduling problem

The multi-objective scheduling problem has attracted significant at-
ention in computer science, as efficient task scheduling is essential for
ystem performance and resource utilization. To tackle this problem,
esearchers have developed various algorithms aimed at optimizing
ifferent objectives. [16] presents an emergency scheduling algorithm
ased on the combination of deep reinforcement learning and Lamar-

ckian local search, which effectively dispatches water valves and safety
plugs to isolate contaminated water, thereby reducing the residual
concentration of pollutants and the scheduling cost. [17] introduces a
low-complexity stepwise optimization algorithm designed to minimize
ser energy consumption while adhering to constraints on latency

and transmission power. [18] devises an improved multi-objective
ptimization algorithm based on the immune algorithm, balancing

the relationship between response time and energy consumption. [19]
ntroduces a joint cost-benefit and resource-aware Mobile Edge Com-
uting offloading algorithm. This algorithm balances processing speed,

memory, energy, and performance on mobile devices in the workplace
through intelligent resource awareness while minimizing the cost of
remote resource utilization.

Most of these studies focus on scenarios where the weights are
unknown, aiming to find the Pareto front of the multi-objective prob-
lem or to identify the Pareto optimal solution of the multi-objective
weights through specific heuristics. However, for MEC scenarios with
dynamically changing weights and randomly generated tasks, it is
ifficult to devise such rules.

.2. Heuristic algorithm-based solutions

The solutions based on heuristic algorithms are commonly used
arly approaches to tackle multi-objective scheduling problems. [20]
ombines computation offloading with Dynamic Voltage and Frequency
caling and proposes a multi-objective evolutionary algorithm based
n Non-dominated Sorting Genetic Algorithm III (NSGA-III). This ap-

proach effectively balances energy consumption and communication
osts. [21] introduces a Lagrangian dual decomposition method and
roposes an algorithm that combines task offloading, resource allo-
ation, and security assurance, enhancing task processing efficiency

and service quality. [22] introduces a task scheduling algorithm for
vehicular networks based on ant colony optimization, effectively re-
ducing system latency, energy consumption, and load imbalance. [23]
models the network as a straightforward, undirected, unweighted graph
and designs a hybrid algorithm (GA-PSO) based on genetic algorithms
and particle swarm optimization. This approach optimizes load bal-
ancing and task latency for edge servers. [24] considers the tempo-
ral logic of tasks and proposes a task-scheduling strategy based on
genetic algorithms combined with multi-connection techniques. This
strategy aims to balance various performance metrics. [25] introduces
the smart patient-device connectivity matrix and proposes a multi-
objective optimization algorithm based on a non-dominated sorting
genetic algorithm, simultaneously optimizing the total task offloading
cost and server load variance. [26] conceptualizes computing tasks in
MEC as a directed acyclic graph and introduces an enhanced NSGA-
II algorithm to optimize offloading scheduling strategies, focusing on
reducing energy consumption and latency.

Heuristic-based solutions perform well in optimizing scheduling
strategies in static MEC environments. However, retraining scheduling

S. Li et al.

l
b
a

i
a
t

p
g
T

m
p
f
p

a
o

p
g
M
p
u

e
h
e
2
t
u
s
o
f
d
a
p
l
t
a

3

m
w
T
b

n
d
c
a

𝑘
d
d
c
a
w
c
e

Neurocomputing 620 (2025) 129194
strategies becomes necessary when the MEC environment changes,
leading to increased time overhead. Therefore, solutions based on
heuristic algorithms cannot guarantee optimal performance in dynamic
MEC systems.

2.3. DRL algorithm-based solutions

Reinforcement learning develops strategies through continuous in-
teraction with the environment, and multi-objective reinforcement
earning algorithms have been applied in various domains, including
ut not limited to dynamic MEC systems. In [27], a dual Q-learning
pproach is used to optimize the offloading of MEC tasks, aiming

to minimize energy consumption and latency. [28] introduces an
nteractive multi-objective reinforcement learning algorithm based on
 preference structure, employing weighted coefficients to scalarize
he reward function. By adjusting these weighted coefficients, it is

possible to search for solutions that match the preferences of the
decision maker. [29] proposes an enhanced Soft Actor-Critic algorithm
and a novel experience replay method to achieve multi-objective opti-
mization for electric vehicle fuel, emission reduction, and battery life
preservation. [30] extends the classical fuzzy Q-learning algorithm by
using non-dominated Q-values to represent action values. By iteratively
applying the Bellman equation, it considers the global Q-function
and simultaneously identifies multiple optimal non-dominated strate-
gies. [31] utilizes multi-objective optimization for scheduling valves
and fire hydrants, seeking to balance the efficiency of sewage evacua-
tion with scheduling costs. [32] introduces a task offloading solution
capable of incremental learning and online learning based on real-time
data, aiming to provide users with high quality of experience. [33]
formulates a two-stage deep reinforcement learning strategy. The first
stage employs a deep Q-network algorithm to generate scheduling
olicies, while the second stage utilizes a deep deterministic policy
radient algorithm to determine vehicle transmission power policies.
his approach effectively balances execution latency, processing accu-

racy, and energy consumption. [34] models the optimization problem
of MEC networks as a multi-objective optimization problem, which
is transformed into a single-objective optimization problem through
linear weighting. This method efficiently reduces latency and energy
consumption. [35] designed a graph convolutional network to extract
dependency information among tasks and proposed a task scheduling
algorithm based on DRL to minimize transmission and computation
costs. In addition, some multi-intelligence based approaches also con-
sider the optimization problem under uncertainty of the target state
model. [36] employs a partitioned-interval design approach, where
time is divided into different intervals and a different matrix func-
tion is designed within each interval to adapt to the switching of
the system state. This approach allows the Lyapunov function to be
adjusted at the instant of switching to accommodate changes in the
system dynamics. [37] provides a new methodology and theoretical
support for solving the observer design problem for networked systems
under actuator saturation and state constraints through mathematical

odeling and theoretical analysis. [38] employs the theory of nonlinear
lanning and optimization by constructing an appropriate Lyapunov
unction to analyze the stability of the system and proved that the pro-
osed algorithm can guarantee the convergence of the global objective

function.
Most of the mentioned studies apply linear weighting and scalar-

ization of multi-objective rewards, introducing reinforcement learning
lgorithms for optimization. This solution is suitable when the weights
f multiple objectives are known in advance and remain constant over

time. However, in dynamic Mobile Edge Computing (MEC) systems, the
weights of various objectives cannot be predetermined and may change
over time, which prompts our investigation into the dynamic weight
multi-objective optimization problem.
3
3. Problem

In this section, we delineate the motivation of this work and define
the problem of our edge server deployment.

3.1. Motivation

Heart disease claims millions of lives annually and remains one of
the leading causes of death worldwide. In recent years, advances in
wearable ECG monitoring devices and ECG diagnostic algorithms have
made continuous ECG monitoring possible. However, the large-scale
online ECG monitoring of millions of individuals has placed significant
pressure on communication networks. To ensure efficient real-time
scheduling of these tasks while optimizing multiple objectives, this
aper develops a dynamic multi-objective reinforcement learning al-
orithm for MEC, specifically tailored to ECG detection and diagnosis.
oreover, task offloading in MEC systems must account for multi-

le conflicting objectives, with preferences that are region-specific,
npredictable, and subject to change over time.

The scheduling algorithms addressing multiple objectives have been
xtensively studied with significant advancements. Previous studies
ave often modeled the problem based on predefined information and
mployed heuristic algorithms to obtain Pareto optimal solutions [20,
2]. However, the long solution times make them impractical for real-
ime solving of dynamically changing service requests. Some studies
tilizing reinforcement learning algorithms have achieved real-time
cheduling [33,34]. However, most of these studies combine multiple
bjectives into a single one by weighted summation, ignoring con-
licts between multiple objectives. While some works have considered
ynamically changing preferences [15,39,40], they fail to address vari-
tions in preferences across different regions. Therefore, this paper
roposes a scheduling scheme based on multi-objective reinforcement
earning. This approach accommodates multiple objectives based on
he preferences of different regions and proactively adjusts resource
llocation in response to the real-time distribution of service requests.

.2. Problem definition

As illustrated in Fig. 1, a comprehensive MEC system consists of
ultiple base stations, edge servers, and mobile devices. For simplicity,
e consider that the edge servers are located near the base stations.
he communication time between edge servers and base stations could
e omitted, which is an assumption in many previous studies [41]. Let
= {1,… , 𝑁} represent the set of edge servers, where 𝑁 is the total

umber of edge servers. Let  = {1,… , 𝑀} represent the set of mobile
evices, where 𝑀 is the total number of mobile devices. Mobile devices
an transmit electrocardiogram diagnostic tasks to servers at any time
nd from any location.

Each task generated by a mobile device is expressed as a tuple
=< 𝑡𝑘, 𝑑𝑘, 𝑐𝑘, 𝑝𝑘 >, where 𝑡𝑘 represents the time when the mobile

evice initiates task transmission, and 𝑑𝑘 represents the size of the
ata packet for task 𝑘. 𝑐𝑘 represents the CPU cycles required for the
omputation of task 𝑘 and 𝑝𝑘 represents the priority of task 𝑘. When
 task 𝑘 is generated, it is first offloaded to its nearest edge server,
hich is called the local server. Each task can either be computed on its

orresponding local server or transferred from the local server to other
dge servers for computation based on the decision of its corresponding

local server. Fig. 2 illustrates the complete process of task 𝑘 being
transmitted to another server for processing. Here, 𝑇 𝑚

𝑘 represents the
time taken for task 𝑘 to transfer from the mobile device to the local
server, 𝑇𝑤1

𝑘 denotes the time spent waiting for scheduling locally, 𝑇 𝑡
𝑘

signifies the time for task 𝑘 to transmit from the local server to another
server, 𝑇𝑤2

𝑘 indicates the time spent waiting for processing on the other
server, and 𝑇 𝑛

𝑘 refers to the processing time for task 𝑘 on the other
server.

