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A B S T R A C T

Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles
operating within warehouse environments. In this study, we investigate a new method for dynamically
allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats
this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a
rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To
enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large
neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted
to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and
metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic
unbalanced task allocation method for multi-AGV systems in warehouse environments.
1. Introduction

The advancement of automation technology has significantly driven
the evolution of Automated Guided Vehicles (AGVs), enabling their
utilization for efficiently transporting materials horizontally in diverse
scenarios. These scenarios include but are not limited to automotive
manufacturing (Cai, Li, Luo, & He, 2023; Xin, Wu, D’Ariano, Negen-
born, & Zhang, 2023), warehouse operations (Niu, Wu, Xing, Wang,
& Zhang, 2023), container terminals (Xin, Meng, D’Ariano, Wang, &

egenborn, 2022), and other diverse applications. In the warehouse
pplication, materials need to be transported from the starting point
o the endpoint, and different materials constitute different tasks that
eed to be assigned to the AGVs on time, while tasks arriving at
ifferent moments and unknown task information bring challenges to
ask assignment. As the number of tasks and AGVs increases signifi-
antly, the solution space becomes vast, making it impractical for any
ffective algorithm to provide an exact solution within a reasonable
imeframe (De Ryck, Versteyhe, & Debrouwere, 2020).

Dynamic unbalanced task allocation stems from the real-world na-
ure of warehousing, where tasks arrive dynamically and the number
f available AGVs in a warehouse is often less than the number of
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goods waiting to be handled. The dynamic nature of the warehouse
environment, characterized by the need to assign customer orders
that arrive in real-time to AGVs, presents significant challenges for
optimizing task allocation among multiple AGVs. This is particularly
evident when a new task emerges while an AGV is preoccupied with a
specific transportation task. In such a circumstance, a novel modeling
methodology and algorithm for addressing dynamic unbalanced task
allocation must be developed, whereas the existing literature focuses
on static decision-making.

Driven by the above challenge, our paper focuses on enhancing the
operational efficiency of dynamically allocating unbalanced tasks to
multiple AGVs within a warehouse application. We treat the transport
process as a dynamic vehicle routing problem involving pickups and
deliveries and devise a rolling horizon strategy to address it. To address
the computational efficiency required for real-time decision-making,
we decompose the unbalanced allocation into sequencing and balanced
assignment and develop a novel integrated algorithm that combines the
adaptive large neighborhood search (ALNS) with the Kuhn–Munkres
(KM) algorithm. This integrated approach provides significant value for
making real-time decisions in the warehouse environment.
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The main contributions of this paper are summarized as follows:

• An investigation into a new task allocation problem for multiple
AGVs within a warehouse environment is conducted. Unbalanced
tasks are dynamically generated in this scenario and exhibit a
periodic pattern. Interestingly, the pertinent literature on ware-
house applications focuses on static decision-making. Moreover,
the investigated task allocation integrates sequencing and assign-
ment, whereas the prevailing research treats them as two separate
stages.

• The investigated dynamic task allocation is treated as a dynamic
vehicle routing with pickup and delivery, and a rolling horizon
strategy is proposed to reschedule the ongoing and new arrival
tasks by solving small-scale mixed integer programming (MIP)
iteratively.

• A new algorithm combining ALNS and the KM algorithm is pro-
posed to improve computational efficiency. ALNS provides one
overall sequence and KM then breaks the overall sequence for
each AGV by solving a matching problem. This new paradigm
outperforms the ALNS and other metaheuristics.

The structure of the remaining sections of the paper is outlined as
follows: Section 2 reviews the related literature on task allocation of
AGVs. Section 3 introduces the dynamic unbalanced task allocation
roblem and the mathematical model in a rolling horizon manner.
ection 4 proposes the integrated ALNS-KM task allocation algorithm.
ection 5 discusses numerical experiments on the proposed methodol-

ogy and conducts a comparative analysis. Finally, Section 6 summarizes
this paper and suggests future research directions.

2. Related work

This part reviews the literature concerning task allocation of AGVs
in the warehouse and production applications and related vehicle
routing problems with pickup and deliveries.

2.1. Task allocation of warehouse AGVs

Task allocation is a fundamental challenge that warehouse AGVs
must overcome for autonomous material handling. Prior research on
AGV task allocation in warehouses can be classified into static and
dynamic task allocation.

In addressing the static task allocation issue, one approach con-
centrates on the attributes of the warehouse environment, such as
extremely narrow aisles and specific order details. Another approach
tailors the problem to the characteristics of vehicles, including multi-
loading and multi-type capabilities. For the former, He, Aggarwal, and
Nof (2018) examined differentiated services for various order types
and devised a differential probability queuing strategy to optimize
the average total delay of task completion within the warehousing
setting. Polten and Emde (2021) delved into the access-constrained
nature of narrow aisle warehouses, proposing two access strategies
alongside a large neighborhood search algorithm to tackle the AGV
scheduling challenge in such environments. Turning to the latter ap-
proach, Jiang, Zhang, and Wang (2023) employed a genetic algorithm
coupled with a penalty function to facilitate task allocation. Research
on AGV scheduling has been conducted based on the multi-loading fea-
ture of multi-loading AGVs; Huo, He, Xiong, and Wu (2024) suggested
a non-dominated sorting genetic algorithm to address this issue. Simi-
larly, AGV scheduling has been explored considering the variable speed
attribute of AGVs, with Liu, Ji, Su and Guo (2019) introducing a multi-
adaptive genetic algorithm as a solution. Furthermore, some studies
2

have taken into account both warehouse and AGV traits, exemplified
by Maoudj, Kouider, and Christensen (2023), which crafted a mixed
integer linear programming model and established behavioral rules for
assigning tasks amidst conflicting tasks and multiple loading scenarios.

Regarding the warehouse application, dynamic task allocation has
been less studied than static allocation. The available dynamic task
allocation is a distributed auction algorithm for the multi-robot task
allocation problem (Bai, Fielbaum, Kronmüller, Knoedler, & Alonso-
Mora, 2022), to deal with the transportation problem for dynamically
occurring packages by introducing the absolute value of the difference
between the lowest bid value and the next lowest bid value as a metric.

Table 1 summarizes the above-related work on task allocation for
arehouse AGVs. It can be observed that current studies concentrate on

tatic decision-making processes, where allocation is typically divided
nto separate sequencing and assignment phases. This separation often
esults in missed opportunities for enhancing performance. In contrast,
ur paper adopts an integrated approach to sequencing and assignment,
xploring the dynamic and unbalanced task allocation scenario.

.2. Task allocation of production AGVs

In addition to the warehouse, the application of AGVs can also
e found in the production system for material transport. AGV’s task
llocation in the production systems is also categorized into static and
ynamic methods.

Regarding the static task allocation, the scheduling of AGVs in a ma-
rix workshop layout with diverse constraints such as loading, charging,
nd maintenance has been investigated (Zhang, Sang, Li, Han, & Duan,
022; Zou, Pan, Meng, Gao, & Wang, 2020; Zou et al., 2023). To en-
ance computational efficiency, a variety of metaheuristic approaches,
ncluding the discrete artificial bee colony and adaptive iterative greedy
lgorithm, have been devised to tackle the customized scheduling
hallenges individually. Furthermore, the multi-AGV dispatching prob-
em has been integrated with conflict-free path planning, and a time-
pace network model has been introduced to manage the complexity
y leveraging commercial solvers with valid inequalities (Murakami,
020).

Dynamic AGV task allocation in the production systems comprises
arket-based (auction-based), learning-based, and optimization meth-

ds. Market-based (auction-based) allocation is a key strategy for as-
igning tasks to AGVs. AGVs bid for tasks, with the highest bidder
inning, making it efficient for parallel computing with multiple tasks.
or instance, De Ryck, Pissoort, Holvoet, and Demeester (2021, 2022)

develop an allocation algorithm based on sequential single-item auc-
tions, which includes resource and routing constraints and can solve
allocation schemes that do not violate the constraints. Reinforcement
learning optimizes actions based on experience, often selecting from
heuristic rules (Yin, Liu, & Wang, 2022). For instance, deep Q networks
were used by Hu, Jia, He, Fu, and Liu (2020) for real-time AGV alloca-
tion in the workshops. Deep reinforcement learning has also been ap-
plied to AGV scheduling, considering battery constraints (Singh, Akcay,
Dang, Martagan, & Adan, 2024; Zhang, Yan and Hu, 2023), and a tai-
lored reinforcement learning algorithm was developed for dynamic task
allocation in integrated logistics, ideal for small-batch individualized
orders (Lei, Hui, Chang, Dassari, & Ding, 2023). Optimization-based
methods typically build up a mathematical model using knowledge
from operations research to precisely present a relationship between
the objective (e.g., makespan) and the allocation decision variables.
The static allocation of AGVs for the matrix workshop has been ex-
tended to a dynamic version by reassigning AGVs for new tasks and
special cases within the planning horizon (Li et al., 2023). A similar
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Table 1
Summary of the related work on the task allocation of warehouse AGVs.

Literatures New mission Unbalance Strategy Objective function Noval constraints Model Approach
arrivals

He et al. (2018) – ✓ ABS Weighted completion time – MINLP DPQ
Polten and Emde (2021) – ✓ SAA Makespan – MILP LNS
Jiang et al. (2023) – – – Makespan and energy consumption Time window and energy MINLP GA
Huo et al. (2024) – ✓ SBA Delay and energy consumption Time window and energy MIP NSGA-II
Liu, Ji et al. (2019) – ✓ ABS makespan and energy consumption Speed and energy LP MAGA
Maoudj et al. (2023) – ✓ ABS Maximum traveling distance Capacity and product MILP BR
Bai et al. (2022) ✓ ✓ SBA Minimum total travel time Time window and capacity MIP AA
Our paper ✓ ✓ SAA Total completion time and makespan – MIP ALNS-KM

SAA(Sequencing and assignment), ABS(Assignment before sequencing), SBA( Sequencing before assignment) DPQ(Differentiated Probabilistic Queuing), LNS(Large Neighborhood
Search), NSGA-II(Non-dominated Sorting GA), MAGA(Multi-Adaptive Genetic Algorithm), BR(Behavioral Rules), AA(Auction Algorithm).
scenario is considered by inserting more customers into the static
allocation to include pickup and delivery requests (Zhang, Sang, Li,
Zhang and Meng, 2023).

