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A B S T R A C T

Shipping significantly contributes to air pollution and greenhouse gas emissions, accounting for more than 80%
of global trade. Consequently, governments have been focused on air pollution reduction for many years. The
adoption of shore power systems has increased, recognized for their effectiveness in reducing emissions. This
study introduces multi-objective mixed-integer programming models to investigate the impacts of government-
subsidy-based and berthing-priority-based incentive policies on various types of expense benefits from the
perspectives of different stakeholders. This paper aims to optimize shore power equipment deployment, berth
allocation, and ship scheduling while balancing environmental benefits, costs associated with shore power, and
operational efficiency. We design an improved NSGA-II with a two-stage solution algorithm to solve the studied
problem, which is more suitable for large-scale case calculations. Following the case study, we offer insights
for stakeholders to navigate the complexities of sustainable port development and promote the adoption of
shore power systems.
1. Introduction

Due to the rapid growth of economic globalization, shipping now
accounts for more than 80% of all international trade (UNCTAD, 2022;
Zhou & Kim, 2020a, 2020b). Additionally, shipping substantially con-
tributes to air pollution, particularly in ports and coastal cities, and
significantly adds to global warming through emissions (Gössling et al.,
2021). Ports are a major source of pollution while being a crucial part of
international maritime commerce, primarily because moored ships rely
on auxiliary engines for various operations such as cooling, heating,
lighting, and running pumps and fans (Qi et al., 2020). Carbon diox-
de (CO2), nitrous oxides (NO𝑥), sulfur oxides (SO𝑥), and particulate
atter (PM) are the main pollutants released by marine diesel engines

hat have a significant negative impact on the environment and hu-
an health (Yu et al., 2019). The International Maritime Organization

2020) reported that the percentage of shipping emissions in worldwide
nthropogenic emissions had climbed from 2.76% in 2012 to 2.89%
n 2018. Merk (2014) anticipated that port-related shipping emissions

will grow four times from their 2011 levels by 2050. Therefore, there is
growing concern over vessel emissions from the academic and maritime
industries at ports.
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Methods such as utilizing liquefied natural gas (Burel et al., 2013),
reducing shipping speeds, and implementing shore power systems (He
et al., 2020; Ye et al., 2022; Yin et al., 2022; Zis et al., 2014) have been
developed to minimize emissions from vessels that are moored at ports
for loading and unloading cargo. Among these, the shore power system
(SP), also known as alternative maritime power or cold ironing, has
emerged as a crucial strategy for controlling emissions at ports (Chen
et al., 2019; Tiwari et al., 2021). This system consists of the shore-side
electricity supply infrastructure (SPI) and the equipment on ships (SPE)
that facilitates connection to shore power. It enables ships to shut down
their auxiliary engines and run on electricity in ports (Wu & Wang,
2020).

While shore power systems effectively reduce emissions (Ballini &
Bozzo, 2015; Winkel et al., 2016; Zis, 2019), the adoption of shore
power systems faces significant challenges due to barriers in techno-
logical application, economic cost, operation and management, and
policy system (Chen et al., 2019; Dai et al., 2019; Jasmi & Fernando,
2018; Yigit & Acarkan, 2018). A typical ‘‘chicken and egg’’ paradox
complicates the promotion of SP (Winkel et al., 2016; Zis, 2019). This
paradox arises because a shipowner can only retrofit a ship profitably
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if a sufficient number of visited ports provide shore-side facilities, and
similarly, a port authority can only invest profitably in the SPI if a
consistent number of ships utilize and pay for its services, largely due to
economic considerations (Radwan et al., 2019; Tseng & Pilcher, 2015).
Thus, the government generally provides subsidies (GSIP) to convince
self-interested individuals such as shipowners and ports to construct
SP equipment for environmental benefits (Li et al., 2020; Wang et al.,
2021, 2022).