Table 1 summarizes the notations used in this paper.

S. Li et al.

d
I

t

s
t
t
d
i
a
f
𝑇

o
c
a
t
𝑘

3

m
s

𝐷

w
c

l
a

𝐸

t
t

𝑈

s
i
p
l
t
e
t
t
a
o
m
d

Neurocomputing 620 (2025) 129194
Fig. 1. The diagram of the edge computing architecture.

Table 1
Notations.

Notation Definition

 The set of edge servers.
𝑁 The number of edge servers.
𝐶𝑛 The Compution power of edge server 𝑛.
 The set of mobile devices.
𝑀 The number of mobile devices.
 The set of tasks.
𝐾 The number of tasks.
𝑡𝑘 The time at which task 𝑘 is generated.
𝑑𝐾 The size of the data packet for task 𝑘.
𝑐𝑘 The CPU cycles required for computing task 𝑘.
𝑝𝑘 The priority of task 𝑘.
 The transmission power.
 The channel gains between different devices.
𝐵 The spectrum bandwidth.
𝜎2 The gaussian white noise.
𝑔 The path loss constant.
𝜖 The path loss exponent.
 The distance between communication devices.

3.3. Local server computation

In an ECG monitoring system, the data transmitted in the uplink is
considerably much larger than the diagnostic results transmitted in the
ownlink. Consequently, the uplink latency is a dominant factor [42].
f a task is not processed by its corresponding local server, the compu-

tation performed by the local server is solely used to transfer the task
from the mobile device to another server, where it will await execution.

The signal-to-noise ratio (SNR) 𝑒𝑚𝑛 for the uplink transmission of
he mobile device 𝑚 is given by Eq. (1).

𝑒𝑚𝑛 =
𝑚 ⋅ 𝑛𝑚

𝜎2 +
∑

𝑚′∈,𝑚′≠𝑚
∑

𝑛′∈ ,𝑛′≠𝑛 𝑚′ ⋅ 𝑛′𝑚′

, (1)

where 𝑚 and 𝑚′ represent the transmission power of mobile devices
𝑚 and 𝑚′, respectively. 𝜎2 represents Gaussian white noise. 𝑛𝑚 denotes
the channel gains between the local server 𝑛 and the mobile device
𝑚. 𝑛′𝑚′ denotes the channel gains between the local server 𝑛′ and the
mobile device 𝑚′. The channel gain for communication links is denoted
by  = 𝑔 ⋅ −𝜖 , where 𝑔 and 𝜖 represent the path loss constant and the
exponent of the communication link.  denotes the distance between
communication devices. As a result, the transmission rate, represented
by 𝑟𝑚𝑛, from the mobile device 𝑚 to the local server 𝑛 is defined
in Eq. (2).
𝑟𝑚𝑛 = 𝐵 ⋅ 𝑙 𝑜𝑔2(1 + 𝑒𝑚𝑛), (2) a

4
where 𝐵 indicates the available spectrum bandwidth. Therefore, the
transmission time from mobile device 𝑚 to the local server 𝑛 of the
task 𝑘 can be expressed as Eq. (3).

𝑇 𝑚
𝑘 = 𝑑𝑘∕𝑟𝑚𝑛. (3)

The computational time of the task 𝑘 on the server 𝑛 is 𝑇 𝑛
𝑘 , which

is defined as follows.

𝑇 𝑛
𝑘 = 𝑐𝑘∕𝐶𝑛. (4)

3.4. Other server computation

If the local server has a substantial number of tasks, it can offload
ome tasks to other edge servers for execution and calculate the delay
ime incurred by the transfer. For example, server 𝑛 decides to transfer
ask 𝑘 to server 𝑛′. We consider that the server and the base station are
eployed at the same location, and the transmission between servers
s also the transmission between base stations, so we use Eq. (1)
nd Eq. (2) to compute the transmission rate 𝑟𝑛𝑛′ . The transmission time
or task k from local server 𝑛 to other edge server 𝑛′ is represented by
𝑡
𝑘 = 𝑑𝑘∕𝑟𝑛𝑛′ .

It is important to note that regardless of whether task 𝑘 is executed
n the local server or transferred to another edge server if the server is
urrently processing tasks, task 𝑘 must to wait for the server to become
vailable. This waiting time cannot be predicted in advance. We define
he total waiting time for task 𝑘 as 𝑇𝑤

𝑘 and the completion time of task
as 𝑇 𝑒

𝑘 .

.5. Multi-objective problem definition

The aim of this paper is to determine the optimal solution that
inimizes the total delay costs for all tasks, as well as the ranges of

erver occupancy time and user wait time.
The total cost of all task delays 𝐷 is:

=
𝐾
∑

𝑘=1
(𝑇 𝑚

𝑘 + 𝑇 𝑡
𝑘 + 𝑇𝑤

𝑘 + 𝑇 𝑛
𝑘) ⋅ 𝛽𝑘, (5)

here 𝛽𝑘 = 𝑝𝑘∕𝑎𝑘 is the delay coefficient of task 𝑘. When task 𝑘 is
omputed on its corresponding local server, 𝑇 𝑡

𝑘 = 0.
The server usage time range 𝐸 indicates the balance of the server

oad. This balance is contingent upon the tasks assigned to each server
nd the computation time of those tasks.

= 𝑚𝑎𝑥{
𝐾
∑

𝑘=1
𝑇 𝑛
𝑘 |𝑛 ∈  } − 𝑚𝑖𝑛{

𝐾
∑

𝑘=1
𝑇 𝑛
𝑘 |𝑛 ∈  }. (6)

The user waiting time is defined as the task completion time minus
he time when the task was generated. Consequently, the calculation of
he range of user waiting time 𝑈 is as follows:

= 𝑚𝑎𝑥{𝑇 𝑒
𝑘 − 𝑡𝑘|𝑘 ∈ } − 𝑚𝑖𝑛{𝑇 𝑒

𝑘 − 𝑡𝑘|𝑘 ∈ }. (7)

We define the studied problem as a multi-objective problem that
imultaneously minimizes three objectives: 𝐷, 𝐸, and 𝑈 . The objectives
n this multi-objective problem are interdependent tradeoffs. For exam-
le, if the scheduling policy results in lower-priority tasks experiencing
onger wait times, the total delay cost may be reduced. However,
asks that arrive earlier may encounter increased waiting times, which
xacerbates the extreme difference in user waiting time. Additionally,
he preferences between these objectives vary from the perspectives of
he operator and users, necessitating dynamic adjustments. When there
re an increasing number of higher-priority tasks, the focus should be
n minimizing the delay cost. Conversely, in the context of routine
onitoring, prioritizing the balance of server loads and minimizing
iscrepancies in user waiting times is of paramount importance. This
pproach ensures greater user satisfaction.

S. Li et al.

4

m
M
D
a
i
t
t
m
r
i

4

𝑆

𝑆

w
e
𝐶
f
l
C
𝐩
o
b
ℵ
l
p
c



w
c
t
c

Neurocomputing 620 (2025) 129194
Fig. 2. The diagram of the task offloading process.
R
d
m
b
m
c
t
n
m
c

4

w
T
a
f
d
s
S
a
t
A

b
R
i


s
s
p
t
i

s
s

r

. MORL-MOT

This section describes the proposed MORL-MOT algorithm. The
ethod models the task offloading problem in MEC systems as a
arkov model of multi-agent collaborative scheduling, utilizing Deep
ouble Q-Network (DDQN) as the core algorithm. Additionally, a multi-
gent tournament approach is proposed to address the dynamic changes
n preferences across different regions. Each agent stores the encoun-
ered preferences locally, and when the Q-network requires updating,
he multi-agent tournament approach is employed to select funda-
ental preferences. These preferences are then trained with the cur-

ent system preferences, taking into full account the stochastic and
ndividualized nature of different regional preferences.

.1. Markov model

The state spaces 𝑆𝑛 = {𝑆𝐿
𝑛 , 𝑆𝐹

𝑛 } are defined as follows. State space:
𝐿
𝑛 = {𝐶𝑛, 𝐭𝑛, 𝐜𝑛,𝐩𝑛, ℵ𝑛}, (8)

𝐹
𝑛 = {𝐶𝑛, 𝐭1, 𝐜1,𝐩1,… , 𝐭𝑛, 𝐜𝑛,𝐩𝑛, ℵ𝑛}, (9)

here 𝑆𝐿
𝑛 denotes the local state of edge server 𝑛. The fusion state of

dge server 𝑛 is a composite of the operational states of its other servers.
𝑛 is the computational capacity of server 𝑛. 𝐭𝑛 = 𝑡𝑟𝑖𝑝𝑙 𝑒(𝑡𝑘,𝑛) is the

eature representing the arrival times of all tasks with server 𝑛 as the
ocal server. 𝐜𝑛 = 𝑡𝑟𝑖𝑝𝑙 𝑒(𝑐𝑘,𝑛) is the feature representing the required
PU cycles required by all tasks with server 𝑛 as the local server.
𝑛 = 𝑡𝑟𝑖𝑝𝑙 𝑒(𝑝𝑘,𝑛) is the feature representing the delay coefficients
f all tasks with server 𝑛 as the local server. 𝑡𝑟𝑖𝑝𝑙 𝑒(𝑥, 𝑦) is calculated
y Eq. (10). 𝑛 is the set of all tasks with server 𝑛 as the local server.
𝑛 is the number of all tasks with server 𝑛 as the local server. The

ocal state is employed to select the most urgently needed task 𝑘 to be
rocessed from 𝑛. The fusion state selects the server 𝑛 from  that is
urrently best suited to process task 𝑘.