2.3. VRP with pickup and delivery

In a warehouse setting, a fleet of AGVs complete a series of materials
transport requests, each with a designated pickup location and a certain
delivery point, and the necessity to navigate between these sites. This
scenario is identified as a Vehicle Routing Problem with Pickup and
Delivery (VRPPD), in the domain of operations research (Desaulniers,
Desrosiers, Erdmann, Solomon, & Soumis, 2002).

VRPPD has been extensively employed in service sectors requiring
point-to-point pickups and deliveries, including courier services, food
delivery, and passenger transport. For instance, Jiang, Dai, Yang, and
Ma (2024) analyzed a multi-point access VRPPD, integrating trucks and
drones to meet pickup and delivery demands in rural areas, proposing
a tailored large-scale search algorithm. Teng et al. (2021) explored
optimizing merchant-customer satisfaction in food delivery, consider-
ing delivery mileage and time window constraints, and enhancing the
genetic algorithm to reduce delivery costs. Zhang, Chen, Yu and Wang
(2021) researched route optimization for suburban demand-responsive
transit services under exceptional circumstances causing order fluc-
tuations, designing a branch-and-price algorithm to cut operational
costs. Chen, Wang, Wang, Qu, and Ma (2021) studied the multi-trip,
multi-pickup, and delivery problem with time windows for customized
buses, generating initial solutions based on a modified sweep method
and improving them using adaptive variable neighborhood search.

2.4. Summary

As a summarizing remark, dynamic task allocation of AGVs in
the warehouse application has not been sufficiently investigated. The
current literature focuses on static task allocation, requiring a new
methodology to deal with new arrivals of tasks computationally effi-
ciently.

3. Problem description and modeling

This section first describes the task allocation problem studied in
this article and establishes a mathematical model.

3.1. Problem description

The research considers a warehouse system featuring multiple In-
put/Output (I/O) stations and narrow aisle shelf rows (Polten & Emde,
2021). Goods handling tasks are performed by multiple AGVs, with
3

each AGV responsible for transporting goods from a specific pickup
point to a designated delivery point, as depicted in Fig. 1. The AGVs
under consideration are similar to single-reach trucks (often used in
narrow aisle applications) in that they can only pick or place goods
at one depth of the shelf. These pickup and delivery points can cor-
respond to a particular I/O station or a specific shelf location. The
primary objective of task assignments is to minimize the combined total
completion time and makespan.

In the background of large-scale goods storage and e-commerce,
customer orders arrive dynamically and periodically in real-time (Ghas-
semi & Chowdhury, 2022). Typically, the number of tasks arriving each
time equals or exceeds the number of available AGVs. For instance, for
a scenario consisting of 2 available AGVs, when 4 tasks arrive, they
could be assigned to 2 AGVs, as depicted in Fig. 1. The corresponding
real-time scenario is illustrated in Fig. 2. This paper addresses the
dynamic version of the unbalanced assignment problem, where the
number of dynamically arriving tasks surpasses the number of AGVs. As
new tasks arrive at different time points, AGVs may need to transport
ongoing tasks before completion.

We refer to Leeckm et al. (2019) and Zhang, Wu, Zhang, Peng and
Zheng (2021) to make some important assumptions as follows:

• The actual collision of AGV in the warehousing environment is
not considered;

• The speed of the AGV is fixed at 1 grid per second, and it takes
1 s to go to the adjacent point;

• At any time, only one AGV can be assigned to each task;
• At any time, each AGV can be assigned multiple tasks, but can

only complete one task at a time, and cannot execute another task
without completing the current task;

• The initial position of the AGV is randomly provided;
• The AGV roadmap allows bi-directional movement;
• Warehouse AGVs are single-reach trucks that can only transport

materials to the nearest shelf.

3.2. Rolling horizon framework

Rolling horizon policy is suitable for recurring, dynamic, or multi-
periodic problems requiring immediate decisions with updated data
(Cuisinier, Lemaire, Penz, Ruby, & Bourasseau, 2022). It relaxes global
planning requirements, enabling local optimal planning (Ji et al.,
2022). In dynamic environments, it is difficult to achieve globally op-
timal planning when future system characteristics cannot be predicted
correctly and completely. Rolling horizon policy that enables locally
optimal planning is particularly useful in warehousing environments
with dynamic task arrivals and limited advance information for which
long-term prediction of task information is unreliable (Gkiotsalitis &
Van Berkum, 2020). In addition, the rolling horizon framework allows
the model to adapt to dynamic environments. This framework involves

setting the planning start time and horizon, rolling tasks between
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Fig. 1. Introduction to task allocation.
Fig. 2. Task allocation of the multiple pickup-delivery pairs in the warehouse environment.
Fig. 3. Schematic diagram of rolling horizon policy.

lanning stages, and implementing a stopping rule when all tasks are
ompleted.

Initially, set the planning start time and rolling planning horizon
sing the initial task arrival moment as the start, the task arrival period
s the control horizon, and the task’s makespan as the prediction hori-
on. Upon arrival of new tasks, transition from the previous planning
tage to the next, using the output of the previous stage and new
asks as input for the next stage. In this phase, executing tasks enable
GVs to start the next phase’s allocated tasks at varying times, and the
akespan of tasks executed within the previous phase serves as inputs

or the next. Finally, implement a rolling planning stopping rule to halt
he process upon completion of all tasks.

The dynamic optimization principle of the rolling horizon policy
ses current output as input for the next sampling moment, handling
ynamically arriving tasks by adjusting allocations through a mathe-
atical model. This approach enhances the static model’s capability to
anage dynamic events.
4

Fig. 3 depicts a schematic of the rolling horizon policy for task ar-
rivals per sampling time, with the predicted time domain representing
the makespan of task batches and the control range as the time interval
between batch arrivals (set at 1 min for instance). This study introduces
a task assignment method based on a time-driven rolling horizon
policy, where each moment 𝑡 signifies specific task assignments. AGVs
forecast future assignments within the rolling planning period based on
current moment 𝑡 allocations. Through iterative resolution at different
𝑡 moments, the assignment scheme for all tasks is ultimately obtained.

3.3. Modeling

This subsection describes the required task allocation model within
the rolling horizon framework. It begins by defining the parameters and
decision variables and then presents a detailed mathematical model

In our considered problem, each task consists of a starting point and
an endpoint, which have different locations in space. To facilitate the
construction of the model, we convert the tasks as points, as shown in
Fig. 4, which contain the positional information of the starting points
and endpoints. Therefore, the distances between two successive tasks
are asymmetric due to the different locations of the starting points and
endpoints between them.

In warehouse environments, task allocation is commonly analyzed
from the perspective of the assignment problem. However, the sequence
in which tasks are completed also significantly impacts transportation
efficiency. When the sequencing is included, the unbalanced allocation
problem can be viewed as a Vehicle Routing Problem (VRP) (Liu, Song,
Bucknall and Zhang, 2019).

3.3.1. Mathematical model
Before introducing the mathematical model, Table 2 describes the

relevant parameters and decision variables.
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Fig. 4. Convert tasks into task points.
Table 2
Notation for the mathematical models.

Set Description

𝑉 Set of all the AGVs
𝑄 Set of all the tasks
𝑘 Index of a particular AGV, 𝑘 ∈ 𝑉
𝑖, 𝑗, 𝑗′ , ℎ Indices of tasks, 𝑖, 𝑗, 𝑗′ , ℎ ∈ 𝑄

Parameter

𝑣 Number of AGVs
𝑞 Number of tasks
𝑑𝑖,𝑗 Distance between the task 𝑖 and the task 𝑗
𝑐𝑘,𝑖 Distance between the AGV 𝑘 and the task 𝑖
𝐸𝑗 Distance from the starting point to the endpoint of the 𝑗th

task
𝑎𝑗 Arrival time of task 𝑗
𝑤1 Weighting factor for the total completion time
𝑤2 Weighting factor for the makespan

Decision variable

𝑥𝑘𝑖,𝑗 ∈ {0, 1} If AGV 𝑘 goes from 𝑖 to 𝑗 to complete the corresponding
task, 𝑥𝑘𝑖,𝑗=1, otherwise it is 0;
Meanwhile 𝑥𝑘0,𝑗=1 means that AGV 𝑘 goes from the initial
position to execute task 𝑗

𝑠𝑗,𝑘 ∈ 𝑁 The time when AGV 𝑘 starts executing task 𝑗. When AGV 𝑘
does not execute task 𝑗, 𝑠𝑗,𝑘 is meaningless.

𝑇 Makespan

The goal is to minimize the sum of the total completion time and
akespan defined as 𝑇 . The objective function defined as 𝐽 uses a
eighted form for these two objectives. The total completion time
riginally contains three parts. The first part is the time it takes for
ll AGVs to go from the initial position to the starting point of their
irst task. The second part is the time it takes for the AGV to go from
he starting point of the task to the endpoint of the task. The third part
s the time it takes for the AGV to go from the endpoint of the previous
ask to the starting point of the next task. When the starting point and
ndpoint of the task are determined, the value of the second part is
onstant. Therefore, only the first and third parts are considered for
he total completion time in the objective function.

