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ABSTRACT
The current hybrid flow shop task allocation usually assumes a static manufacturing environment, 
which cannot effectively handle uncertain events in the production process. To address this, the 
dynamic task allocation problem for machines in parallel with different speeds is studied, and a 
Mixed Logical Dynamical (MLD) model for predicting the state of the production system is 
established. A dynamic allocation method based on Model Predictive Control (MPC) is proposed. 
The proposed novel method integrates dynamic model with rolling optimization to better deal 
with uncertain events in production process by decomposing the overall planning problem into 
smaller local planning models. Numerical results show that the proposed method outperform the 
traditional global planning method and rule-based allocation method in terms of time and job 
processing rate. In addition, through the Plant Simulation software, the simulation results are 
consistent with the numerical results, which fully proves the effectiveness of the proposed method.
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1. Introduction

Hybrid Flow Shop Scheduling Problem (HFSP) is a 
classic production scheduling problem that involves 
multiple stages with one or more parallel machines at 
each stage [1,2], where the goal is to schedule jobs to 
optimize one or more performance criteria. HFSP, as a 
generalized problem in modern production environ
ments such as semiconductor manufacturing pro
cesses [3] and radio frequency identification tag 
processes [4], has been extensively studied over the 
past few decades. The HFSP consists of two sub-pro
blems: job sequencing and job allocation.

As an essential branch of the hybrid flow shop 
scheduling problem, the job allocation problem has 
received much attention from many scholars. The 
task allocation problem in a hybrid flow shop was 
initially proposed as an optimization problem for 
two-stage and three-stage production schedules 
[5], and the allocation process was offline [6]. 
Subsequently, scholars extended the task allocation 

problem to multiple stages [7], with the allocation 
process being online.

Currently, most methods for solving task allocation 
problems assume a static manufacturing environment, 
where it is not possible to make timely adjustments 
based on the progress of tasks in actual task allocation. 
In order to deal with uncertain events in the produc
tion process, such as machine failures or new orders 
arrival, it is necessary to establish a dynamic allocation 
mathematical model that can allocate jobs in a flexible 
manner and enhance production efficiency.

The dynamic task allocation problem in a hybrid 
flow shop has several challenges for providing efficient 
models and algorithms. The objective of this problem 
is to find an optimal allocation scheme that allows 
tasks to be processed as quickly as possible. The first 
challenge is the inability to anticipate uncertain events 
in the production process, such as machine failures or 
the arrival of new jobs. Another challenge is that 
employing a completely rescheduling strategy results 
in significantly increased computation time.
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The contributions of this paper are given as follows:

● A mixed logical dynamical model for predicting 
the state of the production system is established. 
This model considers the allocation and proces
sing of jobs as a dynamic system. Specifically, the 
MLD model describes the dynamic allocation pro
cess for processing jobs in a hybrid flow shop by 
incorporating linear dynamic inequalities with 
discrete variables. By using advanced control 
methods like model predictive control, the MLD 
model further improves the efficiency of job 
allocation.

● Additionally, model predictive control is intro
duced to handle uncertainties such as machine 
failures and the arrival of new jobs. The proposed 
method integrates a dynamic model with rolling 
optimization to better deal with uncertain events 
in the production process by decomposing the 
overall planning problem into smaller local plan
ning models.

The remainder of the paper is organized as follows: a 
literature review is presented in Section 2. Section 3 
introduces the hybrid flow shop scheduling problem 
with parallel machines of different speeds and presents 
the mixed logical dynamic model. Section 4 explains the 
principles of model predictive control. Section 5 validates 
the proposed method, analyzes the results in different 
scenarios, and conducts simulation verification using the 
Plant Simulation software. Finally, Section 6 provides a 
summary of the paper and outlines future research plans.

2. Literature review

This section reviews the classification based on 
machine characteristics and the approaches for static 
and dynamic task allocation.

2.1. Problem classifications

Based on the characteristics of the parallel machines, 
HFSP can be divided into three categories [8]: identical 
machines in parallel (Pm), where machines in the same 
stage possess the same processing capabilities and 
speeds [9,10]; machines in parallel with different 
speeds (Qm), where machines in the same stage pos
sess the same processing capabilities but have differ
ent speeds [11,12]; unrelated parallel machines (Rm), 
where machines in the same stage have different pro
cessing capabilities and speeds [13,14].

In practical production processes, various uncertain
ties may arise, making it crucial to allocate jobs to 
machines effectively to enhance processing efficiency. 
Moreover, in actual production processes, machines 
with the same processing function within the same 
stage may have different processing rates due to 

different models or varying degrees of wear. 
However, most of the literature on the HFSP considers 
parallel identical machines, while there is limited 
research on HFSP with parallel machines of different 
speeds. Therefore, studying the task allocation pro
blem in the hybrid flow shop with parallel machines 
of different speeds is necessary [12].

2.2. Static approaches

Most methods for solving the task allocation problem 
assume a static manufacturing environment, and com
monly used methods include exact algorithms, heur
istic algorithms, and metaheuristic algorithms [15]. In 
terms of exact algorithms, the branch and bound is the 
preferred method for solving the optimality of such 
problems. Moursli et al. [16] proposed a branch and 
bound algorithm to minimize the makespan for the 
hybrid flow shop scheduling problem .