𝑡𝑟𝑖𝑝𝑙 𝑒(𝑥, 𝑦) = (𝑀 𝑖𝑛{𝑥, 𝑥 ∈ 𝑦}, 1
|𝑦|

∑

𝑥∈𝑦
𝑥, 𝑀 𝑎𝑥{𝑥, 𝑥 ∈ 𝑦}). (10)

Action space:
𝑛 = {𝐿

𝑛 ,
𝐹
𝑛 }, (11)

𝐿
𝑛 = {𝑀 𝑖𝑛{𝑡𝑘}, 𝑀 𝑖𝑛{𝑐𝑘}, 𝑀 𝑎𝑥{𝑝𝑘}|𝑘 ∈ 𝑛}, (12)

𝐹
𝑛 = {1, 2,… , 𝑁}, (13)

here 𝐿
𝑛 is the type of the selected task. 𝐹

𝑛 is the index of the
hosen server. 𝑀 𝑖𝑛{𝑡𝑘}, 𝑀 𝑖𝑛{𝑐𝑘} and 𝑀 𝑎𝑥{𝑝𝑘} correspond to three task
ypes, representing the earliest arrival time, the minimum required CPU
ycles, and the maximum delay coefficient, respectively.
 𝑆

5
eward: The MORL-MOT algorithm prioritizes three objectives: total
elay cost, server load balancing, and user fairness, which are deter-
ined by Eqs. (5), (6), and (7), respectively. The reward is formulated

ased on the following considerations: (1) Conflicts exist between
ultiple objectives; therefore, we structure the reward as a vector

orresponding to these multiple objectives. (2) The magnitudes of mul-
iple objectives are disproportionate; thus, the three reward values are
ormalized to the range of [−1, 0] using the min–max normalization
ethod. (3) The optimization goal is to minimize the three objectives;

onsequently, the negative values of the three objectives are utilized.

.2. The MORL-MOT algorithm

The architecture of the MORL-MOT algorithm is shown in Fig. 3,
here each server functions as an independent decision-making agent.
he process begins with the decision-making phase, during which each
gent generates scheduling policies based on the current local state,
usion state, and preferences. Next, the network update phase follows,
uring which each agent samples a batch of experiences from 𝑛 and
elects historical preferences using the multi-agent contest method.
ubsequently, the parameters of the Q-network and target Q-network
re updated using experiences and both preferences (current and his-
orical). The specific details of the proposed algorithm are outlined in
lgorithm 1.

Each server’s responsibility for preferences at the same time may
e different. We use the preference weight generation method from
ef. [39] to initialize the preference space 𝑛 for each agent. Then, we

nitialize each agent’s Q-network, target Q-network, experience buffer
𝑛, and preference history buffer 𝑊𝑛.

At each time step 𝑡, all agents first synchronize the states of various
ervers to generate the fusion state 𝑆𝐹

𝑛 . Then, each agent randomly
elects a preference 𝐰𝑛𝑡 from the preference space 𝑛 as the current
reference. If 𝐰𝑛𝑡 does not exist in 𝑊𝑛, it is added to 𝑊𝑛 along with
he current time step 𝑡. Otherwise, the time step corresponding to 𝐰𝑛𝑡
s updated to the latest 𝑡.

Then each agent makes task selection action 𝐴𝐿
𝑛𝑡 with 𝜀-greedy

trategy based on local state 𝑆𝐿
𝑛𝑡 and current preference 𝐰𝑛𝑡, and server

election action 𝐴𝐹
𝑛𝑡 with 𝜀-greedy strategy based on fusion state 𝑆𝐹

𝑛𝑡 and
current preference 𝐰𝑛𝑡. The 𝜀-greedy strategy is defined as:

𝐴𝑛𝑡 =

⎧

⎪

⎨

⎪

⎩

Randomly select an action from the action space 𝑛𝑡 with probability 𝜀

𝑎𝑟𝑔 𝑚𝑎𝑥𝑎∈𝑛𝑡𝐐(𝑆𝑛𝑡 , 𝐴𝑛𝑡;𝐰𝑡
𝑛) with probability 1 − 𝜀

(14)

After performing the action < 𝐴𝐿
𝑛𝑡, 𝐴𝐹

𝑛𝑡 >, the agent observes the
eward 𝐫𝑡 and the local state 𝑆𝐿

𝑛𝑡+1 of the next step, and stores <
𝐿, 𝐴𝐹 , 𝐫 , 𝑆𝐿 > into the experience buffer  . We randomly sample
𝑛𝑡 𝑛𝑡 𝑡 𝑛𝑡+1 𝑛

S. Li et al.

1

2
2
2
2
2
2

3
3
3

Neurocomputing 620 (2025) 129194
Fig. 3. The diagram of the MORL-MOT.
b
p
B
s
p
s
h
f
S
i
a
t
a
p
i
i
g
𝑍

4

Algorithm 1 MORL-MOT algorithm

1: Initialize the Q-network 𝑄𝑛(𝑠𝑛, 𝑎𝑛, 𝜃𝑛), the target Q-network 𝑄𝑛(𝑠𝑛, 𝑎𝑛, 𝜃𝑛),
the preference weight space 𝑛, the experience buffer 𝑛 and the weight
history buffer 𝑊𝑛 for each agent 𝑛.

2: Initialize the location state 𝑆𝐿
𝑛 for each agent 𝑛.

3: for 𝑡 ∈ {0, 1, ..., 𝑇 } do
4: Initialize the fusion state 𝑆𝐹

𝑛𝑡 for each agent 𝑛.
5: for 𝑛 ∈ 𝑁 do
6: Randomly select a weight w𝑛𝑡 from 𝑛.
7: if w𝑛𝑡 is not in 𝑊𝑛 then
8: Add w𝑛𝑡 and 𝑡 to 𝑊𝑛.
9: else

10: Update t of w𝑛𝑡 in 𝑊𝑛.
11: end if
12: Select action 𝐴𝐿

𝑛𝑡 using Eq. (14).
13: Select action 𝐴𝐹

𝑛𝑡 using Eq. (14).
14: Take actions < 𝐴𝐿

𝑛𝑡, 𝐴𝐹
𝑛𝑡 >

15: Observe r𝑡 and next location state 𝑆𝐿
𝑛𝑡+1.

6: Store transition < 𝑆𝐿
𝑛𝑡, 𝐴𝐹

𝑛𝑡, r𝑡, 𝑆𝐿
𝑛𝑡+1 > in 𝑛.

17: Sample a mini-batch 𝑏𝑛 of transitions from 𝑛.
18: for each sampled transition < 𝑆𝐿

𝑛𝑗 , 𝐴𝐹
𝑛𝑗 , r𝑗 , 𝑆𝐿

𝑛𝑗+1 > do
19: Sample a weight w𝑛𝑗 from 𝑊𝑛 using the MT method.
20: if all tasks are completed then
21: y𝑗 = y

′

𝑗 = r𝑗
22: else
23: y𝑗 = r𝑗 + 𝛾Q𝑛(𝑆𝐿

𝑛𝑗+1,
𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈ Q𝑛(𝑆𝐿

𝑛𝑗+1, 𝑎,w𝑛𝑡)w𝑛𝑡,w𝑛𝑡)

4: y′

𝑗 = r𝑗 + 𝛾Q𝑛(𝑆𝐿
𝑛𝑗+1,

𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈ Q𝑛(𝑆𝐿

𝑛𝑗+1, 𝑎,w𝑛𝑗)w𝑛𝑗 ,w𝑛𝑗)
5: end if
6: end for
7: end for
8: Each agent calculates the average loss of the sample.
9: 𝐿𝑜𝑠𝑠𝑛 =

1
2
(|y𝑗 −Q𝑛(𝑆𝐿

𝑛𝑗 , 𝐴𝐹
𝑛𝑗 ,w𝑛𝑡)| + |y′

𝑗 −Q𝑛(𝑆𝐿
𝑛𝑗 , 𝐴𝐹

𝑛𝑗w𝑛𝑗)|)
30: Each agent updates Q-network 𝑄𝑛(𝑠𝑛, 𝑎𝑛,w𝑛).
31: Each agent synchronizes target Q-network 𝑄𝑛(𝑠𝑛, 𝑎𝑛,w𝑛) every 𝑍 steps.
32: Each agent updates 𝜀.
33: if all tasks are completed then
34: Initialize the location state 𝑆𝐿

𝑛 for each agent 𝑛.
5: Clear 𝑛.
6: end if
7: end for
6
a small batch from 𝑛 to train the Q-network. We use the multi-agent
tournament method for each sample to select a historical preference
to maintain previously learned strategies. As mentioned earlier, we
store each current preference 𝐰𝑛𝑡 along with the time step in 𝑊𝑛.
Preferences for smaller time steps indicate that the Q-network has not
een trained with this preference as input for a long time, which com-
licates the network’s ability to leverage previously learned strategies.
y introducing the historical preference 𝑤𝑛𝑗 with a more minor time
tep along with the current preference 𝐰𝑛𝑡, we can better sustain the
reviously learned strategies. Additionally, preferences for different
ervers are distinct. Therefore, we propose an MT method to select
istorical preferences. This approach involves selecting 𝐻 preferences
rom each agent’s preference set 𝑊𝑛, where 𝐻 is the tournament size.
ubsequently, the time step sizes of the 𝐻 preferences are transformed
nto probabilities, where smaller time steps correspond to higher prob-
bilities. A preference is then chosen from the 𝐻 preferences based on
hese probabilities. The selected preference is shared among all agents,
nd the average of the preferences is computed to serve as the historical
reference. As outlined in Algorithm 1, the weights and the sample are
nput into the Q-network and target Q-network. The loss of Q-network
s calculated according to line 29, and the Q-network is updated by
radient descent method. The target Q-network is synchronized every

time step. The parameter 𝜀 is updated at each time step.

.3. Q-network architecture

Fig. 4 depicts the Q-network architecture used by the MORL-MOT
algorithm. The network consists of an input layer, an output layer, and
three fully connected layers (FC). The number of neurons in the input
layer is 3 × 3 ×𝑛+ 2 + 1, where n represents the number of servers, 3 × 3 ×𝑛
represents the {𝐭𝑛, 𝐜𝑛,𝐩𝑛} of all n servers, 2 denotes 𝐶𝑛 and ℵ𝑛 of server
n, and 1 represents the current preference. The output layer consists
of 3 × || neurons, and the output is reshaped into a 3 × || matrix,
where each row represents the multi-objective Q-value of an action.
The Q-values are multiplied by the current preference and argmax is
computed to obtain the action.