In practice, GSIP has proven less attractive than anticipated (Wang
et al., 2021, 2022). This is partly because shipowners, who are sensitive
to price fluctuations, may opt not to use SPI if the cost of electricity
surpasses that of diesel (Wang et al., 2021). Furthermore, the high
installation costs of SPE make the available government subsidies in-
sufficient (Wang et al., 2022). Despite about 50% of China’s coastal
ports being equipped with SPI by the end of 2020, less than 1% of
ships have installed SPE (Yin et al., 2020). This significant mismatch in
the adoption rates between SPI and SPE has limited the use of SP. To
increase the utilization of shore power systems, beyond optimizing the
government subsidy structure (Wang et al., 2021, 2022; Wu & Wang,
2020), ports could implement measures such as offering priority berth
of ships using the SP (BPIP) (Dai et al., 2019; Li et al., 2020; Yin et al.,
2020), thereby incentivizing shipowners to retrofit ships.

GSIP and BPIP have been implemented globally. For example, in
EU countries, government subsidies for SP include direct subsidies,
tax advantages, and risk transfer to the government (International
Transport Forum, 2019). In China, regulations such as China’s Min-
istry of Transport’s Administrative Measures for Port and Ship Shore
Power encourage ports to grant priority service to ships utilizing SP.
These policies affect stakeholders in the shore power system, who are
engaged in a strategic interplay, while the government aims to max-
imize environmental benefits through investment, shipowners seek to
minimize costs, and ports strive to maintain transportation efficiency.
Considering the diverse interests of various stakeholders, this study
assesses the impact of policies on different stakeholders. Moreover,
based on the current situation of insufficient SPE on ships, we focus
on the strategic decisions of shipowners regarding the installation of
SPE. Our contributions are summarized as follows:

1. We conduct multi-objective mixed-integer programming models
to balance environmental benefits, the costs associated with SP,
and operational efficiency from the perspectives of different
stakeholders. Our model optimizes decisions concerning SPE
deployment, berth allocation, and ship scheduling.

2. To solve the proposed problem, we develop an improved multi-
objective algorithm that combines a two-stage solution algo-
rithm with the non-dominated sorting genetic algorithm (NSGA-
II).

3. We examine the effects of GSIP and BPIP policies on multiple
objectives and SPE installations, explore solutions that balance
the benefits among multiple stakeholders and provide insightful
management observations based on our findings.

The remainder of this paper is organized as follows: Section 2
introduces the literature review; Section 3 presents the mathematical
formulation and proposed solution approaches to our problem; The
experimental results are shown in Section 4; Finally, the conclusions
are given in Section 5.

2. Literature review

This section presents a literature review covering two linked topics:
(2.1) barriers and policies for the development of SP systems; (2.2)
multi-objective problems in the context of SP systems. Table 1 presents
2

a summary of all the literature relevant to our study.
2.1. Barriers and policies for the development of SP systems

In exploring the broader application constraints of SP systems, Qi
et al. (2020) highlighted economic concerns and management flaws in
their systematic literature review, reflecting the diverse perspectives
of multiple stakeholders, including shipowners, ports, and govern-
ments. Arduino et al. (2011) identified three principal challenges in
Europe related to establishing SP systems: the high costs involved, the
absence of standardized equipment, and a lack of supportive legisla-
tion. Similarly, Radwan et al. (2019) and Tseng and Pilcher (2015)
emphasized that significant financial outlays for electrical energy and
the SP infrastructure investment constitute primary barriers to the SP
adoption. Furthermore, Chen et al. (2019) discovered that inadequate
policies, insufficient support systems, and rigid construction standards,
along with rules and regulations, have obstructed SP adoption in China.
In response to these challenges, Winkel et al. (2016) proposed that com-
prehensive policies integrating financial and fiscal incentives, alongside
operational and technical considerations, are essential for enhancing
SP systems in Europe. Yin et al. (2020) assessed the effectiveness
of SP regulations in China and concluded that they were ineffective
due to unattractive cost-benefit ratios and poorly targeted govern-
ment subsidies. Dai et al. (2019) examined the economic viability of
current investments in SP infrastructure at the Port of Shanghai, un-
veiling significant financial shortcomings. Based on these findings, Dai
et al. (2019) recommended that subsidies should be redirected from
the construction phase to the operational phase to improve financial
sustainability and effectiveness.