The detailed objective function is described as follows:

= 𝑤1(
𝑞
∑

𝑗=1

𝑣
∑

𝑘=1
𝑐𝑘,𝑗𝑥

𝑘
0,𝑗 +

𝑞
∑

𝑖=1

𝑞
∑

𝑗=1
𝑑𝑖,𝑗

𝑣
∑

𝑘=1
𝑥𝑘𝑖,𝑗 ) +𝑤2𝑇 (1)

here 𝑤1 and 𝑤2 are weighting factors for the total completion time
nd makespan.

The constraints of the model are as follows:
𝑞
∑

𝑖=0

𝑣
∑

𝑘=1
𝑥𝑘𝑖,𝑗 = 1,∀𝑗 ∈ 𝑄 (2)

𝑞
∑

𝑗=1
𝑥𝑘0,𝑗 ≤ 1,∀𝑘 ∈ 𝑉 (3)

𝑞
∑

𝑖=0
𝑥𝑘𝑖,ℎ −

𝑞
∑

𝑗=0
𝑥𝑘ℎ,𝑗 = 0,∀𝑘 ∈ 𝑉 ,∀ℎ ∈ 𝑄 (4)

𝑗,𝑘 + 𝑑𝑗,𝑗′ + 𝐸𝑗 −𝑀(1 − 𝑥𝑘𝑗,𝑗′ ) ≤ 𝑠𝑗′ ,𝑘,∀𝑘 ∈ 𝑉 ,∀𝑗, 𝑗′ ∈ 𝑄 (5)
5

𝑎𝑗 + 𝑑𝑘,𝑗 ≤ 𝑠𝑗,𝑘,∀𝑘 ∈ 𝑉 ,∀𝑗 ∈ 𝑄 (6)
𝑠𝑗,𝑘 ≤ 𝑇 ,∀𝑘 ∈ 𝑉 ,∀𝑗 ∈ 𝑄 (7)

The constraint (2) indicates that each task can only be completed
once by a specific AGV, and also indicates the order in which the AGV
completes the task. The constraint (3) indicates that the AGV starts from
the initial position and goes to the first task that needs to be completed.
The constraint (4) is a continuity constraint, which means that the AGV
needs to go from point 𝑖 to point ℎ before completing the task from
point ℎ to point 𝑗. The constraint (5) and the constraint (6) limit 𝑠𝑗,𝑘
to denote the moment when the AGV 𝑘 arrives at the starting point
of the task 𝑗. The constraint (5) ensures that the arrival time of an
AGV at the next task’s starting point is the sum of the AGV’s arrival
time at the current task’s starting point, the time taken by the AGV
to travel from the current task’s starting point to its endpoint, and the
time taken by the AGV to travel from the current task’s endpoint to
the next task’s starting point. The constraint (6) restricts the AGV to
be assigned a task only when it has been reached. The constraint (7)
restricts the variable 𝑇 to be the sum of the maximum moment when
the AGV reaches the start of a task and the time it takes to complete
that task, i.e., the makespan.

Based on the above models and constraints, our task allocation
model can be described as 𝑝, as shown below.

(𝑝) min 𝐽

s.t. (2) − (7).

The problem 𝑝 is a mixed-integer programming problem typically
tackled using commercial solvers like CPLEX. However, it is crucial to
understand that similar problems, such as the vehicle routing problem
with pickups and deliveries, have been proven to be NP-hard (De-
saulniers et al., 2002), demonstrating substantial computational com-
plexity. As a result, relying solely on commercial solvers may not
be feasible for addressing complex environments or large-scale in-
stances. Therefore, we propose a tailored metaheuristic approach, com-
plemented by the rolling horizon strategy, to facilitate real-time task
allocation.

4. ALNS-KM based algorithm

In this section, we propose a rolling horizon version of ALNS al-
gorithm based on the model constructed in the previous section to
allocate real-time batch tasks in a dynamic environment. The first
part decomposes the problem, and the second part improves the ALNS
algorithm based on the decomposition.

4.1. Decomposition

For the problem 𝑝, considering both the assignment of tasks and
the task orders makes it difficult to solve. While traditional meta-
heuristics consider optimizing them simultaneously, this paper further
decomposes the unbalanced task allocation problem into a sequencing
problem and a balanced task assignment problem.
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Fig. 5. Schematic diagram of the proposed strategy for task allocation.
.1.1. Sequencing
Each task consists of a starting point and an endpoint, and the

ositions of these starting and endpoints vary among tasks. The order in
hich tasks are completed affects the objective function. A reasonable

equencing method is a prerequisite for obtaining the optimal solution.
raditionally, each task is abstracted as a point, and the conventional
equencing approach connects these points into a directed line. The
tarting point of this line represents the task that must be assigned as
he first task at that moment. However, this approach overlooks the
elationship between the starting and endpoints of the line. Therefore,
his paper proposes a more flexible sequencing method that connects
hese points into a directed circular structure. With this approach, AGVs
an choose any point on the circular structure as the starting point for
task.

.1.2. Assignment
For the circular structure composed of 𝑞 tasks, 𝑣 tasks (𝑣 < 𝑞) are

selected and the circle can be divided into 𝑣 parts. Then, if these 𝑣 parts
re assigned to the same number of AGVs, the assignment is called a
alanced assignment problem (Kuhn, 1955). If 𝑣 exceeds the number of
GVs, it is a problem of unbalanced allocation, as shown in Fig. 5. The

eftmost graph in the figure represents the task sequencing, the middle
raph shows the balanced assignment (matching) problem and the right
raph shows the final allocation result.

Fig. 5 depicts the allocation of 4 tasks to 2 AGVs, where squares rep-
esent AGVs and circles represent tasks. The tasks are first concatenated
nto a directed task circle{1 → 2 → 3 → 4 → 1} that represents the task

sequencing, and then different points in the task order are selected to
match the AGVs. If AGV1 matches task 4 and AGV2 matches task 2,
then task 4 is disconnected from task 3 in the task order, and task 2 is
disconnected from task 1. AGV1 goes to complete the section of task
order where task 4 is located, and AGV2 goes to complete the section
of task order where task 2 is located.

4.2. ALNS-KM algorithm

Following the decomposed structure, this part proposes an inte-
grated ALNS-KM algorithm to solve the task allocation problem involv-
ing task sequencing and task assignment together.

ALNS can be used to efficiently explore the space of sequencing
combinations based on neighborhood search (Mara, Norcahyo, Jo-
diawan, Lusiantoro, & Rifai, 2022). It has been widely applied to
transportation and logistics optimization problems such as TSP and
VRP. The task ordering problem in the unbalanced allocation problem
needs to be solved for a reasonable task sequencing, and ALNS can
fulfill its needs. The KM algorithm can be used to solve the balanced
assignment problem (Delaram, Houshamand, Ashtiani, & Valilai, 2021;
Rabbani, Khan, & Quddoos, 2019) and can find the optimal solution
in finite time, so the KM algorithm is chosen to solve the balanced as-
6

signment problem in the unbalanced allocation problem. The developed
Table 3
Notation for algorithm.

Notation Description

𝐶 Encoding
𝑀AT Distance matrix between AGVs and tasks
𝑀TT Distance matrix between tasks
𝑀W Weight matrix between AGVs and tasks
𝑆, 𝑠 Solution
𝑇s Simulation task set
𝑇min Initial temperature
𝛼 Temperature cooling rate
𝑖𝑡𝑒𝑟m Maximum iterations
𝑆best Optimal solution
𝐶best Encoding of the optimal solution
𝐽best Objective value of the optimal solution
𝜔d Selection weight of the destroy operator
𝜔r Selection weight of the repair operator
𝑖𝑡𝑒𝑟 Iterations
𝐶0 , (𝑆0 , 𝐽0) Initial encoding(solution,objective value)
𝐶new , (𝑆new , 𝐽new) New encoding(solution,objective value) for each iteration
𝑇 Temperature
𝑇L Rolling horizon length
𝑇w Collection of tasks waiting to be assigned
𝑇a Allocation results obtained at each rolling planning
𝑇f First task to be executed in 𝑇a
𝑀a Completion time matrix for executing tasks

ALNS algorithm incorporating KM evaluation is denoted as ALNS-KM.
The essential steps of ALNS-KM are depicted in Fig. 6.

Before introducing the algorithm, Table 3 gives the relevant symbols
and meanings.

4.2.1. Encoding and decoding
Designing a clear and efficient encoding is a key part of heuristic

design. ALNS is used to search the space of sequencing combinations, so
the encoding is used to represent the sequencing of tasks. The encoding
is represented by the list 𝐶 = {1, 2, 3, 4,… , 1}. Each element in the
list represents a task index, and the last element is the same as the
first element. This encoding represents the sequence between tasks as
{1 → 2 → 3 → 4 → ⋯ → 1}.

The decoding scheme relies on the KM algorithm, with detailed
procedures outlined in Algorithm 1. This algorithm constructs a matrix
of matching weights between every task point and each AGV, then
employs the KM algorithm to determine the optimal matching solution
within this matrix. Given the established matching, the task sequence
is partitioned into 𝑣 segments. Tasks allocated to an AGV are distanced
from the preceding task, thereby minimizing the travel time from the
previous task to the current one and enhancing the efficiency of the
AGV’s journey to the current task. Consequently, the weight associated
with a task point and an AGV can be defined as the disparity between
the distance that the AGV must travel to reach the task point and the
distance it would have traveled from the previous task point to the
current task point.

The decoding process is shown in the example encoded as {1, 2, 3, 4,

1}. If the KM algorithm assigns the AGV to task 4, it needs to disconnect
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the connection between task 3 and task 4. Each additional AGV divides
the task sequencing circle by one more segment. The first task assigned
by each AGV is the point with which it is directly matched, and the rest
of the tasks are the segmented section where that point is located.