The MORL-MOT algorithm trains sampled samples on the current
preference and the historical preference selected using the MT method.
The loss calculation formula is as follows:

1 𝐿 𝐹 ′ 𝐿 𝐹
𝐿𝑜𝑠𝑠𝑛 = 2
(|𝐲𝑗 −𝐐𝑛(𝑆𝑛𝑗 , 𝐴𝑛𝑗 ,𝐰𝑛𝑡)| + |𝐲𝑗 −𝐐𝑛(𝑆𝑛𝑗 , 𝐴𝑛𝑗𝐰𝑛𝑗)|), (15)

S. Li et al. Neurocomputing 620 (2025) 129194
Fig. 4. The architecture of the Q-network.
r
5
g
o

w

𝐲𝑗 = 𝐫𝑗 + 𝛾𝐐𝑛(𝑆𝐿
𝑛𝑗+1,

𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈ 𝐐𝑛(𝑆𝐿

𝑛𝑗+1, 𝑎,𝐰𝑛𝑡)𝐰𝑛𝑡,𝐰𝑛𝑡), (16)

𝐲′𝑗 = 𝐫𝑗 + 𝛾𝐐𝑛(𝑆𝐿
𝑛𝑗+1,

𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈ 𝐐𝑛(𝑆𝐿

𝑛𝑗+1, 𝑎,𝐰𝑛𝑗)𝐰𝑛𝑗 ,𝐰𝑛𝑗), (17)

where 𝐰𝑛𝑡 and 𝐰𝑛𝑗 represent the current preference and historical pref-
erence of agent n, respectively. 𝐐𝑛(𝑆𝐿

𝑛𝑗 , 𝐴𝐹
𝑛𝑗 ,𝐰𝑛𝑡) denotes the network

Q-value vector for action 𝐴𝐹
𝑛𝑗 in state 𝑆𝐿

𝑛𝑗 and current preference 𝐰𝑛𝑡. It
is worth noting that we have two-stage action selection: task selection
action 𝐴𝐿

𝑛𝑗 made under the local state 𝑆𝐿
𝑛𝑗 and server selection action

𝐴𝐹
𝑛𝑗 made under the fusion state 𝑆𝐹

𝑛𝑗 . To simplify the update of the Q
network and maintain end-to-end mapping capability, we calculate the
loss based on state 𝑆𝐿

𝑛𝑗 and action 𝐴𝐹
𝑛𝑗 .

4.4. Multi-agent tournament

The MT algorithm is utilized to select the historical preference for
updating the Q-network. Specifically, for the t-th training iteration,
each agent has a current preference 𝐰𝑛𝑡. If 𝐰𝑛𝑡 does not exist in the
historical preference pool 𝑊𝑛, then the pair (𝑡,𝐰𝑛𝑡) is stored in 𝑊𝑛; if
𝐰𝑛𝑡 already exists in 𝑊𝑛, it is replaced with the new (𝑡,𝐰𝑛𝑡). When com-
puting the historical preference 𝑤𝑛𝑗 required for network updates, each
agent employs a tournament selection algorithm to choose a preference.
The tournament selection algorithm works by randomly selecting H
preferences from its preference pool 𝑊𝑛, then comparing their t-values
and returning the preference with the smallest 𝑡-value. This selected
preference is then shared with other agents, and each agent obtains
n preferences {𝐰1,𝐰2,… ,𝐰𝑛}. Finally, the historical preference 𝐰𝑛𝑗 is
computed as the average of these n preferences.

4.5. Complexity analysis

The time complexity of the MORL-MOT algorithm primarily in-
cludes two components: the training complexity of the Q-network
during the training phase and the computational complexity of the
Q-network during the testing phase. First, let us analyze the time
complexity of the training process. As shown in Fig. 4, the Q-network
mainly consists of an input layer, an output layer, and three fully
connected layers. The number of neurons in the input layer is given
by 3 × 3 × 𝑛 + 2 + 1, where n is the number of servers, and the number
of neurons in the output layer is 3 × ||. Let 𝑓𝑖 represent the number
of neurons in the 𝑖th layer of the Q-network, then 𝑓0 = 3 × 3 × 𝑛+ 2 + 1
and 𝑓4 = 3 × ||. Let 𝑇𝑚𝑎𝑥 and 𝑉 represent the maximum number of
iterations and one time step of an iteration, respectively. Let |𝐵𝑛| denote
the batch size of experience replay. Since each server is an agent and
each agent contains a Q-network, the time complexity of the training
process is 𝑂(𝑛 × 𝑇𝑚𝑎𝑥 × 𝑉 ×

∑4
𝑖=1 𝑓𝑖−1 × 𝑓𝑖).

Once training is complete, the trained Q-network makes scheduling
decisions for each task at every time step during the testing phase.
Consequently, the time complexity of the MORL-MOT testing phase is

∑4
𝑂(𝑛 × 𝑉 × 𝑖=1 𝑓𝑖−1 × 𝑓𝑖).

7
5. Simulation results and discussion

To verify the proposed method, this section discussed the experi-
mental results by simulation.

5.1. Environment and benchmark data set

The proposed algorithm is programmed in the Python programming
language with libraries including TensorFlow and Keras. The Python-
implemented algorithms were executed on a server with 32 GB of
memory and an Intel Core i7-12700KF CPU.

The problem addressed in this paper is the multi-objective, priority-
based task scheduling problem with dynamically changing weights
in mobile edge computing. The dynamic variation of multi-objective
weights and the randomness of task attributes both influence the per-
formance of scheduling algorithms. To verify the proposed algorithm,
various instances must be tested. In this paper, we utilized nine in-
stances with varying numbers of servers and tasks using the following
parameter settings to validate the algorithm’s scalability, as shown in
Table 2. Since the focus of this paper is not on server deployment, the
computing capacity of servers 𝐶𝑛 is randomly generated from [20, 30,
50] GHz. 𝑡𝑘 represents the arrival time of task 𝑘, which is randomly
generated and follows a Poisson distribution as the scheduling time
progresses. 𝑎𝑘 represents the arrival position of tasks, which depends on
which server acts as the local server and is also randomly generated. 𝑑𝑘
epresents the size of tasks, which are randomly generated from [300,
00] Kb. 𝑐𝑘 represents the CPU cycles required for tasks, randomly
enerated from [500, 1000] cycles. Parameter 𝑝𝑘 represents the priority
f tasks, randomly generated. Other parameters are shown in Table 3.

5.2. Performance evaluation metrics

We design the following evaluation metrics, based on [39], to assess
the performance of the proposed MORL-MOT.

(1) Regret: we use regret to assess the performance of the strategy,
ith regret defined as the difference between the optimal value and

the value achieved by the proposed algorithm. A smaller regret value
indicates that the proposed algorithm is closer to the optimal solution,
signifying indicates better performance. The 𝑟𝑒𝑔 𝑟𝑒𝑡 function is defined
as Eq. (18).

𝑟𝑒𝑔 𝑟𝑒𝑡 =
𝑁
∑

𝑛=1
(𝐰𝑛 ⋅𝐎𝑛

𝐰𝑛
− 𝐰𝑛 ⋅ 𝐑𝑛)

=
𝑁
∑

𝑛=1
(𝐰𝑛 ⋅

𝐼
∑

𝑖=1
𝛾 𝑖−1 ⋅ 𝐫𝑛𝑖),

(18)

where 𝑛 is the index of server and 𝐎𝑛
𝐰 represents the optimal solution

with weight 𝐰𝑛. 𝐑𝑛 denotes the accumulated actual reward during the
training process, and 𝐫𝑛𝑖 is the actual reward value for the 𝑖th episode.

(2) Adaptation Error(𝐴𝐸): 𝐴𝐸 is a metric used to assess the adapt-
ability of a policy to dynamic weight scenarios. It is defined as the

average ratio of the absolute difference between the actual return and

S. Li et al.

𝐰
s

M
r
M
s

Neurocomputing 620 (2025) 129194
Table 2
Benchmark data set.

Instances 𝑁 𝐾 𝐶𝑛 𝑡𝑘 𝑎𝑘 𝑑𝑘 𝑐𝑘 𝑝𝑘
Instance-1 3 50 [20,30,50] Poisson distribution Random [300,500] [500,1000] [1,2,3]
Instance-2 3 100 -
Instance-3 3 300 -
Instance-4 4 50 -
Instance-5 4 100 -
Instance-6 4 300 -
Instance-7 6 50 -
Instance-8 6 100 -
Instance-9 6 300 -

- means that this cell uses the same value as the above cell.
a
a

o

t

r
l
d
e
a
T
r
i
o
s
s
l

Table 3
Parameter setting.

Parameter Value

The transmission power of mobile device () 1 W
The spectrum bandwidth 𝐵). 10 MHz
The path loss constant (𝑔). 0.01
The path loss exponent (𝜖). 2
The gaussian white noise (𝜎2). −100 dBm
The learning rate (𝑙𝑟). 0.001
The sample buffer size (). 32
The memory buffer size (). 6000
The tournment size (). 2
The preference weight space size (||). 153

the optimal solution to the optimal solution for all weight scenarios
𝑛. A smaller 𝐴𝐸 indicates greater adaptability to dynamic weight

cenarios. The calculation of 𝐴𝐸 is expressed in Eq. (19).