Several studies have explored the impact of the government subsidy
incentive policy (GSIP) (Peng et al., 2023; Song et al., 2017; Wang
et al., 2022; Wu & Wang, 2020). Song et al. (2017) developed an SP
economic model that adjusted electric pricing to maximize stakeholder
benefits and analyzed the relationship between government subsidy
rates and port benefits. Li et al. (2020) constructed a two-echelon
maritime supply chain that included ports and ship companies, and
employed game theory to optimize government subsidy intensity and
the subsidy reduction point. Wu and Wang (2020) investigated SP
deployment within container transport networks from a governmental
perspective, aiming to devise a subsidy scheme that reduces emissions
during mooring. Wang et al. (2021) addressed the issue of low SP
utilization across several stakeholders, including government, ports,
and shipowners, by developing and optimizing a framework to en-
hance the efficiency of government subsidies. Subsequently, Wang
et al. (2022) further refined this subsidy structure using a Stackelberg
game theory model. Similarly, Peng et al. (2023) compared two GSIPs
within the Stackelberg game framework and found that subsidizing
the price of SP is more cost-effective than subsidizing facility invest-
ment, particularly when the government budget is sufficient and the
benefits from emission reduction are significant. Other recent studies
have broadened the scope to assess the impact of various government
policies, including GSIP, on SP adoption. Tan et al. (2023) evaluated
environmental incentives (EI) and infrastructure subsidies, while Luo
et al. (2024) contrasted subsidies, carbon taxes, and green awareness
initiatives, and analyzed their effects through game-theoretical models
in different adoption phases.

Limited previous studies have measured the impact of the berthing
priority incentive policy (BPIP) on SP systems (Gong et al., 2024; Zhen
et al., 2022). According to Yin et al. (2020), shipowners are particularly
oncerned about policies or regulations that could improve their op-
rational efficiencies, such as those granting priority for entrance and
erthing. Li et al. (2020) and Wang et al. (2021) also suggested that

ports could offer service priority to SP users. Zhen et al. (2022) were
the first to assess and address these two incentive policies, GSIP and
BPIP, optimizing the deployment of SPE, ship scheduling and berth
allocation to minimize overall system costs. Expanding on this, Gong
et al. (2024) introduced three novel policies: a subsidy policy based

on the number of SP uses (SNTP), an environment fee discount policy
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Table 1
Summary of related studies in the context of SP systems.

Papers Research aim Research method

Adoption
and
barriers

Strategy
and
development

Resources
optimization
and
allocation

Policy assessment Case study
and statistical
analysis

Game model Single-
objective
optimization
model

Multi-objective optimization model

GSIP BPIP Others SP costs Environment
benefits

Operational
efficiency

Arduino et al. (2011)
√ √

Tseng and Pilcher
(2015)

√ √

Winkel et al. (2016)
√ √

Song et al. (2017)
√ √ √

Chen et al. (2019)
√ √

Dai et al. (2019)
√ √

Peng et al. (2019)
√ √ √ √

Radwan et al. (2019)
√ √

Yu et al. (2019)
√ √ √ √ √

Li et al. (2020)
√ √ √

Wu and Wang (2020)
√ √ √

Yin et al. (2020)
√ √ √

Peng et al. (2021)
√ √ √

Wang et al. (2021)
√ √

Wang et al. (2022)
√ √ √

Zhen et al. (2022)
√ √ √ √

Peng et al. (2023)
√ √

Tan et al. (2023)
√ √ √ √ √

Gong et al. (2024)
√ √ √ √ √

Luo et al. (2024)
√ √ √

Wang et al. (2024)
√ √ √ √

This study
√ √ √ √ √ √
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(EFDP), and a mixed policy that combines various incentives. However,
neither Zhen et al. (2022) nor Gong et al. (2024) accounted for the
game-theoretic interactions among different stakeholders concerning
their various expenses. Building on this, our study further explores
the balance among environmental benefits, SP costs, and operational
efficiency from the perspectives of diverse stakeholders.