In recent years, heuristic and metaheuristic algo
rithms have been commonly used to solve this type 
of problem. For example, some studies have utilized 
multi-objective evolutionary algorithms [17], an 
improved Nawaz, Enscore, and Ham heuristic algo
rithm [18], and heuristic methods with local search 
strategies to solve the hybrid flow shop scheduling 
problem [19]. Zheng et al. [20] combine the distribu
tion estimation algorithm with iterative greedy search 
and propose a coevolutionary algorithm with a specific 
problem strategy to solve such problems. Some 
researchers have studied the no-wait flow shop pro
blem without considering the buffer constraints [21]. 
Additionally, some studies have considered the pre
sence of buffers [22–24], taking buffers into account 
can enhance production flexibility and optimize task 
allocation in hybrid flow shop scheduling.

With the development of artificial intelligence, learn
ing algorithms based on agent systems and machine 
learning have been applied to HFSP. Babayan et al. [25] 
utilized an agent-based approach to solve the three- 
stage HFSP problem. Han et al. [26] combined reinforce
ment learning methods, abstracted HFSP into a Markov 
decision process, designed special states, actions, and 
reward functions for the decision process, and success
fully solved the production scheduling problem in a 
metal processing workshop of an automobile engine 
factory.

2.3. Dynamic approaches

The production plan is influenced by real-time distur
bances, which can cause deviations from the expected 
results of static planning. Therefore, online allocation is 
necessary to ensure production efficiency. Currently, 
research on dynamic HFSP can be divided into two 
categories: dynamic HFSP considering random or 
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probabilistic machine failures, and dynamic HFSP con
sidering random arrival of new jobs.

For the occurrence of new orders during the pro
duction process, Luo [27] proposed an efficient energy- 
saving dynamic flexible flow shop scheduling model 
that considers peak power. They also introduced a 
hybrid parallel genetic algorithm based on graphics 
processing units and employed a complete reschedul
ing strategy to solve the problem. This strategy per
forms well in maintaining optimal solutions but is 
rarely implemented in practice due to long computa
tion times. Another approach proposed by Tliba et al. 
[28] is a digital dual-driven dynamic scheduling 
method that combines optimization and simulation 
to achieve dynamic allocation in a hybrid flow shop 
environment.

For dynamic HFSP concerning machine failures, Guo 
et al. [29] presented a variable priority dynamic sche
duling optimization approach based on genetic algo
rithms, which dynamically generates prescheduling 
and rescheduling plans for sustainable HFSP. 
Currently, most online methods for task allocation 
rely on rescheduling techniques. However, employing 
complete rescheduling strategies significantly 
increases computation time and reduces allocation 
efficiency in the face of dynamic events.

2.4. Overall assessment of literature

As a summarizing remark, the dynamic task allocation 
problems in HFSP have not been sufficiently investi
gated in the literature, and a dynamical mathematical 
model for better predicting the state of the production 
system is needed. Additionally, an advanced control 
algorithm is needed to handle uncertainties such as 
machine failures and the arrival of new jobs.

3. Mixed logic dynamic model

This section introduces the research on task allocation 
in hybrid flow shop scheduling problems with parallel 
machines of different speeds. It formalizes the problem 
as a Mixed Integer Linear Programming (MILP) model 
and provides the mathematical expressions for the 
allocation problem based on the mixed logical 
dynamic model.

3.1. Problem description

The dynamic task allocation problem in a hybrid flow 
shop with parallel machines of different speeds is stu
died in this paper, as shown in Figure 1, where 
M1;M2; :::;M7 represent the machine numbers. It is 
assumed that there are a total of N jobs to be pro
cessed through H stages. Each stage consists of one or 
more machines with the same functionality but poten
tially different processing speeds. At least one stage 

has more than one parallel machine. The objective is to 
provide the optimal allocation scheme for these jobs, 
considering a given optimization goal. The jobs are 
processed in a fixed sequence, and they may need to 
wait in buffers before the machines for processing. All 
jobs leave the system after completing processing in 
the final stage.

This paper makes the following important 
assumptions:

● All jobs are the same.
● The buffer capacity in front of each machine is 

large enough.
● The transportation time of the job between the 

two stages is far less than the processing time and 
is ignored.

● All jobs leave the system after being processed in 
the final stage.

3.2. Model construction

In this subsection, we construct a mixed logic dynamic 
model to describe the dynamic task allocation of the 
hybrid flow shop. The relevant model variables and 
symbols are shown in Table 1.

3.2.1. Machine j 2 Shðh ¼ 1Þ
To achieve dynamic task allocation, it is necessary to 
describe the changes in the number of jobs in the 
buffer of machine j from the time instant k to k þ 1. 
Taking into account the stage in which the machine is 
located, we first describe the case of machine j 2 S1, as 
follows: "k; j 2 S1, 

Equation (1) gives the change in the number of jobs in 
the buffer of machine j. Since the number of remaining 
jobs in the buffer is not equal to the processing rate 
multiplied by the unit time Δt, when the number of 
remaining jobs to be processed is less than the 

Jobs to be 
processed

1M

2M

3M

4M

5M

6M

7M
buffer

Figure 1. Schematic diagram of the three stage hybrid flow 
shop.
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maximum processing capacity of the machine, they 
will be subtracted negatively, but this is not in line 
with the actual situation, to ensure that the number 
of jobs in the buffer before machine j becomes zero 
when all the jobs in that buffer have been processed, 
we introduce variable bjðkÞ and equation (2).