Algorithm 1 Decode using KM
Input: 𝐶, 𝑀AT, 𝑀TT
1: Initialize 𝑀W, 𝑆, 𝑠
2: for 𝑖 = 1 to |𝑉 | do
3: for 𝑗 = 2 to |𝐶| do
4: 𝑀W[𝑖][𝐶[𝑗]] = 𝑀AT[𝑖][𝐶[𝑗]] −𝑀TT[𝐶[𝑗 − 1]][𝐶[𝑗]]
5: end for
6: end for
7: 𝑠 ← Kuhn_Munkres(𝑀W)
8: for 𝑘 = 1 to |𝑠| do
9: 𝑆 ← 𝑠[𝑘] to the previous element of 𝑠[𝑘 + 1] in 𝐶

10: end for
Output: 𝑆

The encoding represents a task sequence, while the decoding is
he assignment process based on the task sequence. Fig. 7 depicts
he difference between the traditional encodings and the encodings
n this paper in a scenario consisting of 2 AGVs and 4 tasks, with
ultiple traditional encodings on the left, the solutions corresponding

o these encodings in the center, and the solution resulting from the
ombination of an ALNS-KM encoding and decoding on the right (see
ig. 5 for details). With this ALNS-KM coding, 2 tasks out of 4 must
e selected to match with 2 AGVs so that the coding can constitute
2
4 allocation schemes. For the scenario of 𝑣 vehicles and 𝑞 tasks, one

encoding in this encoding method corresponds to 𝐴𝑣
𝑞 encodings in the

onventional encoding.
Selecting the best allocation scheme among 𝐴𝑣

𝑞 possible schemes
eans choosing 𝑣 tasks from 𝑞 tasks to assign to 𝑣 AGVs in such a way

hat 𝐽 is optimized. This is a balanced assignment problem, and the KM
lgorithm can be used to compute the optimal solution within a finite
ime (Chopra, Notarstefano, Rice, & Egerstedt, 2017). The process is
7

hown in Algorithm 1. i
4.2.2. Operator competition
The ALNS algorithm selects the search direction based on the com-

petition of different operators so that the weight of operator 𝑖 being
elected is 𝜔𝑖. When ALNS iterates, the operator selection weight 𝜔𝑖
ill change with the performance of the corresponding operator. The
eight of the operator with good performance will become larger and

arger, while the weight of the operator with poor performance will
ecrease relatively. Small, to choose a better operator. The performance
core of this operator needs to be updated with iterations. When the
ew solution obtained by using the destruction and repair operators
s better than the optimal solution, the score of the corresponding
perator is increased by 𝜇1; when the new solution is better than the
urrent solution and worse than the optimal solution, the score of the
orresponding operator increases by 𝜇2; when the new solution is worse
han the current solution, but is accepted by the Metropolis acceptance
riterion, the score of the corresponding operator is increased by 𝜇3;
hen the new solution is worse than the current solution, and is not
ccepted by the Metropolis acceptance criterion, the corresponding The
perator’s score increases by 0.

The update formula of the selection weight 𝜔𝑖 of operator 𝑖 is:

𝑖 = (1 − 𝑏)𝜔′
𝑖 + 𝑏

𝑃𝑖
𝑁𝑖

, (8)

where 𝜔′
𝑖 represents the weight before the update, 𝑏 is the reaction

arameter, 𝑃𝑖 is the performance score of the operator 𝑖, 𝑁𝑖 is the
perator number of uses of the operator 𝑖.

.2.3. Destruction operator and repair operator
The destruction operator breaks the original structure of the en-

oding and is combined with the repair operator to generate a new
ncoding in the neighborhood of the original encoding. As can be seen
rom Fig. 7, one encoding corresponds to multiple allocations, and the
M algorithm can be used to obtain the optimal allocation among these
llocations, which greatly improves search efficiency. Therefore, this
rticle only uses two damage operators and two repair operators. to
earch for a better solution. (1) Random destruction operator, which
andomly removes a task from the current encoding; (2) Maximum
mpact factor destruction operator, which removes the task that has
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Fig. 8. Schematic diagram of destruction operator and repair operator.
Fig. 9. The mean S/N plot for different levels of the parameters for T20A3I1-A1.
the greatest impact on decoding in the encoding; (3) Random repair
operator, this operator randomly inserts the removed tasks into the en-
coding; (4) Greedy repair operator: This operator traverses the removed
operators and inserts them into the encoding, and selects the one with
the best KM algorithm evaluation position insert, as shown in Fig. 8,
where the weighted indicate the weighted that select that location for
destruction (repair). The weighted of the random destruction (repair)
operator are all the same, the weight of the greedy repair operator is the
optimal evaluation value of traversing each location, and the weight of
the maximum impact factor destruction operator is calculated as:

𝑊𝑚 = 𝑀TT[𝐶[𝑚 − 1]][𝐶[𝑚]] +𝑀TT[𝐶[𝑚]][𝐶[𝑚 + 1]]

−𝑀𝑇𝑇 [𝐶[𝑚 − 1]][𝐶[𝑚 + 1]] (9)

here 𝑊𝑚 denotes the weight of the 𝑚th position of the encoding to be
8

estroyed.
4.2.4. Basic ALNS-KM framework

The ALNS algorithm improves the solution obtained through the
competition of different algorithms. Algorithm 2 gives the basic frame-
work of the ALNS algorithm based on KM evaluation. The encoding in
Algorithm 2 does not directly represent the allocation scheme; instead,
it needs to be encoded to get the allocation scheme, and then the evalu-
ation value of that encoding is obtained. After initialization, Algorithm
2 selects the appropriate destruction and repair operators based on the
operator weights, which break the construction of the initial solution
and generate a new solution. The new solution needs to be decoded
to get the evaluated value, and the acceptance criterion for the new
solution uses the Metropolis criterion for simulated annealing (Ropke
& Pisinger, 2006), i.e., the probability of accepting the current solution
is exp

(

−(𝐽new−𝐽 )
)

. The probability of accepting the current solution
𝑇
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s higher when the current temperature is high and decreases as the
emperature decreases.

.2.5. Rolling horizon version of ALNS-KM
The ALNS-KM algorithm presented earlier is not directly applicable

o solving the dynamic unbalanced allocation problem. To address
his, a rolling horizon policy adapted to the dynamic environment is
roposed in this section. The policy is similar to Section 3.2, and the

specific framework is shown in Algorithm 3.
The framework aims to obtain the allocation by periodically solving

at the arrival of each new task. In Algorithm 3, the third line reveals
that 𝑇w represents the task of each arrival, while the sixth line indicates
that tasks executed within the control range of the rolling planning are
assigned to the AGVs. The remaining tasks, along with the upcoming
arrivals, serve as inputs for the subsequent planning. At the beginning
of each planning phase, tasks may already be in the process of being ex-
ecuted by the AGVs. Consequently, the start time of executing the tasks
allocated for this phase varies among the different AGVs. Therefore, the
completion time of each executed task is recorded in the seventh line.

5. Results and discussions

In this section, we compare the computational results of the pro-
posed ALNS-KM algorithm with existing heuristic rules and metaheuris-
tics. This section first introduces the warehousing scenarios and related
9

parameters and then analyzes the computation example results.
Algorithm 2 ALNS-KM
Input: 𝑇s,𝑇min,𝛼, 𝑖𝑡𝑒𝑟m
1: Initialize 𝑆best , 𝐶best , 𝜔d, 𝜔r , 𝑖𝑡𝑒𝑟 , 𝑇
2: Generate initial encoding 𝐶0={1, 2, 3, ..., |

|

𝑇s|| , 1}, 𝐶 ← 𝐶0
3: 𝑆0 ← Decode(𝐶0), 𝑆 ← 𝑆0
4: Generate objective function 𝐽0 based on 𝑆0 and Equation(1), 𝐽best ←

𝐽0
5: repeat
6: Choose destroy operator d𝑖() and repair operator r𝑖() based on 𝜔d

and 𝜔r
7: 𝐶new ← r𝑖(d𝑖(𝐶))
8: 𝑆new ← Decode(𝐶0)
9: Generate objective function 𝐽new based on 𝑆new and Equation(1)
0: if 𝐽new < 𝐽 then
1: if 𝐽new < 𝐽best then
2: 𝐶best ← 𝐶new, 𝐽best ← 𝐽new
3: end if
4: 𝐶 ← 𝐶new ,𝐽 ← 𝐽new
5: else {Random() < exp

(

−(𝐽new−𝐽 )
𝑇

)

}
16: 𝐶 ← 𝐶new ,𝐽 ← 𝐽new
17: end if
18: update 𝜔d[𝑖] and 𝜔r [𝑖] based on Equation(8)
19: 𝑇 ← 𝛼𝑇
0: until 𝑇 < 𝑇min or 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟m
1: 𝑆best ← Decode(𝐶best )
Output: 𝑆best
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Algorithm 3 Rolling horizon framework of ALNS-KM
Input: 𝑇s, 𝑉 , 𝑇L
1: Initialize 𝑇f , 𝑇w, 𝑇a, 𝑀a, 𝑖𝑡𝑒𝑟
2: repeat
3: 𝑇w ← 𝑇s[𝑖𝑡𝑒𝑟 ∗ 𝑇L , (𝑖𝑡𝑒𝑟 + 1) ∗ 𝑇L − 1]
4: Generate 𝑀AT, 𝑀TT based on 𝑇w and 𝑀a
5: 𝑇a ← ALNS − KM(𝑇w)
6: 𝑇f ← 𝑇a[𝑖𝑡𝑒𝑟 ∗ 𝑇L , (𝑖𝑡𝑒𝑟 + 1) ∗ 𝑇L − 1], 𝑇w ← 𝑇a∖𝑇f
7: Update 𝑀a based on the task completion time in the 𝑇f
8: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
9: until |

|

𝑇f || = |

|

𝑇s||
Output: 𝑇f

5.1. Scenario settings

To validate the effectiveness of the proposed algorithm, this section
presents various task scenarios in a warehouse environment to analyze
the proposed method. The warehouse environment is defined in Huo,
heng, Zhang, and Liu (2022) and Polten and Emde (2021). These

examples are categorized based on the number of tasks arriving each
time and the total number of task arrivals and are denoted as T10A6I2.
Here, T10 signifies that 10 tasks arrive each time, and A6 indicates that
these tasks arrive 6 times (if the number of tasks arriving each time is
twice the number of vehicles, the arrival time is 30 s; if the number
of tasks arriving each time is four times the number of vehicles, the
arrival time is 60 s.), and I2 represents the second instance. The tasks’
interval arrival is referenced from Ghassemi and Chowdhury (2022).