2.2. Multi-objective problems in the context of SP systems

In recent years, some studies have started to explore multi-objective
problems within the context of SP systems (Peng et al., 2021, 2019;

ang et al., 2024; Yu et al., 2019). However, to our knowledge,
his study is the first to assess policies, including GSIP and BPIP,
rom a multi-objective perspective in SP systems. Peng et al. (2019)
roposed an SPI allocation scheme for ships with uncertain arrivals,
iming to balance SP expenses with carbon emissions. Extending this
ork, Peng et al. (2021) introduced a multi-objective collaborative
ptimization model to address the problems of SPI deployment and ship
llocation, focusing on minimizing SP installation and application costs
hile maximizing environmental benefits. Additionally, Wang et al.

2024) integrated SPI assignment with berth and quay crane alloca-
ions, thereby optimizing operational, energy consumption, and carbon
axation costs. Notably, both Peng et al. (2019) and Peng et al. (2021)
ased their models on the unrealistic assumption that all incoming ships
ere equipped with the SPE while Wang et al. (2024) overlooked the

osts of retrofitting ships. Given that SPE coverage is less than that of
PI and the associated installation costs are considerable, our study
mphasizes optimizing SPE deployment. Yu et al. (2019) developed
strategic plan for shipowners to retrofit ships to maximize environ-
ental benefits and minimize the dynamic payback period of retrofit
3

r

nvestment. However, Yu et al. (2019) did not consider the critical
spects of berth allocation and ship scheduling, and assumed that
PI was universally available across all berths. Our research addresses
hese gaps by focusing on SPE deployment in ports with limited SPI,
nd incorporated decision variables such as SPE installation, berth
llocation and ship scheduling.

To address the complex multi-objective problems associated with SP
ystems, various algorithms have been developed. Peng et al. (2019)
tilized a simulation-based method, while Peng et al. (2021) applied
multi-objective swarm optimization algorithm. Wang et al. (2024)

mployed an adaptive immune clone selection algorithm, and Yu et al.
2019) adopted an improved multi-objective genetic algorithm (NSGA-
I). In our study, we further combine a two-stage solution algorithm
ith a tailored NSGA-II to address our specific optimization challenges.
he NSGA-II algorithm is particularly advantageous due to its three
ain features: it performs a swift non-dominated sorting process that

educes computational load, it employs a crowded distance over fitness
haring to maintain diversity within the solution pool, and it inte-
rates an elite strategy that retains superior solutions in subsequent
enerations, thereby enhancing the evolutionary process.

. Methodology

.1. Problem description

This study focuses on a port consisting of several berths, denoted
s 𝐵, a portion of which are equipped with SPI. In each scheduling
ycle, shipowners whose ships lack SPE are faced with decisions re-
arding its installation, as presented in Fig. 1. Concurrently, the port’s

esponsibility is to allocate berths and organize the sequence of services
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Fig. 1. Ship service flow.

for the ships, as exemplified in Fig. 2, where 𝑒arr indicates the ship’s
arrival time, and ℎberth

𝑖 and ℎtest
𝑖 represent the service time and the

P commissioning time, respectively. Generally, shipowners are not
illing to bear the high costs associated with SPE installation 𝑐 and
sage 𝑝oper, especially when the expense of fuel consumption 𝑝fuel is
heaper. From the perspectives of the government and port authorities,
here is an incentive to implement policies that influence shipowners’
ecisions to align with broader environmental and operational goals.

This study evaluates the effects of two significant policies: GSIP
nd BPIP. Based on BPIP, ships equipped with SPE or planning to
nstall it are given priority treatment, as detailed in Fig. 1. Moreover,
he port combines the BPIP with a strategy of immediately available
erth allocation. For instance, presented in Fig. 2, Ship 4, arriving
t 6:00, must wait for a berth to become available. When Berth 2
ecomes available, Ship 5 is given precedence over Ship 6 due to BPIP,
ven though they arrive simultaneously. Under GSIP, the government
rovides subsidies for SPE installation and operational costs at rates
and 𝑦. We aim to assess the qualitative effects of these policies on

PE installation decisions and to balance multiple costs, including fuel
onsumption, time penalties, and SPE conversion and operating costs,
hile considering the diverse interest concerns of the government,
orts, and shipowners.