𝐴𝐸 = 1
𝑁

𝑁
∑

𝑛=1
(1
|𝑛|

∑

𝐰𝑛∈𝑛

|

𝐰𝑛 ⋅ 𝐑𝑛 − 𝐰𝑛 ⋅𝐎𝑛
𝐰𝑛

𝐰𝑛 ⋅𝐎𝑛
𝐰𝑛

|). (19)

(3) Comprehensive Objective Metrics: this paper considers three
optimization objectives including the minimum delay cost 𝐷, the mini-
mum range of server occupancy time 𝐸, and the minimum range of user
waiting time 𝑈 . Given a set of multi-objective weights 𝐰 = (𝑤1, 𝑤2, 𝑤3),
we scalarize the three objectives into a composite indicator 𝐶 𝑂 𝐼 =
𝑤1 ⋅𝐷 +𝑤2 ⋅𝐸 +𝑤3 ⋅𝑈 . To quantify the performance of the algorithm,
we design the average minimum delay cost (𝐴𝐷 𝐶), average server oc-
cupancy time difference (𝐴𝑆 𝑂 𝑇), average user waiting time difference
(𝐴𝑈 𝐷 𝑇), and average composite evaluation indicator (𝐴𝐶 𝑂 𝐼), which
are formulated as Eqs. (20), (21), (22), and (23), respectively.

𝐴𝐷 𝐶 = 1
𝑁

𝑁
∑

𝑛=1
(1
|𝑛|

∑

𝐰𝑛∈𝑛

𝐷𝑛
𝐰𝑛
), (20)

𝐴𝑆 𝑂 𝑇 = 1
𝑁

𝑁
∑

𝑛=1
(1
|𝑛|

∑

𝐰𝑛∈𝑛

𝐸𝑛
𝐰𝑛
), (21)

𝐴𝑈 𝐷 𝑇 = 1
𝑁

𝑁
∑

𝑛=1
(1
|𝑛|

∑

𝐰𝑛∈𝑛

𝑈𝑛
𝐰𝑛
), (22)

𝐴𝐶 𝑂 𝐼 = 1
𝑁

𝑁
∑

𝑛=1
(1
|𝑛|

∑

𝐰𝑛∈𝑛

𝐶 𝑂 𝐼𝑛𝐰𝑛
), (23)

where 𝐷𝑛
𝐰𝑛

, 𝐸𝑛
𝐰𝑛

, 𝑈𝑛
𝐰𝑛

, 𝐶 𝑂 𝐼𝑛𝐰𝑛
are the best 𝐷, 𝐸, 𝑈 , 𝐶 𝑂 𝐼 for 𝐰𝑛,

respectively.

5.3. Baselines

In order to demonstrate the performance of the proposed MORL-
OT algorithm, we compare it with four state-of-the-art multi-objective

einforcement learning algorithms with dynamic weights: Naive [43],
ORL-DWS [15], MORL-ODT [39], and MORL-COP [40], which are

ummarized as follows.
8
• Naive [43]: This approach formulates the overall user utility
by aggregating multiple single-objective Q-values into a compos-
ite function. The composite function is then employed to select
actions.

• MORL-DWS [15]: This approach utilizes a dynamic weight set-
ting mechanism to achieve a weight-based multi-objective Q-
value output. This is achieved by introducing a weight vector as
input into the Q-network.

• MORL-ODT [39]: This approach employs a tournament method
to select significant preferences from the preference set for train-
ing based on the MORL-DWS algorithm.

• MORL-COP [40]: This approach utilizes a non-dominated sorting
method to select important preferences from the preference set
for training based on the MORL-ODT algorithm.

5.4. Experimental result

Based on the experimental setup described above, we conducted
extensive experiments to validate the performance of the proposed
MORL-MOT algorithm. We performed 10 repeated runs for each ex-
periment, using different seeds for each run. The final experimental
results were obtained by averaging the results across multiple seeds.
Each experimental training is 4000 steps, the total time is about 3215 s,
and each test is about 0.8 s. The experimental results are summarized
as follows.

5.4.1. Comparison of cumulative regret with different parameters
This paper assesses the algorithm’s performance using regret values,

with smaller regret values indicating better performance. Since our
method is based on multi-agent reinforcement learning, each agent
possesses its own regret value, in contrast to other methods that involve
only a single agent. Therefore, for comparison purposes, we aggregate
the regret values of all agents and compare them with those of other
lgorithms. To highlight differences after convergence, we employ
ccumulated regret values, obtained by summing up the regret values at

each step of the learning process. Fig. 5 presents the experiments based
n Instance-1 to evaluate the impact of parameters such as learning

rate, sample batch size, memory buffer size, and tournament size on
he performance of MORL-MOT.

From Fig. 5(a), it can be seen that larger and smaller learning
ates contribute to increased accumulated regret. Consequently, a fixed
earning rate of 0.001 was adopted in subsequent experiments. Fig. 5(b)
emonstrates that larger sampling batch sizes result in significantly
levated cumulative regret. Each agent conducting sampled learning
ims to continue learning from past experiences and converge faster.
here are several drawbacks to large batch sampling. Firstly, it leads to
epeated samples in local collections, which deteriorates sample qual-
ty. Secondly, it results in cooperative agents making decisions based
n a shared network state. Although local states may differ, experiences
tored in the experience pool after collaborative decisions are made are
hared among agents. Thirdly, large batch sampling causes redundant
earning, slowing down the convergence rate. Smaller sampling batches

S. Li et al.

l
l
t
s
m
m
e

6
t

l
F
N

Neurocomputing 620 (2025) 129194
Fig. 5. Performance analysis of learning rate, sample batch size, memory buffer size, and tournament size.
e

n
t
p
a
t
i
e
r

5

do not result in a significant increase in cumulative regret, but they
imit the number of experiences that agents can consider, which in turn
eads to an upward trend in cumulative regret in the later stages of
raining. Therefore, we adopted a fixed sampling batch size of 32 in
ubsequent experiments. Fig. 5(c) shows that both larger and smaller
emory buffer sizes lead to increased cumulative regret. A larger
emory buffer size delays updates, causing agents to sample poorer

xperiences learned during the early stages of network training. Con-
versely, a smaller buffer limits the storage of experiences, restricting the
algorithm’s performance. Therefore, we adopted a fixed buffer size of
000 in the following experiments. Fig. 5(d) demonstrates that a larger
ournament size results in increased cumulative regret. However, if the

tournament size is set to 1, it becomes a random selection method,
which contradicts our original intention. We conducted experiments
that confirmed its inferior performance. Therefore, we used a fixed
tournament size of 2 in subsequent experiments.

5.4.2. Comparison of cumulative regret for baseline algorithms
Fig. 6 compares the cumulative regret performance of several base-

ine algorithms using 3 servers, as the basis for the experiment.
igs. 6(a)–6(c) correspond to Instance-1 - Instance-3, respectively. The
aive algorithm exhibits the highest cumulative regret because its Q-

values are updated independently for each target without considering
the weights of individual targets. Consequently, it struggles to balance
multiple objectives, resulting in a significant deviation between the
optimal solution and the actual reward. MORL-DWS outperforms Naive
by incorporating dynamic preferences for various objectives as input,
allowing each agent to consider the changing preferences of multiple
objectives when making scheduling decisions. In addition, it introduces
a DER experience replay mechanism to prevent overfitting. Building
upon MORL-DWS, the MORL-ODT algorithm stores historical weights
and episode values in a weight history pool. It employs a tournament
9
selection method to choose the historical weight with the highest
pisode value for training the Q-network, which helps maintain previ-

ously learned policies and enhancing performance. In most instances,
MORL-COP outperforms MORL-ODT. It uses a non-explicit sorting
method to select preferences, contributing to keeping policies learned
in the Q-network. The non-explicit sorting method avoids focusing
too much on a particular goal, which prevents local optima. Although
MORL-DWS, MORL-ODT, and MORL-COP incorporate multi-objective
weights into the decision-making process, they only select historical
weights from their respective history pools when updating the Q-
etwork, neglecting the preferences of other agents. This is despite
he fact that each agent’s local tasks may be sent to other agents for
rocessing. In contrast, the proposed MORL-MOT algorithm employs
 collaborative tournament of all agents to jointly select weights,
hereby fully considering the preferences of each agent. Furthermore,
t converts episode values into probabilities for tournament selection,
nsuring that the algorithm does not get stuck in local optima. As a
esult, MORL-MOT exhibits superior performance.

.4.3. Comparison of cumulative regret for different instances
Fig. 7 illustrates the cumulative regret of each algorithm across

all instances. The number of servers or tasks in each instance varies,
and the attributes of tasks are randomly generated to simulate diverse
Mobile Edge Computing (MEC) systems.

As can be seen in Fig. 7, the MORL-MOT algorithm consistently
achieves lower cumulative regret in all instances compared to the other
benchmark algorithms. Compared to the Naive algorithm, the MORL-
MOT algorithm considers dynamic preferences for multiple goals. Com-
pared to the MORL-DWS algorithm, the MORL-MOT algorithm uses
a tournament approach to select historical weights that are more
helpful than the randomized approach in making correct decisions
based on prior experience. Compared to the MORL-ODT algorithm

S. Li et al. Neurocomputing 620 (2025) 129194
Fig. 6. Comparison of cumulative regret for baseline algorithms.
Fig. 7. Comparison of cumulative regret for different instances.
c
b
e
m

and the MORL-COP algorithm, the MORL-MOT algorithm uses a multi-
intelligence tournament approach, which takes into account the prefer-
ences of other intelligences and helps to reduce the impact of differing
preferences in different regions and to achieve collaborative scheduling
between multiple intelligences.

To more clearly illustrate the effectiveness of the MORL-MOT al-
gorithm, we present the AER of each algorithm across all instances in
10
Fig. 8. From the figure, it is evident that the MORL-MOT algorithm
onsistently achieves lower AER in all instances compared to other
aseline algorithms. This indicates that MORL-MOT exhibits the small-
st difference between the optimal value and the actual reward in the
ajority of episodes, reaffirming its ability to adapt to dynamic changes

in weights and facilitate better collaboration among multiple agents to
reach optimality. Furthermore, all algorithms employ the 𝜀 − 𝑔 𝑟𝑒𝑒𝑑 𝑦

S. Li et al.

s
w
s
t
e
f
q

5

t
C

o
p
t

5

i

e

Neurocomputing 620 (2025) 129194
Fig. 8. Comparison of average episode regret.
Fig. 9. Comparison of adaptation error.
d
f

c
i
M
d
s

6

f
v
t
t
p
t
a
a
t
c
s
w
M

trategy for action selection. Consequently, during the initial stages,
here the value of 𝜀 is less than the predetermined value, all algorithms

elect actions probabilistically. The relatively small difference between
he optimal value and the actual reward during this period suggests that
ach algorithm selects actions based on probabilities. The lower AER
or MORL-MOT indicates that this algorithm learns better strategies
uickly and converges more effectively.