Figure 2 shows a diagram of the job from buffer to 
machine processing. When the number of jobs in the 
buffer is sufficient, the number of jobs reduced in the 
buffer is equal to the processing capacity of the 
machine; When the number of jobs in the buffer is 
less than the processing capacity of the machine, the 
number of jobs processed by the machine is equal to 
the number of jobs remaining in the buffer.

According to the transformation of constraints [30], 
equation (2) can be equivalently expressed as the fol
lowing two inequalities: 

Considering that the term xjðkÞ � bjðkÞ is nonlinear, we 
introduce the variable zjðkÞ, let zjðkÞ ¼ xjðkÞ � bjðkÞ. This 
equivalence can be expressed by the following 
inequalities: 

The constant Mb and mb is the upper and lower limit of 
the buffer capacity respectively. The nonlinear con
straint zjðkÞ ¼ xjðkÞ � bjðkÞ can be expressed by a series 
of linear inequalities as shown in equations (5)-(8).

Meanwhile, equation (1) is updated as follows: 

3.2.2. Machine j 2 Shðh � 2Þ
Next, we consider the case of machine 
j 2 Sh; h ¼ 2; :::;H, meaning that machine j is not in 
the first stage. In this case, the buffer of machine j 
contains not only incoming jobs from the upstream 
waiting to be processed but also jobs that have been 
processed and are being sent downstream.

Firstly, we define DjðkÞ as the number of processed 
jobs leaving the buffer of machine j from time instant k 
to k þ 1. Similar to equations (1)-(2), DjðkÞ can be 
expressed as: "j 2 Sh; h ¼ 1; :::;H, 

Equation (10) represents the constraint on the number 
of processed jobs leaving the buffer of machine j from 
time instant k to k þ 1, which is determined by the 
relationship between the remaining jobs in the buffer 

Table 1. Representation of related variables and symbols.
State Variable Description

xiðkÞ Number of jobs in the buffer of machine i at time instant k;
Decision variable Description
CijðkÞ Number of jobs transported from upstream machine i to downstream machine j from time instant k to 

k þ 1;
DjðkÞ Number of processed jobs by machine j from time instant k to k þ 1;
bjðkÞ If the number of jobs in the buffer of machine j at time instant k is greater than the processing capacity 

of the machine, bjðkÞ ¼ 1; otherwise, it is 0;
Symbol Description
M A big positive number;
ε A very small positive number;
N Total number of jobs to be processed at the initial moment;
Δt Time interval;
h Stage index;
i; j Machine index;
Sh The set of machines in stage h;
S Set of all machines;
K Predictive horizon.;
k Time instant k 2 0; 1; :::; K � 1f g;
vjðkÞ Processing rate of machine j from time instant k to k þ 1.

Figure 2. Diagram of the relationship between the buffer and the machine processing capacity (The number of jobs in the 
machine indicates the processing capability in a time unit).

4 J. XIN ET AL.



and the processing capacity. Here, bjðkÞ follows the 
expression in equation (2). When the number of jobs 
in the buffer is sufficient, DjðkÞ can be directly 
expressed as the number of jobs processed per unit 
time, denoted as vjðkÞ � Δt . Otherwise, it is equal to the 
remaining number of jobs in the buffer. The equivalent 
transformation of bjðkÞ is given by equations (3) 
and (4).

Based on DjðkÞ and the definition of Ci;jðkÞ, the 
dynamic model of the change in the number of jobs 
in the buffer of machine j 2 Sh (h ¼ 2; ::;H) can be 
described as: "j 2 Sh; h ¼ 2; ::;H, 

In Figure 3, the number of jobs within the machine 
represents the number of jobs that can be processed 
by the machine in a unit time interval. From Figure 3, 
we can observe that the number of jobs in the buffer at 
each moment is composed of three parts: the initial 
number of jobs in the buffer, the incoming jobs into 
the buffer, and the jobs leaving the buffer to be pro
cessed inside the machine.

Furthermore, the variable Ci;jðkÞ maintains the fol
lowing balance equation between the upstream and 
downstream: 

The completed jobs processed by machine i are trans
ferred to the buffer of the downstream machine. The 
sum of the jobs transferred to the buffers of all down
stream machines represents the total number of jobs 
processed by machine i at that moment, denoted as 
DiðkÞ. As shown in Figure 4, the sum of the jobs trans

ferred from machine 1 to machines 3 and 4 represents 
the total number of jobs processed by machine 1.

2.2.3. MLD model
In this section, the MLD model of dynamic task assign
ment is presented by defining appropriate variable 
vectors.

Let: xTðkÞ ¼ ½x1ðkÞ; x2ðkÞ; :::; xjSjðkÞ�, 

Where xðkÞ is the system state vector, uðkÞ is the 
control variable vector, δðkÞ is the logical decision 
variable vector, and zðkÞ is the auxiliary decision 
variable vector. Based on the vector defined above 
[31], the hybrid flow shop dynamic task allocation 
model expressed by equations (3)-(11) can be writ
ten as the following more compact mixed logic 
dynamic model: 

Matrices A, B1-B3 and E1-E4 in equations (13)-(14) repre
sent real parameter matrices, and E5 is a real-valued 
vector. The MLD model is a dynamic model, which can 
describe the dynamic distribution process of hybrid 
flow shop by introducing linear dynamic inequality of 
discrete variables. Advanced control methods such as 
model predictive control can be further used to 
improve the efficiency of job allocation.