Before establishing mathematical models to describe the proposed
roblem, we define the related notations and parameters in Table 2.

.2. Model formulation

Zhen et al. (2022) developed a single-objective optimization model
o minimize system costs and derive management insights pertaining
o the application of GSIP and BPIP. However, this model consolidates
he diverse interests of various stakeholders, including the government,
orts, and shipowners, into a unified objective. Such an aggregation
ay obscure the distinct impacts of these policies. To address this limi-

ation, our study extends this research by developing multi-objective
odels that separately assess the specific impacts of GSIP and BPIP

n different cost components, including fuel consumption costs, time
enalty costs, as well as SPE transformation, and operating costs.

Reducing fuel consumption costs and thereby improving environ-
ental benefits is the principal goal in the promotion of SP systems, and

t represents a critical concern for the government. Fuel consumption
osts for ships occur both while waiting for service and during service
4

perations, specifically, during the test time for ships using SPI and
hroughout the entire service period for ships not using SPI. These
onsiderations form the basis of the objective formulated in equation
1):

fuel =
∑

𝑖∈𝑉
𝑝fuel(𝜎𝑖 − 𝑒arr

𝑖 ) +
∑

𝑖∈𝑉

∑

𝑏∈𝐵
[𝜙𝑖𝑎𝑏𝛽𝑖,𝑏𝑝fuel(ℎtest

𝑖 − ℎberth
𝑖 ) + 𝑝fuelℎberth

𝑖 ], (1)

here the first item represents the fuel consumption cost during the ships’
aiting time before service, and the second item covers the fuel consump-

ion cost during service time, accounting for whether or not the ships are
sing SPI.

Unlike the government, shipowners are more sensitive to additional
osts. Here, additional costs refer to expenses incurred if shipowners decide
o use SPI, which include the cost of ship transformation for the initial
nstallation of SPE and the operational costs for each use of SPI. Note that
SIP mainly influences these costs, where 𝑥 represents the subsidy rate for

nstalling SPE and 𝑦 is the subsidy rate for using SPI. Objective (2) is defined
s follows:

SP =
∑

𝑖∈𝑉
𝛼𝑖𝑐(1 − 𝑥) +

∑

𝑖∈𝑉

∑

𝑏∈𝐵
𝜙𝑖𝑎𝑏𝛽𝑖,𝑏(1 − 𝑦)ℎberth

𝑖 𝑝oper, (2)

here the first item represents the transformation cost when shipowners
ecide to install SPE, and the second item covers the operational cost when
hips use SPI.

Following government recommendations, most ports are willing to
dopt BPIP to enhance the utilization of SP systems, thereby increasing
he usage rate of berths equipped with SPI. During this process, ports pay
ore attention to operational efficiency, which is reflected in our model as
enalties for ships’ waiting and delays, as detailed in objective (3). Here,
𝑡)+ denotes taking the maximum value between 𝑡 and 0:

𝐹time =
∑

𝑖∈𝑉
𝑟w(𝜎𝑖 − 𝑒arr

𝑖 ) +
∑

𝑖∈𝑉
𝑟d(𝜃𝑖 − 𝑒

dep
𝑖 )+, (3)

where the first item represents penalties for ships’ waiting times, and the
second penalties for ships’ delays.

Within the comprehensive SP operation system, the single-objective
formulation provides a baseline by focusing on a combined set of goals
without distinguishing between different stakeholder interests, as expressed
by objective (4). When we primarily consider the government’s interest
n environmental benefits, which diverges from the economically driven
oncerns of other stakeholders such as shipowners and ports, we extend
his model into a two-objective Eq. (5). Moreover, to encompass the com-

prehensive perspectives of all stakeholders, we develop a three-objective
Eq. (6). This model differentiation allows us to tailor strategies according to
specific stakeholder interests and to validate the robustness of our proposed
algorithms through the inter-comparison of these models.