.4.4. Comparison of adaptive error for different instances
Fig. 9 illustrates the adaptive error of each algorithm across all

instances, and it is evident that the MORL-MOT algorithm performs
he most effectively. In the Naive, MORL-DWS, MORL-ODT, and MORL-
OP algorithms, each server functions as an intelligent agent, inputting

its preferences and state into the Q-network. These algorithms take
into account the dynamic preferences of different regions and users
during the decision-making phase. However, during the network up-
dating phase, all four algorithms select historical preferences from their
local preferences to update the Q network, neglecting the influence of
preferences from other intelligent agents. In contrast, the MORL-MOT
algorithm not only considers the preferences of each intelligent agent
during the decision phase, but also employs the MT algorithm during
the network update phase to incorporate the historical preferences of
ther intelligent agents. This approach maximizes the utilization of
reviously learned strategies and prevents the network from overfitting
o the current preference region.

.4.5. Comparison of optimization objectives for different instances
Tables 4–7 present the ADC, ASOT, AUDT, and ACOI for each algo-

rithm across all instances. The best-performing results are highlighted
n bold.

Table 4 clearly shows that the ADC of the MORL-MOT algorithm
significantly surpasses that of other baseline algorithms, indicating its
ffectiveness in minimizing delay costs.
 m

11
Table 5 illustrates that the ASOT of the MORL-MOT algorithm
outperforms that of other baseline algorithms. This indicates that the
MORL-MOT algorithm effectively minimizes substantial discrepancies
in server occupation time, thereby enhancing scheduling efficiency.

In Table 6, the MORL-MOT algorithm exhibits significantly im-
proved AUDT compared to other baseline algorithms. This indicates
that the MORL-MOT algorithm is effective in minimizing the maximum
ifferences in user waiting times, which ensures a relatively fair delay
or each user, thereby enhancing the overall user experience.

Finally, from Table 7, the MORL-MOT algorithm shows a signifi-
antly superior ACOI compared to other baseline algorithms, indicat-
ng its optimal balance among various objectives. In summary, the
ORL-MOT algorithm, with its proposed MT method, is well-suited for

ynamic-weight MEC systems. It coordinates scheduling across multiple
ervers, contributing to efficient task processing.

. Conclusions

The objective of this paper is to tackle the task offloading problem
or multi-region, multi-priority tasks in a mobile edge computing en-
ironment. We formulated the problem as an optimization task with
hree dynamic objectives: delay cost, the range of server occupancy
ime, and the range of user wait time. To tackle this challenge, we pro-
osed a multi-objective, multi-agent solution along with a multi-agent
ournament method. The multi-agent tournament method ensures each
gent can select locally relevant historical preferences. The proposed
lgorithm enables agents to select a historical preference for training
he Q network. This effectively maintains previously learned poli-
ies while promoting collaboration among agents to accomplish task
cheduling under multiple objectives. Extensive simulation experiments
ere conducted, and the results demonstrate that the proposed MORL-
OT algorithm outperforms state-of-the-art methods across various
etrics.

S. Li et al.

t
M
c
J
Z
t
V

D

t

Neurocomputing 620 (2025) 129194
Table 4
Comparison of the performance evaluation metrics ADC with the state-of-the-art.

Instances Naive [43] MORL-DWS [15] MORL-ODT [39] MORL-COP [40] This paper

Instance-1 2317.31 2123.27 1949.45 1710.53 1257.30
Instance-2 8206.47 8518.95 7086.13 6539.82 6099.98
Instance-3 72 249.38 70 295.13 66 262.72 61 495.34 59265.32
Instance-4 1386.06 1267.06 1095.82 1009.39 895.88
Instance-5 5824.17 5651.32 4998.28 4441.66 3766.36
Instance-6 60 599.14 57 925.69 48 430.29 46 478.91 44965.78
Instance-7 1272.22 1245.78 1216.11 1169.03 1056.15
Instance-8 4940.22 4311.37 4037.57 3937.93 3575.77
Instance-9 44 442.38 35 516.49 358 694.28 31 820.75 27626.12
Table 5
Comparison of the performance evaluation metrics ASOT with the state-of-the-art.

Instances Naive [43] MORL-DWS [15] MORL-ODT [39] MORL-COP [40] This paper

Instance-1 10.35 10.30 17.77 21.03 9.27
Instance-2 50.81 38.26 27.31 32.87 22.18
Instance-3 101.96 74.88 72.42 69.26 63.28
Instance-4 27.77 26.72 21.79 26.37 19.69
Instance-5 43.95 47.81 46.41 60.47 37.62
Instance-6 109.34 138.52 151.88 132.89 103.71
Instance-7 16.87 16.17 20.04 18.98 14.76
Instance-8 37.26 33.75 46.75 45.70 25.66
Instance-9 111.09 107.23 99.14 108.63 86.83
Table 6
Comparison of the performance evaluation metrics AUDT with the state-of-the-art.

Instances Naive [43] MORL-DWS [15] MORL-ODT [39] MORL-COP [40] This paper

Instance-1 60.89 52.69 41.43 46.58 37.00
Instance-2 108.89 108.94 94.54 74.06 69.93
Instance-3 265.31 277.37 241.85 203.06 176.01
Instance-4 56.39 42.37 41.07 37.81 26.40
Instance-5 62.58 111.14 62.91 59.32 54.11
Instance-6 234.02 237.93 205.34 194.91 192.63
Instance-7 29.33 47.58 33.89 33.57 28.35
Instance-8 92.24 33.75 47.58 48.24 43.68
Instance-9 298.23 167.53 149.27 147.32 107.23
Table 7
Comparison of the performance evaluation metrics ACOI with the state-of-the-art.

Instances Naive [43] MORL-DWS [15] MORL-ODT [39] MORL-COP [40] This paper

Instance-1 2388.55 2186.27 2008.65 1778.14 1303.58
Instance-2 8366.17 8666.15 7207.97 6646.75 6192.09
Instance-3 72 249.38 70 647.39 66 576.98 61 767.66 59265.32
Instance-4 1470.22 1336.16 1158.69 1073.57 941.97
Instance-5 5930.70 5810.28 5107.59 4561.45 3858.09
Instance-6 60 942.50 58 302.15 48 787.51 46 806.71 45262.13
Instance-7 1318.433 1309.54 1270.04 1221.58 1099.28
Instance-8 5069.73 4402.48 4131.92 4031.87 3645.11
Instance-9 44 851.71 35 791.25 358 942.71 32 076.71 27820.19
A
CRediT authorship contribution statement

Shihua Li: Writing – original draft, Visualization, Conceptualiza-
ion. Yanjie Zhou: Writing – original draft, Validation, Supervision,
ethodology, Funding acquisition. Xiangqian Liu: Visualization, Data

uration. Ning Wang: Methodology, Data curation, Conceptualization.
unqi Wang: Methodology, Investigation, Conceptualization. Bing
hou: Writing – review & editing, Resources, Project administra-
ion, Conceptualization. Zongmin Wang: Writing – review & editing,
alidation, Project administration, Methodology.

eclaration of competing interest

The author(s) declared no potential conflicts of interest concerning
his article’s research, authorship, and/or publication.
12
cknowledgments

The work described in this paper was financially supported by
the National Key R&D Program of China (No. 2022YFC3803203), Na-
tional Natural Science Foundation of China (72201252), and Henan
Zhongyuan Medical Science and Technology innovation and Develop-
ment Foundation (24YCG2006).

Data availability

Data will be made available on request.

References

[1] X. Zhu, Y. Xiao, Adaptive offloading and scheduling algorithm for big data based
mobile edge computing, Neurocomputing 485 (2022) 285–296, http://dx.doi.
org/10.1016/j.neucom.2021.03.141.

http://dx.doi.org/10.1016/j.neucom.2021.03.141
http://dx.doi.org/10.1016/j.neucom.2021.03.141
http://dx.doi.org/10.1016/j.neucom.2021.03.141

S. Li et al. Neurocomputing 620 (2025) 129194
[2] I. Ridhawi, S. Otoum, M. Aloqaily, Y. Jararweh, T. Baker, Providing secure and
reliable communication for next generation networks in smart cities, Sustainable
Cities Soc. 56 (2020) 102080, http://dx.doi.org/10.1016/j.scs.2020.102080.

[3] G. Selvan, R. Ganeshan, I. Diana, J. Ananth, FACVO-DNFN: deep learning-
based feature fusion and distributed denial of service attack detection in cloud
computing, Knowl.-Based Syst. 261 (2023) 110132, http://dx.doi.org/10.1016/
j.knosys.2022.110132.

[4] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, L. Hanzo, Multi-agent deep
reinforcement learning-based trajectory planning for multi-UAV assisted mobile
edge computing, IEEE Trans. Cognit. Commun. Netw. 7 (2021) 73–84, http:
//dx.doi.org/10.1109/TCCN.2020.3027695.

[5] S. Nath, J. Wu, Deep reinforcement learning for dynamic computation offloading
and resource allocation in cache-assisted mobile edge computing systems, Intell.
Converged Netw. 1 (2020) 181–198, http://dx.doi.org/10.23919/ICN.2020.0014.

[6] R. López-Blanco, S. Alonso, S. Rodríguez-González, J. Prieto, J.M. Corchado,
Trustworthy artificial intelligence -based federated architecture for symptomatic
disease detection, Neurocomputing 579 (2024) 127415, http://dx.doi.org/10.
1016/j.neucom.2024.127415.