To facilitate the expression of the matrices, we let 

UjðkÞ ¼
Δ vjðkÞ � Δt, and the explicit expressions of 

matrices A, B1-B3 and E1-E5 are shown in Appendix 1.

4. Model predictive controller design

In this section, a model predictive controller for 
dynamic task allocation scheduling optimization of a 
hybrid flow shop is introduced. First, the basic principle 
of the controller is introduced, and then the mathema
tical description of MPC optimization is given.

4.1. Basic principle

Model Predictive Control originates from discrete-time 
optimal control methods and employs rolling optimiza
tion strategies within a finite time horizon for online 
optimization and control. It is widely applied in various 
fields such as chemical engineering, transportation, and 
logistics [32]. MPC utilizes dynamic models to predict 
future states in constrained and complex dynamic sys
tems, considering constraints and minimizes an objective 

Figure 3. Diagram of machine buffer state changes consider
ing processing inputs and outputs.

Figure 4. Diagram of upstream processed jobs entering down
stream buffers.
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function to compute decision variables within a limited 
predictive horizon. MPC is capable of handling varying 
constraints and nonlinear systems, providing stable and 
optimized control effects over the long term.

Figure 5 illustrates the online task allocation strat
egy in a hybrid flow shop based on MPC. At any given 
time instant k, the MPC controller solves an optimiza
tion problem that maximizes production efficiency 
based on the detected system state x kð Þ, using the 
predictive MLD model and constraint conditions. The 
proposed MPC employs a local planning strategy, con
tinuously solving optimization problems for different 
time instants k in a rolling manner, decomposing the 
global planning into smaller local planning problems 
to reduce computational complexity. Furthermore, this 
online optimization strategy can handle uncertainties 
in the production system, such as machine failures or 
newly arrived jobs.

4.2. MPC optimization problem description

The MPC optimization problem is formulated based on 
the proposed MLD model and is solved through rolling 
optimization within a predictive horizon, Np, to achieve 
dynamic task allocation in the hybrid flow shop. The 
constructed MPC optimization control problem is 
represented as follows: 

Be bound to: 

Where, xðk þ l þ 1Þ is the predicted state of the system 
at time k þ l þ 1 based on decision variable, umin, umax, 
xmin and xmax respectively represent the boundaries of 
the system’s inputs and states. The state variable 
xðk þ 1Þ is directly influenced by the state variable 

xðkÞ and the inputs δðkÞ, uðkÞ and zðkÞ. And the objec
tive function Jðk þ 1Þ is expressed as: 

The objective function of the MPC optimization pro
blem (equation (15)) aims to process all jobs as quickly 
as possible, which is translated into minimizing the 
total number of jobs in all buffers at all time instants, 
as shown in equation (17). Equations (15)-(16) repre
sent a mixed integer linear programming (MILP) pro
blem, which can be solved using commercial solvers 
such as Cplex or Gurobi.

In the constructed MPC optimization problem, the 
state of the machine buffer at the initial time k ¼ 0 is 
set as follows: 

Formula (18) indicates that the number of jobs to be 
processed in each machine buffer of the first stage 
(h ¼ 1) is evenly distributed as the total number of 
jobs N, and formula (19) indicates that the number of 
jobs in each machine buffer of the non-first stage 
(h � 1) is 0 at the initial moment k ¼ 0.

5. Case studies

This section validates the effectiveness of the proposed 
dynamic task allocation method for the hybrid flow 
shop based on the MLD model. Firstly, the scenarios 
of the case study are configured, and an appropriate 
predictive horizon is selected. Then, the results of the 
case study under different scenarios are analyzed, and 
simulation validation is conducted using Plant 
Simulation software.

5.1. Scenario configuration

To validate the effectiveness of the proposed dynamic 
task allocation method, 15 scenarios of a three-stage 
hybrid flow shop are selected for case studies, as shown 
in Table 2. The three-stage setting allows for the consid
eration of task allocation across multiple stages while 
simplifying validation. Based on the reference [33], the 
number of jobs and the processing rates of machines are 
set. The processing rates of machines are randomly 
sampled from the range [1,12], measured in units of 
jobs per hour. The specific time interval between k and 
k þ 1 is equally denoted as the parameter Δt, which is set 
to be 1 hour. Three production layouts are defined: 
divergent (increasing the number of machines in each 
stage with the stage number), convergent (decreasing 
the number of machines in each stage with the stage 
number), and mixed (no clear relationship between the 
number of machines and the stage number).

Figure 5. Online task allocation strategy for hybrid flow shop 
based on MPC.
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In this study, the performance of the proposed MPC 
method is compared to three methods (global optimi
zation method and two rule-based methods) under 15 
different scenarios listed in Table 2. Both global opti
mization and rule-based methods are commonly used 
approaches in the literature to solve the HFSP [8]. 
Global optimization is a commonly utilized offline 
planning approach for the hybrid flow shop schedul
ing problem. It involves deciding on decision variables 
that encompass all operations of the hybrid flow shop, 
with no updates during the entire planning process. 
The global optimization is formulated using con
straints (3)-(13) and objective (17), with a sufficiently 
large number of planning horizons. This formulated 
problem is a mixed integer linear programming, 
which is then solved using the Gurobi solver.