The proposed ALNS-KM algorithm is compared with the First-come-
first-serve (FCFS) heuristic and two classic metaheuristic algorithms:
the traditional ALNS and the genetic algorithm (GA) in Jiang et al.
(2023). The GA searches for solutions by applying crossover, muta-
tion, and selection operations to the population, and obtains improved
solutions after several iterations.

In all the scenarios, We use the objective function (𝐽 ) and com-
putation time (𝐶𝑇 ) as performance indicators for all methods. In the
objective function, the values of 𝑤1 and 𝑤2 are both set to 1 aiming
for a minimal total completion time while minimizing the makespan.
For the metaheuristic algorithm, each computation example calculates
the mean, maximum, and minimum values 20 times, and the fitness
evaluation times are set to 10,000. For the solver GUROBI, the maxi-
mum computation time is set to 600 s. All methods are implemented
using Python 3.8 programming on Windows 10 (64-bit) system. The
computer configuration is Intel’s i7-11700 (2.5GHZ) processor with
16 GB of memory.

5.2. Parameter selection

In metaheuristic algorithms, parameters play a crucial role in deter-
mining performance (Shi, Liu, & Zhou, 2023). In the designed meta-
heuristic algorithm, four key parameters require calibration: initial
temperature 𝑇max, temperature cooling rate 𝛼, reaction parameter 𝑏,
and reward combinations [𝜇1, 𝜇2, 𝜇3]. To obtain the suitable values of
these four parameters, Taguchi’s method was used (Zhou & Lee, 2020).
Four value levels were set for each parameter to determine a suitable
value for subsequent experiments, and the range of parameter selection
is shown in Table 4.

In this paper, the objective function can be used as a performance
metric to evaluate the effect of different parameters. The smaller the
10

objective value obtained by this algorithm indicates that the parameter a
Table 4
Parameter levels for ALNS-KM.

Parameter level 1 2 3 4

𝑇max 100 200 300 400
𝛼 0.8 0.9 0.999 0.99999
𝑏 0.1 0.4 0.6 0.9
[𝜇1 , 𝜇2 , 𝜇3] [0.45,0.3,0.15] [33,13,9] [45,15,3] [100,10,1]

Table 5
Taguchi L16 orthogonal array and S/N.

No. 𝑇max 𝛼 𝑏 [𝜇1 , 𝜇2 , 𝜇3] S/N

1 100 0.8 0.1 [0.45,0.3,0.15] −42.883
2 100 0.9 0.4 [33,13,9] −42.918
3 100 0.999 0.6 [45,15,3] −42.867
4 100 0.99999 0.9 [100,10,1] −42.751
5 200 0.8 0.4 [45,15,3] −42.855
6 200 0.9 0.1 [100,10,1] −42.912
7 200 0.999 0.9 [0.45,0.3,0.15] −42.820
8 200 0.99999 0.6 [33,13,9] −42.706
9 300 0.8 0.6 [100,10,1] −42.908
10 300 0.9 0.9 [45,15,3] −42.899
11 300 0.999 0.1 [33,13,9] −42.922
12 300 0.99999 0.4 [0.45,0.3,0.15] −42.696
13 400 0.8 0.9 [33,13,9] −42.914
14 400 0.9 0.6 [0.45,0.3,0.15] −42.898
15 400 0.999 0.4 [100,10,1] −42.808
16 400 0.99999 0.1 [45,15,3] −42.725

is more effective. Therefore the smaller-the-better type characteristic
S/N is used in Taguchi’s method with the following formula:

𝑆∕𝑁 = −10log10(
1
𝑛

𝑛
∑

𝑖=1
(𝐽𝑖)2), (10)

where 𝐽𝑖 denotes the objective value of the 𝑖th experiment solved by
etaheuristic and 𝑛 denotes the number of experiments.

The L16 orthogonal array of the Taguchi method is adopted to design
he experimentation. We conducted experiments for instance T10A3I1-
1 and repeated the test 20 times for each parameter combination of

he orthogonal array, and the S/N results are shown in Table 5. The L16
rthogonal array and their corresponding parameter settings and S/N
re presented in Table 5.

According to the S/N results in Table 5, the results of the response
alues of each parameter level for each parameter were averaged
eparately, and the trend of the effect of each parameter level on the
esults can be obtained, as shown in Fig. 9. Fig. 9 shows how each
arameter affects S/N. The slopes of the folded lines in the graph
ndicate the relative amount of S/N for each parameter; the greater the
lope, the greater the effect of the parameter on S/N. The larger the
/N, the better the effect produced by the parameter. So, the parameter
alues are finally set as: Tmax = 200, 𝛼 = 0.99999, 𝑏 = 0.4, [𝜇1, 𝜇2, 𝜇3] =
0.45, 0.3, 0.15]. Based on preliminary tests, the population size and
utation rate of GA is 50 and 0.01, respectively.

.3. Performance comparison

.3.1. Single-round task scenarios
Table 6 compares the objective values (𝐽 i.e., the weighted sum

f makespan and the total completion time) and computation time
𝐶𝑇 ) for single-round task scenarios of two AGVs. The metaheuristic
lgorithm provides the average objective value over 20 experiments
or every instance, along with the standard deviation. It is important to
ote that a single round of tasks serves as the foundation for multiple
ounds of tasks. 𝛥𝑂𝑏𝑗 indicates the performance between the aver-
ge objective value obtained between ALNS-KM and the benchmark
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Table 6
Compared performances of single-round task scenarios. (2 AGVs, UNIT: SECOND).

Instance Gurobi GA ALNS ALNS-KM vs. Gurobi vs. GA vs. ALNS

Obj CT Obj CT Obj CT Obj CT 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗

T4A1I1 99 0.02 109.3 ± 7.3 0.18 ± 0.01 99.0 ± 0.0 0.31 ± 0.27 99.0 ± 0.0 0.84 ± 0.01 0.0% −9.4% 0.0%
T4A1I2 116 0.04 124.1 ± 9.9 0.18 ± 0.01 116.0 ± 0.0 0.21 ± 0.00 116.0 ± 0.0 0.83 ± 0.02 0.0% −6.5% 0.0%
T4A1I3 105 0.02 113.5 ± 4.5 0.18 ± 0.01 105.0 ± 0.0 0.22 ± 0.01 105.0 ± 0.0 0.84 ± 0.02 0.0% −7.5% 0.0%
T4A1I4 103 0.02 114.8 ± 11.6 0.18 ± 0.01 103.0 ± 0.0 0.22 ± 0.01 103.0 ± 0.0 0.85 ± 0.02 0.0% −10.3% 0.0%
T4A1I5 105 0.02 112.3 ± 8.2 0.18 ± 0.01 105.0 ± 0.0 0.21 ± 0.01 105.0 ± 0.0 0.85 ± 0.02 0.0% −6.5% 0.0%
T8A1I1 240 4.1 267.9 ± 14.6 0.24 ± 0.01 242.5 ± 7.0 0.29 ± 0.01 241.0 ± 1.8 1.36 ± 0.19 0.4% −10.0% −0.6%
T8A1I2 188 2.3 217.1 ± 19.0 0.24 ± 0.01 189.1 ± 0.8 0.29 ± 0.01 188.6 ± 2.4 1.39 ± 0.20 0.3% −13.1% −0.3%
T8A1I3 202 1.5 241.0 ± 13.4 0.24 ± 0.01 203.2 ± 2.0 0.29 ± 0.01 202.2 ± 0.7 1.31 ± 0.02 0.1% −16.1% −0.5%
T8A1I4 182 1.6 222.5 ± 13.5 0.24 ± 0.01 186.1 ± 4.6 0.29 ± 0.01 182.0 ± 0.0 1.29 ± 0.04 0.0% −18.2% −2.2%
T8A1I5 188 0.4 237.3 ± 17.9 0.24 ± 0.01 191.8 ± 9.0 0.30 ± 0.01 188.2 ± 1.1 1.26 ± 0.02 0.1% −20.7% −1.9%
T12A1I1 305 600 352.1 ± 14.3 0.29 ± 0.01 308.1 ± 2.8 0.36 ± 0.01 307.1 ± 2.4 1.72 ± 0.01 0.7% −12.8% −0.3%
T12A1I2 312 600 358.6 ± 15.2 0.30 ± 0.01 316.5 ± 3.2 0.37 ± 0.03 316.0 ± 4.1 1.75 ± 0.04 1.3% −11.9% −0.2%
T12A1I3 274 600 323.2 ± 14.2 0.30 ± 0.01 279.5 ± 4.6 0.37 ± 0.02 280.3 ± 6.6 1.88 ± 0.14 2.3% −13.3% 0.3%
T12A1I4 282 600 340.6 ± 19.9 0.30 ± 0.01 285.6 ± 3.7 0.36 ± 0.01 284.0 ± 2.5 1.90 ± 0.28 0.7% −16.6% −0.6%
T12A1I5 255 600 303.1 ± 16.5 0.30 ± 0.01 260.1 ± 5.1 0.36 ± 0.01 260.0 ± 4.9 1.81 ± 0.04 2.0% −14.2% 0.0%
T16A1I1 395 600 440.6 ± 17.4 0.34 ± 0.01 399.6 ± 4.8 0.48 ± 0.16 399.3 ± 4.0 2.32 ± 0.04 1.1% −9.4% −0.1%
T16A1I2 395 600 450.8 ± 16.0 0.36 ± 0.02 403.1 ± 9.1 0.43 ± 0.01 402.7 ± 5.7 2.33 ± 0.07 1.9% −10.7% −0.1%
T16A1I3 343 600 410.2 ± 18.0 0.34 ± 0.01 348.9 ± 6.1 0.43 ± 0.01 348.1 ± 4.8 2.27 ± 0.09 1.5% −15.1% −0.2%
T16A1I4 384 600 452.9 ± 17.9 0.34 ± 0.01 392.1 ± 8.6 0.44 ± 0.01 391.3 ± 9.0 2.29 ± 0.03 1.9% −13.6% −0.2%
T16A1I5 319 600 377.4 ± 15.3 0.35 ± 0.01 325.3 ± 4.8 0.44 ± 0.03 324.8 ± 5.5 2.28 ± 0.03 1.8% −13.9% −0.2%