[7] P. Feng, J. Fu, N. Wang, Y. Zhou, B. Zhou, Z. Wang, Semantic-aware alignment
and label propagation for cross-domain arrhythmia classification, Knowl.-Based
Syst. 264 (2023) 110323, http://dx.doi.org/10.1016/j.knosys.2023.110323.

[8] H. Wang, Y. Zhou, B. Zhou, Z. Wang, A novel method for detection of ECG with
deep learning, in: International Conference on Computer and Communications,
2021, pp. 631–635, http://dx.doi.org/10.1109/ICCC54389.2021.9674506.

[9] S. Tuli, N. Basumatary, S. Gill, M. Kahani, C. Arya, S. Wander, R. Buyya,
HealthFog: An ensemble deep learning based Smart Healthcare System for
Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing
environments, Future Gener. Comput. Syst.- Int. J. Esci. 104 (2020) 187–200,
http://dx.doi.org/10.1016/j.future.2019.10.043.

[10] Y. Zhou, G.M. Lee, A bi-objective medical relief shelter location problem
considering coverage ratios, Int. J. Ind. Eng.-Theory Appl. Pract. 27 (2020)
971–988, http://dx.doi.org/10.23055/ijietap.2020.27.6.7603.

[11] G. Liu, G. Chen, V. Huang, Policy ensemble gradient for continuous control
problems in deep reinforcement learning, Neurocomputing 548 (2023) 126381,
http://dx.doi.org/10.1016/j.neucom.2023.126381.

[12] W.-C. Jiang, V. Narayanan, J.-S. Li, Model learning and knowledge sharing for
cooperative multiagent systems in stochastic environment, IEEE Trans. Cybern.
51 (2021) 5717–5727, http://dx.doi.org/10.1109/TCYB.2019.2958912.

[13] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, Q. Zhu, Deep-
reinforcement-learning-based offloading scheduling for vehicular edge comput-
ing, IEEE Internet Things J. 7 (2020) 5449–5465, http://dx.doi.org/10.1109/
JIOT.2020.2978830.

[14] Z. Wang, J. Zhang, Y. Li, Q. Gong, W. Luo, J. Zhao, Automated reinforcement
learning based on parameter sharing network architecture search, in: 2021 6th
International Conference on Robotics and Automation Engineering, 2021, pp.
358–363, http://dx.doi.org/10.1109/ICRAE53653.2021.9657793.

[15] A. Abels, D.M. Roijers, T. Lenaerts, A. Nowe, D. Steckelmacher, Dynamic
weights in multi-objective deep reinforcement learning, in: K. Chaudhuri, R.
Salakhutdinov (Eds.), in: International Conference on Machine Learning, vol. 97,
2019, pp. 09–15, http://dx.doi.org/10.48550/arXiv.1809.07803.

[16] C. Hu, Q. Wang, W. Gong, X. Yan, Multi-objective deep reinforcement learning
for emergency scheduling in a water distribution network, Memet. Comput. 14
(2022) 211–223, http://dx.doi.org/10.1007/s12293-022-00366-9.

[17] Z. Ding, D. Xu, R. Schober, H.V. Poor, Hybrid NOMA offloading in multi-
user MEC networks, IEEE Trans. Wireless Commun. 21 (2022) 5377–5391,
http://dx.doi.org/10.1109/TWC.2021.3139932.

[18] S.-f. Zhu, E.-l. Sun, Q.-h. Zhang, J.-h. Cai, Computing offloading decision based
on multi-objective immune algorithm in mobile edge computing scenario, Wirel.
Pers. Commun. 130 (2023) 1025–1043, http://dx.doi.org/10.1007/s11277-023-
10318-2.

[19] H. Tout, A. Mourad, N. Kara, C. Talhi, Multi-persona mobility: joint cost-effective
and resource-aware mobile-edge computation offloading, IEEE-ACM Trans. Netw.
29 (2021) 1408–1421, http://dx.doi.org/10.1109/TNET.2021.3066558.

[20] Q. Zhu, A. Lu, Y. Hou, Energy- and cost-aware scheduling for task- dependency
applications in mobile edge computing, in: 2022 IEEE 25th International Confer-
ence on Computer Supported Cooperative Work in Design, 2022, pp. 1016–1021,
http://dx.doi.org/10.1109/CSCWD54268.2022.9776171.

[21] Y. He, D. Zhai, F. Huang, D. Wang, X. Tang, R. Zhang, Joint task offloading,
resource allocation, and security assurance for mobile edge computing-enabled
UAV-assisted VANETs, Remote Sens. 13 (2021) 1547, http://dx.doi.org/10.3390/
rs13081547.

[22] Y. Sun, Z. Wu, K. Meng, Y. Zheng, Vehicular task offloading and job scheduling
method based on cloud-edge computing, IEEE Trans. Intell. Transp. Syst. 24
(2023) 14651–14662, http://dx.doi.org/10.1109/TITS.2023.3300437.
13
[23] W. Li, X. Sun, B. Wan, H. Liu, J. Fang, Z. Wen, A hybrid GA-PSO strategy for
computing task offloading towards MES scenarios, Peerj Comput. Sci. 9 (2023)
1273, http://dx.doi.org/10.7717/peerj-cs.1273.

[24] Y. Sun, H. Li, T. Wei, Y. Zhang, Z. Wang, W. Wu, C. Fang, Dependency-
aware flexible computation offloading and task scheduling for multi-access
edge computing networks, in: 24th International Symposium on Wireless Per-
sonal Multimedia Communications, 2021, pp. 1–6, http://dx.doi.org/10.1109/
WPMC52694.2021.9700432.

[25] C. Zhu, J. Ren, H. Wan, T. Qin, Wireless body area networks task offloading
method combined with multiple communication and computing resources sup-
ported by MEC, Iet Commun. 17 (2023) 1188–1198, http://dx.doi.org/10.1049/
cmu2.12606.

[26] Y. Cui, D. Zhang, T. Zhang, P. Yang, H. Zhu, A new approach on task offloading
scheduling for application of mobile edge computing, in: 2021 IEEE Wireless
Communications and Networking Conference, 2021, pp. 1–6, http://dx.doi.org/
10.1109/WCNC49053.2021.9417286.

[27] S. Almelu, S. Veenadhari, Task offloading strategy using double Q-learning
based optimization in MEC, in: 2022 IEEE International Conference on Current
Development in Engineering and Technology, 2022, pp. 1–5, http://dx.doi.org/
10.1109/CCET56606.2022.10079954.

[28] H. Yamamoto, T. Hayashida, I. Nishizaki, S. Sekizaki, Development of inter-
active multi-objective reinforcement learning considering preference structure
of a decision maker, IWCIA, in: 2017 IEEE 10th International Workshop on
Computational Intelligence and Applications, vol. 10, 2017, pp. 165–169, http:
//dx.doi.org/10.1109/IWCIA.2017.8203579.

[29] R. Huang, H. He, Naturalistic data-driven and emission reduction-conscious
energy management for hybrid electric vehicle based on improved soft actor-
critic algorithm, J. Power Sources 559 (2023) 232648, http://dx.doi.org/10.
1016/j.jpowsour.2023.232648.

[30] A. Asgharnia, H. Schwartz, M. Atia, Multi-objective fuzzy Q-learning to solve
continuous state-action problems, Neurocomputing 516 (2023) 115–132, http:
//dx.doi.org/10.1016/j.neucom.2022.10.035.

[31] C. Hu, Q. Wang, W. Gong, X. Yan, Multi-objective deep reinforcement learning
for emergency scheduling in a water distribution network, Memet. Comput. 14
(2022) 211–223, http://dx.doi.org/10.1007/s12293-022-00366-9.

[32] R. Wang, Y. Cao, A. Noor, T. Alamoudi, R. Nour, Agent-enabled task offloading
in UAV-aided mobile edge computing, Comput. Commun. 149 (2020) 324–331,
http://dx.doi.org/10.1016/j.comcom.2019.10.021.

[33] H. Yang, Z. Wei, Z. Feng, X. Chen, Y. Li, P. Zhang, Intelligent computation
offloading for MEC-based cooperative vehicle infrastructure system: a deep rein-
forcement learning approach, IEEE Trans. Veh. Technol. 71 (2022) 7665–7679,
http://dx.doi.org/10.1109/TVT.2022.3171817.

[34] S. Lai, R. Zhao, S. Tang, J. Xia, F. Zhou, L. Fan, Intelligent secure mobile edge
computing for beyond 5G wireless networks, Phys. Commun. 45 (2021) 101283,
http://dx.doi.org/10.1016/j.phycom.2021.101283.

[35] T.T. Nguyen, N.D. Nguyen, P. Vamplew, S. Nahavandi, R. Dazeley, C.P. Lim, A
multi-objective deep reinforcement learning framework, Eng. Appl. Artif. Intell.
96 (2020) 103915, http://dx.doi.org/10.1016/j.engappai.2020.103915.

[36] Y. Sun, X. Yang, P. Shi, H. Su, Consensus tracking of switched heterogeneous
nonlinear systems with uncertain target, IEEE Trans. Circuits Syst. I. Regul. Pap.
(2024) 1–11, http://dx.doi.org/10.1109/TCSI.2024.3376531.

[37] Y. Sun, X. Yang, Y. Zhao, H. Su, Non-negative scaled edge-consensus of saturated
networked systems via adaptive output-feedback control, Neurocomputing 586
(2024) 127632, http://dx.doi.org/10.1016/j.neucom.2024.127632.

[38] Y. Sun, X. Yang, H. Su, Fully distributed observer-based scaled consensus of
multi-agent systems with actuator saturation and edge-based event-triggered
communication, Neurocomputing 600 (2024) 128134, http://dx.doi.org/10.
1016/j.neucom.2024.128134.