The first rule-based method is based on the 
machine’s processing capacity in the next stage, 
which is referred to as the Processing Capacity 
(PC) allocation method. If the allocation is not an 
integer, it is rounded, and the allocation is prior
itized based on the processing capacity of the 
machines. Jobs are allocated to machines with 
higher processing capacity first until all jobs are 
allocated. Another rule-based method is a greedy 
approach, in which, at each moment, the job that 
completes processing is assigned to the machine 
with the minimum next-stage workload and the 
shortest processing time. If multiple machines 
have the same workload and processing time, a 

machine is randomly selected until all the jobs 
are allocated.

The comparisons are conducted for a total of 100, 
200, and 400 jobs. Two important metrics, namely the 
completion time and the solution time, are used to 
evaluate the effectiveness of the proposed methods. 
The computation time of the proposed MPC method 
refers to the average solution time for solving the MILP 
problem.

The MLD model is implemented using the Pyomo 
toolbox [34] in Python language, installed on a 
Windows operating system. Gurobi 9.0.3 is utilized 
to solve the MPC optimization problems and the 
global offline optimization problem discussed in 
this paper. The computational hardware consists of 
an Intel Core i7-9700 (3.0 GHz) processor and 16GB 
of memory.

5.2. Predictive horizon selection

In model predictive control, the prediction horizon Np 

is an important parameter that represents the extent 
to which the controller predicts future states. If Np is 
chosen to be too large, the optimization problem’s size 
increases, resulting in longer computation times. On 
the other hand, if Np is chosen to be too small, the 
predictive model may not cover all elements of the 
system, resulting in reduced operational efficiency. 
Therefore, selecting an appropriate Np is crucial.

To test the scenario of processing 100 jobs in 
Scenario 1 from Table 2, different values of Np are 
used, and the completion time and computation time 
are recorded. The results are shown in Table 3. The 
results in Table 3 indicate that the completion time 
converges when Np � 9. In this study, Np ¼ 9 is 
selected because it provides the minimum completion 
time with the shortest solution time.

5.3. Experimental results

In this subsection, we first analyze the results under the 
assumption of no interference in the production 

Table 2. Machine number configuration in a three-stage hybrid flow shop scenario.
Scenario Total number of machines Stage 1 Stage 2 Stage 3 Layout type

Scenario 1 9 2 3 4 divergent
Scenario 2 9 4 3 2 convergent
Scenario 3 9 4 2 3 mixed
Scenario 4 20 4 6 10 divergent
Scenario 5 20 10 6 4 convergent
Scenario 6 20 4 10 6 mixed
Scenario 7 30 8 10 12 divergent
Scenario 8 30 12 10 8 convergent
Scenario 9 30 10 12 8 mixed
Scenario 10 40 10 12 18 divergent
Scenario 11 40 15 14 11 convergent
Scenario 12 40 12 10 18 mixed
Scenario 13 50 12 18 20 divergent
Scenario 14 50 20 18 12 convergent
Scenario 15 50 10 25 15 mixed

Table 3. Performance index of different prediction horizon 
Np.

Np Completion time (unit:hour) Solution time (unit:second)

5 25 0.11
6 21 0.12
7 23 0.15
8 20 0.17
9 17 0.19
10 17 0.21
11 17 0.23
12 17 0.25
13 17 0.27
14 17 0.29
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process. Then, we discuss the superiority of the pro
posed dynamic task allocation method under two 
types of interference: machine failures and the arrival 
of new jobs.

5.3.1. No interference case
Table 4 presents the performance comparison of 
the four methods under the 15 scenarios defined 
in Section 5.1, assuming no interference in the pro
duction process. The results in Table 4 demonstrate 
that, in the absence of disturbances in the produc
tion process, the proposed MPC method achieves 
the same processing completion time as the global 
offline optimization method while significantly redu
cing the computation time. The MPC method 
achieves this by continuously solving small-scale 
MILP problems online within a smaller predictive 
horizon, thereby reducing the computational bur
den compared to global optimization. The PC and 

the greedy methods have a shorter computation 
time but may lead to a situation where jobs are 
only allocated to the machines with the highest 
processing capacity or the lowest workload in the 
next stage, due to the lower number of jobs pro
cessed in the previous stage. This results in a sig
nificant increase in the planned processing 
completion time compared to the previous two 
methods.

5.3.2. Machine failure case study
The previous section demonstrated the advantage of 
the proposed MPC method in terms of computation 
time. Now, we present the computational results of the 
MPC method during the production process under 
machine failure conditions. We select 9 out of the 15 
scenarios from Table 2 for analysis. For each scenario, 
the occurrence time and machine number of the fail
ures are randomly generated, as shown in Table 5. The 

Table 4. Performance comparison of the proposed MPC method with three methods in different scenarios.
Completion time(unit:hour) Solution time(unit:second)

Scenario Number of jobs Global optimization MPC PC Greedy Global optimization MPC PC Greedy