Average 239.6 300.5 278.5 ± 118.5 0.27 ± 0.06 243.0 ± 102.3 0.33 ± 0.11 242.2 ± 102.3 1.57 ± 0.55 0.8% −12.5% −0.4%
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method, as shown in the following formula:

𝛥Obj =
(𝑂𝑏𝑗𝐴𝐿𝑁𝑆−𝐾𝑀 − 𝑂𝑏𝑗𝑍 )

𝑂𝑏𝑗𝑍
(11)

here 𝑂𝑏𝑗𝑍 and 𝑂𝑏𝑗𝐴𝐿𝑁𝑆−𝐾𝑀 denote the average objective value
btained by the benchmark method Z and ALNS-KM, respectively and
negative value of 𝛥𝑂𝑏𝑗 indicates that ALNS-KM can obtain a lower

bjective function value than the benchmark method due to the bench-
ark method.

Table 6 shows that the computation efficiencies of ALNS-KM and
LNS are close to that of GUROBI for a small number of tasks. As the
umber of AGVs grows considerably, the minimum values solved by
LNS-KM and ALNS are close to the results of GUROBI solving for
00 s. The average values of ALNS-KM are slightly better than those
f ALNS and are significantly better than those of GA. Table 6 also
ndicates that Gurobi solves poorly for a large number of tasks. Gurobi
s poorly solved and unsuitable for dynamic environments. Under the
ulti-round task scenarios, Gurobi is not recommended due to its com-
utation inefficiency and only heuristic algorithms and meta-heuristic
lgorithms are discussed under the multi-round task scenarios.

.3.2. Multiple-round task scenarios
Tables 7–10 compare the computational performance of the four

ethods for multiple-round task scenarios with different numbers of
GVs. The meta-heuristic algorithm gives the results of 20 experiments
average objective values and standard deviation for every instance.

n addition, FCFS has a very short computation time in all scenarios
nd is therefore denoted by ‘‘-’’. These tables also include the average
bjective value and the average computation time for the various
ethods for all scenarios at the bottom. In addition, to show more

learly the differences in the objective values of these metaheuristics,
ig. 10 is used to show the average of the objective mean, maximum,
nd minimum values corresponding to each table.

Comparison of Tables 7–10 shows that the proposed ALNS-KM is
uperior to the other three methods. Overall, ALNS-KM can compute
he minimum average objective values and standard deviation in the
ast majority of cases with reasonable computation time. In Table 7,
here the number of AGVs is small, ALNS-KM slightly outperforms
LNS and significantly outperforms GA. This indicates that the solution
11
ffectiveness of ALNS-KM and ALNS is similar at this scale. In Tables 8–
0, where the number of AGVs is high, the advantage of ALNS-KM,
hich is indistinguishable in Table 7, is more obvious. In addition, we
bserve that FCFS has high computational speed and poor computa-
ional effectiveness under all the arithmetic cases, which indicates that
CFS does not apply to the unbalanced task allocation problem.

Fig. 10 compares the maximum, minimum, and average objective
alues for different instances. It is apparent from Fig. 10 that as the
roblem size increases, the gap between the maximum, minimum,
nd average objective values of ALNS-KM, ALNS, and GA becomes
ore obvious. In addition, in Fig. 10(b), (c), and (d), the maximum

bjective value of ALNS-KM is significantly smaller than the minimum
bjective value of the other two methods. This indicates that ALNS-
M is significantly better than the other three methods in terms of the
bjective function. The proposed method shows strong robustness to
he objective values, and the gap between the maximum objective value
nd the minimum objective is significantly smaller than the other two
ethods.

.3.3. Convergence curve comparison
Fig. 11 depicts the convergence trends of three metaheuristic al-

orithms (GA, ALNS, ALNS-KM) during the initial round of task ar-
ivals across different instances: T4A3I1, T4A6I1, T10A3I1, T10A6I1,
20A3I1, and T20A6I1. The data represents the average results ob-
ained from 20 experiments for these instances.

In particular, subfigures (a) and (b) focus on the small-scale sce-
arios. Subfigure (a) highlights that ALNS-KM achieves convergence at
n earlier stage compared to ALNS and GA, with all three algorithms
onverging to the same value. Conversely, subfigure (b) showcases the
cenario where the task count is four times the number of vehicles,
emonstrating that ALNS-KM converges earlier than the other two
lgorithms, with a lower convergence value. Additionally, ALNS-KM is
apable of reaching the convergence values of GA and ALNS within
shorter number of iterations. In small-scale scenarios, the computa-

ional efficiencies of ALNS-KM and ALNS are close to each other due to
he small problem size.

Sub Fig. 11(c)–(f) correspond to medium-scale and large-scale in-
tances. These four subfigures show that ALNS-KM outperforms GA
nd ALNS consistently in both the convergence speed (in fewer fitness
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Table 7
Compared performances of multi-round task scenarios. (2 AGVs, UNIT: SECOND).

Instance FCFS GA ALNS ALNS-KM vs. FCFS vs. GA vs. ALNS

Obj CT Obj CT Obj CT Obj CT 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗

T4A3I1 553 – 373.9 ± 10.2 0.20 ± 0.02 340.7 ± 1.7 0.25 ± 0.06 340.3 ± 3.1 1.00 ± 0.09 −38.5% −9.0% −0.1%
T4A3I2 494 – 297.0 ± 11.8 0.18 ± 0.01 260.0 ± 0.0 0.21 ± 0.00 260.0 ± 0.0 0.93 ± 0.02 −47.4% −12.5% 0.0%
T4A3I3 549 – 346.6 ± 16.6 0.19 ± 0.01 326.2 ± 3.5 0.22 ± 0.00 323.0 ± 0.0 0.92 ± 0.06 −41.2% −6.8% −1.0%
T4A3I4 503 – 327.8 ± 11.5 0.18 ± 0.01 299.1 ± 11.9 0.22 ± 0.01 308.9 ± 16.0 0.92 ± 0.02 −38.6% −5.8% 3.3%
T4A3I5 584 – 367.3 ± 7.1 0.19 ± 0.03 349.0 ± 0.0 0.22 ± 0.00 347.1 ± 4.9 0.91 ± 0.01 −40.6% −5.5% −0.5%
T8A3I1 1045 – 648.6 ± 18.4 0.25 ± 0.01 602.9 ± 4.0 0.31 ± 0.03 609.2 ± 7.5 1.40 ± 0.05 −41.7% −6.1% 1.0%
T8A3I2 1123 – 687.4 ± 32.4 0.28 ± 0.02 621.2 ± 7.6 0.29 ± 0.01 615.4 ± 7.2 1.44 ± 0.08 −45.2% −10.5% −0.9%
T8A3I3 1035 – 671.5 ± 21.0 0.28 ± 0.02 602.7 ± 7.1 0.31 ± 0.01 602.4 ± 6.6 1.48 ± 0.09 −41.8% −10.3% 0.0%
T8A3I4 984 – 621.1 ± 26.2 0.27 ± 0.01 566.5 ± 6.8 0.30 ± 0.01 567.5 ± 7.3 1.44 ± 0.07 −42.3% −8.6% 0.2%
T8A3I5 972 – 604.0 ± 23.2 0.26 ± 0.02 550.0 ± 5.9 0.28 ± 0.01 549.0 ± 7.0 1.50 ± 0.19 −43.5% −9.1% −0.2%
T4A6I1 1008 – 644.2 ± 21.4 0.23 ± 0.01 585.0 ± 6.9 0.26 ± 0.02 582.9 ± 11.1 1.17 ± 0.05 −42.2% −9.5% −0.4%
T4A6I2 1022 – 650.1 ± 20.2 0.22 ± 0.01 612.9 ± 6.4 0.26 ± 0.01 595.2 ± 6.2 1.18 ± 0.04 −41.8% −8.4% −2.9%
T4A6I3 1074 – 690.8 ± 20.5 0.23 ± 0.01 625.4 ± 6.1 0.27 ± 0.02 622.0 ± 7.3 1.17 ± 0.04 −42.1% −10.0% −0.5%
T4A6I4 1048 – 627.9 ± 22.9 0.23 ± 0.01 555.1 ± 13.3 0.27 ± 0.01 556.5 ± 7.8 1.20 ± 0.03 −46.9% −11.4% 0.3%
T4A6I5 1156 – 708.0 ± 16.7 0.23 ± 0.01 650.9 ± 8.3 0.28 ± 0.01 650.9 ± 6.5 1.29 ± 0.08 −43.7% −8.1% 0.0%
T8A6I1 1908 – 1202.8 ± 38.4 0.34 ± 0.02 1064.4 ± 11.9 0.38 ± 0.01 1060.3 ± 10.1 2.05 ± 0.05 −44.4% −11.8% −0.4%
T8A6I2 2137 – 1344.9 ± 34.0 0.35 ± 0.01 1228.3 ± 17.8 0.40 ± 0.03 1225.5 ± 13.8 2.17 ± 0.08 −42.7% −8.9% −0.2%
T8A6I3 1872 – 1182.0 ± 24.2 0.34 ± 0.02 1071.0 ± 9.3 0.38 ± 0.01 1064.9 ± 5.8 2.06 ± 0.08 −43.1% −9.9% −0.6%
T8A6I4 2241 – 1403.8 ± 30.2 0.35 ± 0.01 1306.3 ± 11.1 0.39 ± 0.02 1309.0 ± 11.5 2.16 ± 0.03 −41.6% −6.8% 0.2%
T8A6I5 2064 – 1296.0 ± 36.9 0.35 ± 0.02 1182.3 ± 11.4 0.39 ± 0.02 1173.2 ± 8.4 2.10 ± 0.09 −43.2% −9.5% −0.8%