[39] F. Song, H. Xing, X. Wang, S. Luo, P. Dai, K. Li, Offloading dependent tasks in
multi-access edge computing: A multi-objective reinforcement learning approach,
Future Gener. Comput. Syst.- Int. J. Esci. 128 (2022) 333–348, http://dx.doi.org/
10.1016/j.future.2021.10.013.

[40] X. Liu, Z.-Y. Chai, Y.-L. Li, Y.-Y. Cheng, Y. Zeng, Multi-objective deep re-
inforcement learning for computation offloading in UAV-assisted multi-access
edge computing, Inform. Sci. 642 (2023) 119154, http://dx.doi.org/10.1016/
j.ins.2023.119154.

[41] F. Qi, L. Zhuo, C. Xin, Deep reinforcement learning based task scheduling in edge
computing networks, in: 2020 IEEE/CIC International Conference on Communica-
tions in China, 2020, pp. 835–840, http://dx.doi.org/10.1109/ICCC49849.2020.
9238937.

[42] C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading and
resource allocation in wireless cellular networks with mobile edge computing,
IEEE Trans. Wireless Commun. 16 (2017) 4924–4938, http://dx.doi.org/10.
1109/TWC.2017.2703901.

http://dx.doi.org/10.1016/j.scs.2020.102080
http://dx.doi.org/10.1016/j.knosys.2022.110132
http://dx.doi.org/10.1016/j.knosys.2022.110132
http://dx.doi.org/10.1016/j.knosys.2022.110132
http://dx.doi.org/10.1109/TCCN.2020.3027695
http://dx.doi.org/10.1109/TCCN.2020.3027695
http://dx.doi.org/10.1109/TCCN.2020.3027695
http://dx.doi.org/10.23919/ICN.2020.0014
http://dx.doi.org/10.1016/j.neucom.2024.127415
http://dx.doi.org/10.1016/j.neucom.2024.127415
http://dx.doi.org/10.1016/j.neucom.2024.127415
http://dx.doi.org/10.1016/j.knosys.2023.110323
http://dx.doi.org/10.1109/ICCC54389.2021.9674506
http://dx.doi.org/10.1016/j.future.2019.10.043
http://dx.doi.org/10.23055/ijietap.2020.27.6.7603
http://dx.doi.org/10.1016/j.neucom.2023.126381
http://dx.doi.org/10.1109/TCYB.2019.2958912
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/ICRAE53653.2021.9657793
http://dx.doi.org/10.48550/arXiv.1809.07803
http://dx.doi.org/10.1007/s12293-022-00366-9
http://dx.doi.org/10.1109/TWC.2021.3139932
http://dx.doi.org/10.1007/s11277-023-10318-2
http://dx.doi.org/10.1007/s11277-023-10318-2
http://dx.doi.org/10.1007/s11277-023-10318-2
http://dx.doi.org/10.1109/TNET.2021.3066558
http://dx.doi.org/10.1109/CSCWD54268.2022.9776171
http://dx.doi.org/10.3390/rs13081547
http://dx.doi.org/10.3390/rs13081547
http://dx.doi.org/10.3390/rs13081547
http://dx.doi.org/10.1109/TITS.2023.3300437
http://dx.doi.org/10.7717/peerj-cs.1273
http://dx.doi.org/10.1109/WPMC52694.2021.9700432
http://dx.doi.org/10.1109/WPMC52694.2021.9700432
http://dx.doi.org/10.1109/WPMC52694.2021.9700432
http://dx.doi.org/10.1049/cmu2.12606
http://dx.doi.org/10.1049/cmu2.12606
http://dx.doi.org/10.1049/cmu2.12606
http://dx.doi.org/10.1109/WCNC49053.2021.9417286
http://dx.doi.org/10.1109/WCNC49053.2021.9417286
http://dx.doi.org/10.1109/WCNC49053.2021.9417286
http://dx.doi.org/10.1109/CCET56606.2022.10079954
http://dx.doi.org/10.1109/CCET56606.2022.10079954
http://dx.doi.org/10.1109/CCET56606.2022.10079954
http://dx.doi.org/10.1109/IWCIA.2017.8203579
http://dx.doi.org/10.1109/IWCIA.2017.8203579
http://dx.doi.org/10.1109/IWCIA.2017.8203579
http://dx.doi.org/10.1016/j.jpowsour.2023.232648
http://dx.doi.org/10.1016/j.jpowsour.2023.232648
http://dx.doi.org/10.1016/j.jpowsour.2023.232648
http://dx.doi.org/10.1016/j.neucom.2022.10.035
http://dx.doi.org/10.1016/j.neucom.2022.10.035
http://dx.doi.org/10.1016/j.neucom.2022.10.035
http://dx.doi.org/10.1007/s12293-022-00366-9
http://dx.doi.org/10.1016/j.comcom.2019.10.021
http://dx.doi.org/10.1109/TVT.2022.3171817
http://dx.doi.org/10.1016/j.phycom.2021.101283
http://dx.doi.org/10.1016/j.engappai.2020.103915
http://dx.doi.org/10.1109/TCSI.2024.3376531
http://dx.doi.org/10.1016/j.neucom.2024.127632
http://dx.doi.org/10.1016/j.neucom.2024.128134
http://dx.doi.org/10.1016/j.neucom.2024.128134
http://dx.doi.org/10.1016/j.neucom.2024.128134
http://dx.doi.org/10.1016/j.future.2021.10.013
http://dx.doi.org/10.1016/j.future.2021.10.013
http://dx.doi.org/10.1016/j.future.2021.10.013
http://dx.doi.org/10.1016/j.ins.2023.119154
http://dx.doi.org/10.1016/j.ins.2023.119154
http://dx.doi.org/10.1016/j.ins.2023.119154
http://dx.doi.org/10.1109/ICCC49849.2020.9238937
http://dx.doi.org/10.1109/ICCC49849.2020.9238937
http://dx.doi.org/10.1109/ICCC49849.2020.9238937
http://dx.doi.org/10.1109/TWC.2017.2703901
http://dx.doi.org/10.1109/TWC.2017.2703901
http://dx.doi.org/10.1109/TWC.2017.2703901

S. Li et al. Neurocomputing 620 (2025) 129194
[43] C. Liu, X. Xu, D. Hu, Multiobjective reinforcement learning: a comprehensive
overview, IEEE Trans. Syst. Man Cybern.-Syst. 45 (2015) 385–398, http://dx.
doi.org/10.1109/TSMC.2014.2358639.

Shihua Li received the B.S. and the M.S. degree in
electronic and communication engineering in Zhengzhou
University, China, in 2018 and 2021, respectively. He
is currently pursuing the Ph.D. degree with the School
of Computer and Artificial Intelligence, Zhengzhou Uni-
versity, China. His research areas include optimization
problem in industrial engineering, reinforcement learning
and intelligence healthcare.

Yanjie Zhou received Ph.D. degree from the Department
of Industrial Engineering at Pusan National University in
2020 and received B.S. Degree and M.S. Degree in Computer
Science and Computer Applied Technology from Zhengzhou
University in 2012 and 2015, respectively. He is currently
an associate professor with the School of Management at
Zhengzhou University. His research areas include optimiza-
tion problems in industrial engineering, game theory, and
intelligence healthcare.

Xiangqian Liu received the M.S. degree in software engi-
neering from Henan University, Kaifeng, China, in 2022,
where he is currently working toward the Ph.D. degree
with the College of Computer Science and Artificial Intelli-
gence, Zhengzhou University. His research interests include
multimedia signal and image processing.
14
Ning Wang received the B.S. and the M.S. degree in com-
puter science from Henan University, China, in 2017 and
2019, respectively. He is currently pursuing the Ph.D. degree
with the School of Computer and Artificial Intelligence,
Zhengzhou University, China. He is also a research with
the Cooperative Innovation Center for Internet Healthcare
of Zhengzhou University. His research interest is mainly in
representation learning and physiological signal processing.

Junqi Wang, Doctor of Management, graduated from Ocean
University of China. He is currently working at the School
of Information Management of Zhengzhou University of
Aeronautics. His main research interests are big data man-
agement and applications and digital transformation of
enterprises.

Bing Zhou received the B.S. and M.S. degrees in computer
science from Xi’an Jiaotong University, Xi’an, China, in
1986 and 1989, respectively, and the Ph.D. degree in
computer science from Beihang University, Beijing, China,
in 2003. He is currently a Professor with the School of
Computer and Artificial Intelligence, Zhengzhou University,
Zhengzhou, China. His current research interests include in-
telligent diagnosis of ECG, computer vision, internet medical
and multimedia applications.

Zongmin Wang received the Ph.D. degree in engineering
from Tsinghua University. From 1996 to 1997, he went
to the university of Hong Kong for collaborative scientific
research. From 1997 to 2017, he served as a professor and
doctoral tutor at Zhengzhou University. He is currently the
director of the Cooperative Innovation Center for Internet
Healthcare of Zhengzhou University. His main research
interests are intelligent diagnosis of ECG, internet medical,
computer network and intelligence healthcare.

http://dx.doi.org/10.1109/TSMC.2014.2358639
http://dx.doi.org/10.1109/TSMC.2014.2358639
http://dx.doi.org/10.1109/TSMC.2014.2358639

	Dynamic weight reinforcement learning method considering multiple factors in mobile edge computing system
	Introduction
	Related work
	Multi-objective scheduling problem
	Heuristic algorithm-based solutions
	DRL algorithm-based solutions

	Problem
	Motivation
	Problem definition
	Local server computation
	Other server computation
	Multi-objective problem definition

	MORL-MOT
	Markov model
	The MORL-MOT algorithm
	Q-network architecture
	Multi-agent tournament
	Complexity analysis

	Simulation results and discussion
	Environment and benchmark data set
	Performance evaluation metrics
	Baselines
	Experimental result
	Comparison of cumulative regret with different parameters
	Comparison of cumulative regret for baseline algorithms
	Comparison of cumulative regret for different instances
	Comparison of adaptive error for different instances
	Comparison of optimization objectives for different instances

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