1 100 15 15 17 24 0.21 0.09 0.007 0.007
1 200 27 27 32 47 0.37 0.12 0.014 0.016
1 400 52 52 62 92 0.76 0.22 0.037 0.047
2 100 27 27 27 27 0.50 0.15 0.006 0.006
2 200 52 52 52 52 0.97 0.31 0.016 0.017
2 400 102 102 102 102 1.89 0.47 0.038 0.040
3 100 17 17 17 30 0.26 0.14 0.008 0.007
3 200 31 31 31 59 0.56 0.23 0.021 0.018
3 400 60 60 60 116 1.05 0.42 0.049 0.046
4 100 12 12 24 25 0.53 0.36 0.006 0.006
4 200 22 22 44 48 1.15 0.63 0.025 0.024
4 400 42 42 86 93 2.10 1.24 0.056 0.055
5 100 22 22 35 35 0.99 0.42 0.006 0.006
5 200 42 42 69 69 1.96 0.83 0.028 0.028
5 400 82 82 135 135 4.70 2.03 0.069 0.069
6 100 15 15 20 22 0.69 0.25 0.006 0.006
6 200 27 27 38 43 1.58 0.35 0.023 0.025
6 400 52 52 77 83 5.11 0.60 0.056 0.060
7 100 15 15 21 21 1.12 0.27 0.006 0.006
7 200 27 27 40 40 2.03 0.63 0.030 0.030
7 400 52 52 79 79 16.7 1.12 0.058 0.058
8 100 12 12 25 25 1.03 0.53 0.005 0.005
8 200 21 21 48 48 2.61 1.07 0.012 0.012
8 400 39 39 91 91 6.40 3.44 0.058 0.058
9 100 12 12 23 23 1.01 0.59 0.005 0.005
9 200 22 22 45 45 3.32 0.87 0.017 0.017
9 400 42 42 87 87 30.94 2.41 0.071 0.071
10 100 12 12 22 22 1.42 0.73 0.007 0.007
10 200 22 22 41 41 2.41 1.43 0.027 0.027
10 400 42 42 82 82 28.06 2.95 0.072 0.072
11 100 11 11 51 51 5.51 0.60 0.005 0.005
11 200 19 19 102 102 20.16 1.17 0.013 0.013
11 400 36 36 201 201 68.64 2.63 0.063 0.063
12 100 11 11 39 39 1.23 0.35 0.006 0.006
12 200 19 19 75 75 2.22 0.37 0.025 0.025
12 400 36 36 149 149 7.20 0.41 0.063 0.063
13 100 10 10 35 35 1.76 0.88 0.004 0.004
13 200 19 19 67 67 3.84 2.69 0.012 0.012
13 400 35 35 138 138 49.56 6.19 0.063 0.063
14 100 10 10 43 43 1.87 1.06 0.005 0.005
14 200 17 17 81 81 6.17 1.52 0.012 0.012
14 400 31 31 159 159 86.95 5.34 0.047 0.047
15 100 12 12 35 35 3.21 0.87 0.005 0.005
15 200 22 22 68 68 4.41 0.92 0.017 0.017
15 400 42 42 136 136 116.57 1.64 0.066 0.066
Average 29.9 29.9 64.7 68.6 11.15 1.15 0.028 0.028
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total number of processed jobs for each scenario is set 
to 50. The completion rates of job processing are 
compared among the global optimization, MPC, PC, 
and Greedy allocation methods.

In the given scenario layout of case study 1, with an 
initial set of 50 jobs to be processed, let’s assume that 
machine 6 experiences a failure at time instant k ¼ 5. The 
MPC-based method is capable of promptly adjusting the 
planning by redirecting the remaining jobs to other 
machines for processing. However, in the global optimi
zation allocation methods, machines are unable to adapt 
their allocation plans based on the failure situation. 

Consequently, the jobs continue to be assigned to the 
faulty machine according to the original plan, even 
though the machine is incapable of processing them. As 
a result, the number of jobs in the buffer ahead of the 
faulty machine keeps accumulating, and the subsequent 
machines do not receive any jobs from that machine. 
Figure 6 illustrates the changes in the number of jobs in 
the buffers of each machine for the MPC-based, global 
optimization, PC, and Greedy methods, respectively. Both 
the PC and the Greedy methods update the allocation 
scheme and continue the allocation process based on 
their respective allocation principles.

Figure 6. Number of jobs in the buffer over time of four methods for the machine failure scenario 1. (a) MPC (b) Global 
optimization (c) PC (d) Greedy.

Table 5. Comparison of processing completion rates for machine failure scenarios.
Processing completion rate

Case Scenario Number of jobs Occurrence Time of failure Faulty machine Global optimization MPC PC Greedy