Average 1168.6 – 734.8 ± 347.6 0.26 ± 0.06 670.0 ± 316.2 0.29 ± 0.06 668.2 ± 314.8 1.42 ± 0.44 −42.6% −8.9% −0.2%
Table 8
Compared performances of multi-round task scenarios (5 AGVs, UNIT: SECOND).

Instance FCFS GA ALNS ALNS-KM vs. FCFS vs. GA vs. ALNS

Obj CT Obj CT Obj CT Obj CT 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗

T10A3I1 948 – 564.1 ± 43.4 0.34 ± 0.02 472.2 ± 19.2 0.42 ± 0.07 430.7 ± 8.9 1.96 ± 0.12 −54.6% −23.6% −8.8%
T10A3I2 972 – 576.2 ± 44.5 0.35 ± 0.02 489.9 ± 16.1 0.42 ± 0.02 466.8 ± 6.9 2.05 ± 0.04 −52.0% −19.0% −4.7%
T10A3I3 953 – 558.2 ± 31.1 0.36 ± 0.02 460.4 ± 12.3 0.42 ± 0.01 437.8 ± 11.3 2.04 ± 0.05 −54.1% −21.6% −4.9%
T10A3I4 1020 – 594.6 ± 42.3 0.36 ± 0.02 504.0 ± 11.9 0.43 ± 0.01 485.4 ± 9.7 2.06 ± 0.04 −52.4% −18.4% −3.7%
T10A3I5 1049 – 592.0 ± 34.2 0.37 ± 0.02 516.4 ± 11.6 0.43 ± 0.02 490.8 ± 7.5 2.05 ± 0.04 −53.2% −17.1% −5.0%
T20A3I1 1883 – 1128.5 ± 66.8 0.52 ± 0.04 996.1 ± 37.6 0.61 ± 0.03 898.2 ± 14.4 3.49 ± 0.12 −52.3% −20.4% −9.8%
T20A3I2 1947 – 1222.8 ± 65.8 0.52 ± 0.03 1021.8 ± 31.0 0.60 ± 0.03 925.3 ± 14.2 3.31 ± 0.17 −52.5% −24.3% −9.4%
T20A3I3 2007 – 1276.2 ± 102.4 0.54 ± 0.04 1048.1 ± 38.8 0.60 ± 0.02 958.5 ± 11.1 3.40 ± 0.08 −52.2% −24.9% −8.5%
T20A3I4 2058 – 1237.5 ± 85.7 0.54 ± 0.04 1044.9 ± 36.3 0.61 ± 0.02 955.8 ± 18.8 3.51 ± 0.09 −53.6% −22.8% −8.5%
T20A3I5 2128 – 1264.9 ± 86.3 0.54 ± 0.04 1082.2 ± 38.0 0.63 ± 0.02 996.0 ± 14.0 3.75 ± 0.08 −53.2% −21.3% −8.0%
T10A6I1 2190 – 1293.1 ± 39.4 0.46 ± 0.02 1126.7 ± 27.6 0.55 ± 0.01 1062.8 ± 9.4 2.85 ± 0.06 −51.5% −17.8% −5.7%
T10A6I2 2048 – 1192.9 ± 61.6 0.47 ± 0.03 1039.0 ± 21.3 0.53 ± 0.02 963.1 ± 8.7 2.74 ± 0.05 −53.0% −19.3% −7.3%
T10A6I3 1965 – 1130.8 ± 48.5 0.47 ± 0.02 971.1 ± 25.8 0.53 ± 0.01 906.2 ± 12.0 2.72 ± 0.08 −53.9% −19.9% −6.7%
T10A6I4 2030 – 1159.2 ± 48.7 0.45 ± 0.04 1012.8 ± 22.7 0.53 ± 0.02 929.1 ± 13.3 2.68 ± 0.06 −54.2% −19.8% −8.3%
T10A6I5 2080 – 1176.0 ± 49.1 0.46 ± 0.03 1032.2 ± 25.1 0.51 ± 0.02 951.1 ± 13.2 2.57 ± 0.05 −54.3% −19.1% −7.9%
T20A6I1 4066 – 2437.8 ± 125.7 0.84 ± 0.07 2156.7 ± 95.6 0.91 ± 0.04 1897.1 ± 19.4 5.32 ± 0.09 −53.3% −22.2% −12.0%
T20A6I2 4207 – 2593.1 ± 132.9 0.86 ± 0.05 2248.8 ± 68.0 0.90 ± 0.03 2021.7 ± 20.8 5.73 ± 0.14 −51.9% −22.0% −10.1%
T20A6I3 4094 – 2464.8 ± 96.5 0.87 ± 0.05 2203.5 ± 84.1 0.92 ± 0.03 1930.3 ± 27.8 5.47 ± 0.14 −52.9% −21.7% −12.4%
T20A6I4 4179 – 2557.8 ± 158.6 0.85 ± 0.05 2191.2 ± 59.4 0.92 ± 0.03 1985.2 ± 22.9 5.82 ± 0.13 −52.5% −22.4% −9.4%
T20A6I5 4199 – 2575.1 ± 114.8 0.83 ± 0.05 2213.3 ± 47.0 0.93 ± 0.02 2004.8 ± 24.1 6.06 ± 0.20 −52.3% −22.1% −9.4%

Average 2301.2 – 1379.8 ± 717.3 0.55 ± 0.19 1191.6 ± 628.5 0.62 ± 0.19 1084.8 ± 550.4 3.48 ± 1.39 −53.0% −21.0% −8.0%
evaluation times) and the convergence value (with a smaller fitness
value). Meanwhile, when the number of tasks increases, the advantage
of ALNS-KM becomes more considerable in comparison with GA and
ALNS. It is also observed that the initial objective values of ALNS-
KM are not the same as the other two methods, which is because
KM can solve for the optimal allocation scheme under the initial task
arrangement.

6. Conclusions and future work

In conclusion, the efficient allocation of tasks for AGVs in a ware-
house setting presents a complex and intricate decision problem. This
study delves into the dynamic unbalanced task allocation within a
multi-AGV system, focusing on real-time task arrivals. By framing this
as a dynamic vehicle routing problem with pickups and deliveries, a
rolling horizon strategy is proposed to reallocate tasks through iterative
solutions of an MIP problem periodically. An innovative algorithm
12
integrating adaptive large neighborhood search and the Kuhn–Munkres
algorithm is developed to enhance computational efficiency. Through
comprehensive numerical experiments, the potential of this approach is
demonstrated, showcasing its competitiveness against existing state-of-
the-art heuristics and metaheuristic algorithms. These findings under-
score the significance of the proposed dynamic task allocation approach
in enhancing the operational effectiveness of multi-AGV systems in
warehouse environments.

It can be seen from the numerical experiments that the solution
obtained by the ALNS-KM method is close to the exact solution on a
small scale, and is significantly better than the other three methods on
a large scale. ALNS-KM combines the adaptive search of ALNS with the
optimal matching of KM. ALNS searches different task rankings, and KM
generates the optimal matching based on the ranking and feeds it back
to ALNS as an evaluation value. One task sequencing can correspond
to multiple actual allocations, and KM can select the optimal allocation
from these actual allocations, greatly improving computing efficiency.
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Table 9
Compared performances of multi-round task scenarios. (10 AGVs, UNIT: SECOND).