1 Scenario 2 50 k ¼ 5 M6 60% 88% 82% 82%
2 Scenario 3 50 k ¼ 4 M5 74% 82% 72% 80%
3 Scenario 4 50 k ¼ 2 M5 76% 90% 84% 88%
4 Scenario 6 50 k ¼ 3 M15 76% 92% 90% 88%
5 Scenario 7 50 k ¼ 2 M13 82% 88% 76% 76%
6 Scenario 8 50 k ¼ 2 M23 76% 92% 88% 88%
7 Scenario 9 50 k ¼ 3 M24 78% 88% 88% 88%
8 Scenario 12 50 k ¼ 2 M14 86% 92% 58% 58%
9 Scenario 15 50 k ¼ 2 M41 68% 92% 92% 92%
Average 75.1% 89.3% 81.1% 82.2%
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From the figures, it can be observed that in the MPC- 
based method, after machine 6 encounters a failure, 
machines from the previous stage will stop allocating 
jobs to the faulty machine. The faulty machine is unable 
to process the jobs in its buffer, so the number of jobs in 
the buffer remains constant after time instant 5 in the 
figure. Both the PC and Greedy allocation methods also 
make adjustments to the allocation scheme in a timely 
manner. However, allocating jobs based on the allocation 
rules before a failure occurs may lead to a higher number 
of jobs being assigned to the faulty machine. 
Consequently, the job completion rate may be lower. 
However, in the case of global optimization, the number 
of jobs in the buffer of machine 6 continues to increase 
according to the original plan, even though the machine 
is experiencing a failure. As a result, the completion rates 
of job processing significantly decrease. By calculation, 
MPC achieves a completion rate of 88%, global optimiza
tion achieves a completion rate of 60%, PC allocation 
achieves a completion rate of 82%, and Greedy achieves 
a completion rate of 82%.

5.3.3. Newly arrived job case study
Here, we consider 9 scenarios out of the 15 scenarios 
listed in Table 2. For each scenario, we randomly gen
erate the number and arrival time of newly arrived 
jobs, as shown in Table 6. The completion time of job 
processing are compared among the four methods.

In the layout scenario of Case 4, the number of jobs 
to be processed is 50 at the given initial moment, and 
20 new jobs arrive at the fourth moment. The line plots 
of the change in the number of jobs within the buffer 
obtained by four different methods are shown in 
Figure 7.

In the MPC-based method, the number of newly 
arrived jobs can be directly added to the number of 
jobs to be processed to resolve the optimal distribu
tion mode. However, once the global optimization 
methods start planning, there is no way to take into 
account the dynamic situation of the arrival of new 
jobs. Therefore, they can only allocate the new jobs 
after all the initial jobs in the buffer have been pro
cessed and left the machine. As a result, their planned 
completion time will be longer than those achieved 
with the MPC-based method. The PC and Greedy 

methods allocate jobs to machines with the highest 
processing capacity or the lowest workload and short
est processing time, according to the allocation rules, 
which results in a longer completion time. From 
Figure 7, it can be seen that in the global optimization 
method, the completion time for the jobs is 14 hours, 
while in the PC and Greedy methods, the completion 
time is 15 and 16 hours respectively. However, in the 
MPC-based method, the completion time for the jobs 
is only 11 hours.

5.3.4. Multiple uncertain event case study
Here, 6 scenarios have been selected from the 15 scenar
ios in Table 2, where each scenario involves multiple 
machine failures occurring simultaneously. Each scenario 
has 50 jobs to process. We also consider situations where 
both machine failures and new job arrivals occur simul
taneously. At the initial time, there are 50 jobs waiting to 
be processed. The completion rates of the four methods 
have been compared, as shown in Tables 7 and 8. From 
Tables 7 and 8. it can be observed that the MPC-based 
allocation method outperforms the other three methods 
in handling multiple machine failures and scenarios 
where both machine failures and the arrival of new jobs 
are involved.

5.4. Simulation verification

In this section, Plant Simulation 16.0 based on dis
crete event simulation is used to simulate and verify 
the dynamic task assignment problem in the hybrid 
flow shop. Plant Simulation is an object-oriented 
discrete event simulation tool, which can realize 
the simulation and optimization of complex factory, 
production line, and production logistics processes 
[35]. The software can simulate the processing flow 
in the mixed flow workshop and complete the task 
assignment process.

First of all, the simulation model is established 
based on the layout scenario in the hybrid flow 
shop system. The objects required to establish the 
hybrid flow shop system model include material 
sources, buffers, stations, connectors, material termi
nations, etc. The allocation results obtained from 
the program are then implemented in the 

Table 6. Comparison of the completion times for newly arrived job case studies.
Completion time (unit:hour)

Case Scenario Initial number of jobs Number of newly arrived jobs Arrival time Global optimization MPC PC Greedy

1 Scenario 2 50 12 k ¼ 7 20 18 18 18
2 Scenario 3 50 16 k ¼ 4 15 12 12 21
3 Scenario 4 50 20 k ¼ 3 11 9 20 19
4 Scenario 6 50 20 k ¼ 4 14 11 15 16
5 Scenario 7 50 24 k ¼ 2 14 8 17 17
6 Scenario 8 50 12 k ¼ 5 13 10 18 18
7 Scenario 9 50 12 k ¼ 4 11 9 16 16
8 Scenario 12 50 12 k ¼ 3 10 8 25 25
9 Scenario 15 50 20 k ¼ 2 11 7 27 27
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Table 7. Comparison of the processing completion rates under multiple machine failure scenarios.
Processing completion rate

Case Scenario Number of jobs Occurrence Time of failure Faulty machine Global optimization MPC PC Greedy

1 Scenario 2 50 k ¼ 6 M5, M6 58% 72% 70% 70%
2 Scenario 3 50 k ¼ 5 M6, M7 56% 78% 52% 78%
3 Scenario 4 50 k ¼ 2 M5, M6, M13 42% 86% 74% 78%
4 Scenario 6 50 k ¼ 3 M5, M6, M15 58% 80% 76% 78%
5 Scenario 7 50 k ¼ 2 M9, M15, M23 68% 78% 78% 78%
6 Scenario 8 50 k ¼ 2 M13, M15, M23 58% 76% 62% 62%
Average 56.7% 78.3% 68.7% 74%