Instance FCFS GA ALNS ALNS-KM vs. FCFS vs. GA vs. ALNS

Obj CT Obj CT Obj CT Obj CT 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗

T20A3I1 1719 – 1296.2 ± 79.0 0.50 ± 0.03 1178.5 ± 51.7 0.61 ± 0.07 1118.7 ± 6.5 4.21 ± 0.03 −34.9% −13.7% −5.1%
T20A3I2 1766 – 1271.6 ± 67.6 0.48 ± 0.03 1164.8 ± 31.9 0.57 ± 0.02 1103.6 ± 8.7 4.21 ± 0.04 −37.5% −13.2% −5.3%
T20A3I3 1903 – 1281.5 ± 62.1 0.48 ± 0.04 1152.0 ± 33.5 0.58 ± 0.02 1065.3 ± 12.4 4.20 ± 0.04 −44.0% −16.9% −7.5%
T20A3I4 1914 – 1250.8 ± 89.1 0.49 ± 0.03 1118.3 ± 41.9 0.58 ± 0.02 1059.1 ± 12.9 4.20 ± 0.03 −44.7% −15.3% −5.3%
T20A3I5 1952 – 1269.1 ± 56.9 0.50 ± 0.03 1099.2 ± 32.5 0.58 ± 0.01 1025.7 ± 9.7 4.21 ± 0.03 −47.5% −19.2% −6.7%
T40A3I1 3745 – 2381.8 ± 111.0 1.12 ± 0.09 2017.0 ± 66.5 1.20 ± 0.05 1685.9 ± 24.5 8.94 ± 0.17 −55.0% −29.2% −16.4%
T40A3I2 3748 – 2320.1 ± 124.4 1.13 ± 0.10 1979.2 ± 96.1 1.24 ± 0.08 1646.3 ± 32.2 9.19 ± 0.36 −56.1% −29.0% −16.8%
T40A3I3 3698 – 2308.9 ± 128.8 1.11 ± 0.09 1973.5 ± 85.2 1.22 ± 0.06 1607.5 ± 22.0 8.86 ± 0.19 −56.5% −30.4% −18.5%
T40A3I4 3774 – 2342.7 ± 136.8 1.11 ± 0.09 1957.0 ± 102.4 1.24 ± 0.04 1659.3 ± 20.5 9.27 ± 0.28 −56.0% −29.2% −15.2%
T40A3I5 3645 – 2324.6 ± 150.8 1.07 ± 0.08 1987.2 ± 97.6 1.19 ± 0.05 1623.8 ± 23.1 8.55 ± 0.17 −55.5% −30.1% −18.3%
T20A6I1 3746 – 2541.1 ± 130.3 0.55 ± 0.02 2339.8 ± 76.8 0.61 ± 0.05 2192.7 ± 5.6 4.15 ± 0.02 −41.5% −13.7% −6.3%
T20A6I2 3854 – 2592.3 ± 131.3 0.57 ± 0.04 2357.8 ± 50.3 0.58 ± 0.01 2163.0 ± 11.1 4.15 ± 0.01 −43.9% −16.6% −8.3%
T20A6I3 3743 – 2517.2 ± 68.7 0.58 ± 0.03 2291.6 ± 77.5 0.58 ± 0.02 2160.4 ± 7.3 4.36 ± 0.31 −42.3% −14.2% −5.7%
T20A6I4 3845 – 2548.8 ± 75.0 0.60 ± 0.05 2274.6 ± 43.7 0.58 ± 0.02 2118.2 ± 14.8 4.14 ± 0.18 −44.9% −16.9% −6.9%
T20A6I5 3917 – 2540.6 ± 103.6 0.59 ± 0.04 2247.9 ± 88.1 0.60 ± 0.02 2049.1 ± 15.1 4.13 ± 0.15 −47.7% −19.3% −8.8%
T40A6I1 7485 – 4608.9 ± 205.3 1.87 ± 0.20 4177.6 ± 126.9 1.74 ± 0.06 3342.6 ± 27.0 14.97 ± 0.43 −55.3% −27.5% −20.0%
T40A6I2 7531 – 4707.9 ± 304.8 1.77 ± 0.14 4180.2 ± 176.7 1.75 ± 0.06 3330.4 ± 49.7 14.45 ± 0.46 −55.8% −29.3% −20.3%
T40A6I3 7705 – 4819.8 ± 288.3 1.79 ± 0.16 4148.6 ± 136.0 1.75 ± 0.07 3419.5 ± 34.7 15.54 ± 0.41 −55.6% −29.1% −17.6%
T40A6I4 7469 – 4716.1 ± 201.8 1.79 ± 0.15 4063.5 ± 154.6 1.74 ± 0.07 3265.4 ± 40.2 14.99 ± 0.48 −56.3% −30.8% −19.6%
T40A6I5 7477 – 4682.9 ± 283.1 1.80 ± 0.15 4188.1 ± 194.6 1.76 ± 0.07 3316.2 ± 45.9 14.75 ± 0.41 −55.6% −29.2% −20.8%

Average 4231.8 – 2716.1 ± 1258.5 1.00 ± 0.53 2394.8 ± 1105.4 1.05 ± 0.49 2047.6 ± 835.2 8.07 ± 4.44 −49.3% −22.6% −12.5%
Table 10
Compared performances of multi-round task scenarios. (15 AGVs, UNIT: SECOND).

Instance FCFS GA ALNS ALNS-KM vs. FCFS vs. GA vs. ALNS

Obj CT Obj CT Obj CT Obj CT 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗 𝛥𝑂𝑏𝑗

T30A3I1 2522 – 1658.6 ± 112.3 0.86 ± 0.06 1310.2 ± 47.0 0.94 ± 0.04 1065.7 ± 17.0 7.46 ± 0.21 −57.7% −35.7% −18.7%
T30A3I2 2657 – 1688.0 ± 72.0 0.84 ± 0.05 1377.5 ± 41.5 0.96 ± 0.03 1104.0 ± 18.7 7.84 ± 0.18 −58.4% −34.6% −19.9%
T30A3I3 2724 – 1718.0 ± 86.9 0.86 ± 0.05 1317.6 ± 30.3 0.98 ± 0.04 1168.8 ± 18.3 8.47 ± 0.17 −57.1% −32.0% −11.3%
T30A3I4 2670 – 1732.6 ± 84.7 0.84 ± 0.04 1363.2 ± 41.4 0.95 ± 0.03 1130.2 ± 17.2 7.81 ± 0.28 −57.7% −34.8% −17.1%
T30A3I5 2925 – 1797.9 ± 72.4 0.88 ± 0.07 1419.5 ± 48.8 0.98 ± 0.03 1184.0 ± 20.9 8.12 ± 0.27 −59.5% −34.1% −16.6%
T60A3I1 5478 – 3578.2 ± 195.4 1.51 ± 0.09 3010.2 ± 118.9 1.59 ± 0.08 2410.6 ± 40.3 17.71 ± 0.50 −56.0% −32.6% −19.9%
T60A3I2 5584 – 3699.2 ± 197.4 1.54 ± 0.13 2937.6 ± 93.5 1.63 ± 0.11 2444.3 ± 42.8 17.96 ± 0.28 −56.2% −33.9% −16.8%
T60A3I3 5468 – 3542.2 ± 163.2 1.48 ± 0.14 2997.1 ± 90.1 1.62 ± 0.13 2393.1 ± 43.9 16.85 ± 0.43 −56.2% −32.4% −20.2%
T60A3I4 5384 – 3545.1 ± 233.6 1.51 ± 0.10 3046.5 ± 99.7 1.63 ± 0.09 2368.1 ± 27.4 17.03 ± 0.37 −56.0% −33.2% −22.3%
T60A3I5 5357 – 3568.3 ± 113.5 1.54 ± 0.08 2926.1 ± 108.9 1.59 ± 0.05 2339.1 ± 40.6 16.78 ± 0.36 −56.3% −34.4% −20.1%
T30A6I1 5663 – 3605.8 ± 194.0 1.42 ± 0.16 2836.4 ± 93.1 1.36 ± 0.05 2284.7 ± 19.9 12.68 ± 0.22 −59.7% −36.6% −19.5%
T30A6I2 5386 – 3466.1 ± 123.0 1.42 ± 0.13 2830.2 ± 72.8 1.38 ± 0.09 2213.1 ± 19.5 11.49 ± 0.20 −58.9% −36.2% −21.8%
T30A6I3 5538 – 3583.6 ± 200.9 1.38 ± 0.09 2828.7 ± 108.9 1.36 ± 0.05 2292.6 ± 17.6 12.36 ± 0.31 −58.6% −36.0% −19.0%
T30A6I4 5711 – 3559.2 ± 194.2 1.31 ± 0.08 2879.4 ± 58.6 1.38 ± 0.04 2362.2 ± 16.6 12.62 ± 0.25 −58.6% −33.6% −18.0%
T30A6I5 5525 – 3711.4 ± 223.9 1.38 ± 0.12 2875.2 ± 107.3 1.37 ± 0.04 2345.5 ± 25.4 12.33 ± 0.28 −57.5% −36.8% −18.4%
T60A6I1 10 755 – 7529.2 ± 411.7 2.98 ± 0.23 6361.2 ± 198.4 2.74 ± 0.10 4615.3 ± 38.8 27.66 ± 0.68 −57.1% −38.7% −27.4%
T60A6I2 11 007 – 7778.4 ± 402.9 2.70 ± 0.17 6570.0 ± 226.8 2.86 ± 0.19 4842.9 ± 50.7 29.47 ± 0.67 −56.0% −37.7% −26.3%
T60A6I3 11 200 – 7639.8 ± 382.1 2.70 ± 0.22 6526.4 ± 206.4 2.79 ± 0.12 4897.7 ± 49.2 30.33 ± 0.71 −56.3% −35.9% −25.0%
T60A6I4 11 208 – 7740.1 ± 384.2 2.70 ± 0.23 6627.2 ± 211.1 2.87 ± 0.16 4945.1 ± 34.3 29.64 ± 0.58 −55.9% −36.1% −25.4%
T60A6I5 11 130 – 7706.7 ± 379.7 2.74 ± 0.25 6559.4 ± 215.7 2.78 ± 0.10 4867.1 ± 50.5 29.58 ± 0.83 −56.3% −36.8% −25.8%

Average 6194.6 – 4142.4 ± 2195.8 1.63 ± 0.72 3430.0 ± 1906.8 1.67 ± 0.69 2663.7 ± 1351.6 16.71 ± 8.04 −57.3% −35.1% −20.5%
Future research directions could explore the application of machine
earning and artificial intelligence techniques to enhance further the
erformance of dynamic task allocation for multi-AGV systems. Addi-
ionally, investigating the integration of real-time environmental data
nd sensor information could lead to more adaptive and responsive
ask allocation strategies. Moreover, exploring the implications of this
esearch in broader contexts, such as smart city logistics or automated
ransportation systems, could offer valuable insights into the scalability
nd versatility of the proposed methodologies.
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