Table 8. Comparison of the processing completion rates under multiple uncertain event scenarios.
Processing completion rate

Case Scenario
Uncertain events: newly arrived  

job and machine failure Global optimization MPC PC Greedy

1 Scenario 2 k ¼ 4,8, M6 46.6% 89.7% 79.3% 81.0%
2 Scenario 3 k ¼ 4,12, M5 59.7% 85.5% 77.4% 83.9%
3 Scenario 4 k ¼ 3,6, M5 73.2% 92.9% 83.9% 89.3%
4 Scenario 6 k ¼ 3,6, M15 67.9% 92.9% 91.1% 89.3%
5 Scenario 7 k ¼ 2,8, M13 70.7% 89.7% 79.3% 79.3%
6 Scenario 8 k ¼ 2,6, M23 67.9% 92.9% 89.3% 89.3%
Average 64.3% 90.6% 83.4% 85.4%

Figure 7. Number of jobs in the buffer over time of four methods for the newly arrived job scenario 6. (a) MPC (b) Global 
optimization (c) PC (d)Greedy.
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simulation software. A list is set up at the material 
source to define the name of each job and is set at 
the exit of the machine so that after it is finished, it 
is designated to transport to the next stage of the 
buffer before a machine and waits for processing. 
The same procedure is repeated for the next stage 
by setting the destination buffer at the machine’s 
exit, and so on, until all jobs are allocated according 
to the results. Finally, using the Simtalk program
ming language in Plant Simulation software, the 
number of jobs in each buffer is recorded hourly 
using the event controller’s time and written into a 
list. The data from the list is then used to plot the 
line graph showing the variation in the number of 
jobs in each machine’s buffer over time.

The MPC numerical solution results are simu
lated in Plant Simulation for three scenarios: no 
interference, machine failure, and new job arrivals. 
Under the configuration layout of scenario 1, with 

20 jobs to be processed, the constructed Plant 
Simulation model is shown in Figure 8. In the 
absence of interference, the line graph of the num
ber of jobs in the buffer based on the MPC numer
ical solution results is depicted in Figure 9(a). The 
corresponding line graph of the number of jobs in 
the buffer obtained through the simulation in Plant 
Simulation is shown in Figure 9(b). By comparing 
Figures 9(a,b) we can observe that the obtained 
line graphs of the number of jobs in the buffer are 
consistent, validating the correctness of the theo
retical part.

The simulation validation in Plant Simulation is 
conducted in the case of machine failure. Under 
the layout configuration of scenario 3, let’s assume 
that machine 5 experiences a failure at time 
instant 2. The line graph of the number of jobs 
in the buffer based on the MPC numerical solution 
results is shown in Figure 10(a). The corresponding 

Figure 8. Schematic diagram of a three-stage hybrid flow shop modeled in plant simulation software.

Figure 9. Curves of the number of jobs in the buffer over time obtained by the MPC method and plant simulation for scenario 1 
without disturbances. (a) MPC. (b) Plant Simulation.
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line graph of the number of jobs in the buffer 
obtained through the simulation in Plant 
Simulation is depicted in Figure 10(b). By compar
ing the two graphs, we can observe that they are 
consistent, validating the correctness of the pro
posed method.

The simulation validation in Plant Simulation is 
performed in the case of new job arrivals. Under 
the layout configuration of scenario 3, let’s assume 
that there are initially 16 jobs to be processed, and 
at time instant 2, 4 new jobs arrive. The line graph 
of the number of jobs in the buffer based on the 
MPC numerical solution results is shown in 
Figure 11(a). The simulated line graph of the num
ber of jobs in the buffer is depicted in Figure 11(b). 
By comparing the two graphs, we can observe that 
they are consistent, validating the correctness of 
the proposed method.

6. Conclusion and future research

In this paper, the dynamic task assignment problem 
of hybrid flow shop for machines in parallel with 
different speeds is studied, the MLD model of pro
duction system state is established, and the 
dynamic task assignment method based on MPC is 
proposed. This method decomposes the global 
planning problem into a smaller local planning 
model and transforms offline scheduling into an 
online scheduling mode, which can deal with the 
uncertain situation in the production process. 
Extensive numerical experiments demonstrate that 
this method outperforms traditional global optimi
zation and rule-based allocation methods in terms 
of processing completion time and completion rate. 
Furthermore, the proposed method is validated by 
modeling and simulating the considered hybrid 
flow shop case using the production process 

Figure 11. Curves of the number of jobs in the buffer over time by the MPC method and Plant Simulation for newly arrived job’s 
scenario 3. (a) MPC. (b) Plant Simulation.

Figure 10. Curves of the number of jobs in the buffer over time by the MPC method and plant simulation for machine failure’s 
scenario 3. (a) MPC. (b) Plant Simulation.
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simulation software, Plant Simulation. The numerical 
results obtained from the proposed method align 
with the simulation software results, confirming the 
correctness of the proposed method.

Future research will build upon the model proposed 
in the paper and consider the relationship between 
variable processing rates and energy consumption. It 
will focus on studying the bi-objective optimization 
problem of completion time and energy consumption 
and develop efficient optimization algorithms to 
solve it.
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