Single-Objective:

min 𝐹total = 𝐹fuel + 𝐹SP + 𝐹time. (4)

Two-objective:

min {𝐹fuel, 𝐹SP + 𝐹time}. (5)

Three-objective:

min {𝐹fuel, 𝐹SP, 𝐹time}. (6)

All constraints applicable to each of these objectives are specified in
constraints (7)–(20), adapted from Zhen et al. (2022). Constraints (7)–
14) regulate ships’ access, waiting, and service in accordance with port
egulations:

𝑖 ≥ 𝑒arr
𝑖 ∀𝑖 ∈ 𝑉 , (7)

∑

𝑏∈𝐵
𝛽𝑖,𝑏 = 1 ∀𝑖 ∈ 𝑉 , (8)

∑

𝑗∈𝑉 ∪{𝑙𝑏}
𝜓𝑖,𝑗,𝑏 = 𝛽𝑖,𝑏 ∀𝑖 ∈ 𝑉 ,∀𝑏 ∈ 𝐵, (9)

∑

𝜓𝑜𝑏 ,𝑗,𝑏 = 1 ∀𝑏 ∈ 𝐵, (10)

𝑗∈𝑉 ∪{𝑙𝑏}
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𝜃

𝜃

Fig. 2. Port berth assignment.
Table 2
Parameters and decision variables used in this paper.
Sets:

𝑉 Set of ships expected to arrive in a scheduling cycle;
𝑆 Set of ships for the scheduling cycle, including 2 virtual ships;
𝐵 Set of berths at the port;

Indices:

𝑖, 𝑗, 𝑘 Index for ships;
𝑏 Index for berths;
𝑜𝑏 Virtual ship, representing the head node at berth 𝑏;
𝑙𝑏 Virtual ship, representing the tail node at berth 𝑏;

Parameters:

𝑐 Average installation cost of SPE for a ship (transformation cost);
𝑝fuel Fuel consumption cost per hour without using SPI;
𝑝oper Operational cost per hour when using SPI;
𝑥 Subsidy rate for SPE installation provided by government;
𝑦 Subsidy rate for using SPI provided by government;
ℎberth
𝑖 Service time for ship 𝑖;
ℎtest
𝑖 Testing time for SPE connection to SPI for ship 𝑖;
𝑒arr
𝑖 Arrival time of ship 𝑖;
𝑒dep
𝑖 Leave time of ship 𝑖;
𝑟w Awaiting penalty per hour for a ship;
𝑟d Delay penalty per hour for a ship;
𝑑𝑖 Equals 1, when ship 𝑖 has installed SPE, otherwise 0;
𝑎𝑏 Equals 1, when berth 𝑏 has installed SPI, otherwise 0;

Decision Variables:

𝛼𝑖 Equals 1 if ship 𝑖 decides to install SPE during this cycle, otherwise 0;
𝛽𝑖,𝑏 Equals 1 if ship 𝑖 is assigned to berth 𝑏, otherwise 0;
𝜙𝑖 Equals 1 if ship 𝑖 has SPE (either installed or decided to install), otherwise 0;
𝜓𝑖,𝑗,𝑏 Equals 1 if ship 𝑗 following ship 𝑖 at berth 𝑏, otherwise 0;
𝜎𝑖 Handling start time for ship 𝑖;
𝜃𝑖 Handling end time for ship 𝑖.
w

𝛼

𝜓

∑

𝑖∈𝑉 ∪{𝑜𝑏}
𝜓𝑖,𝑙𝑏 ,𝑏 = 1 ∀𝑏 ∈ 𝐵, (11)

∑

𝑗∈𝑉 ∪{𝑙𝑏}
𝜓𝑖,𝑗,𝑏 =

∑

𝑗∈𝑉 ∪{𝑜𝑏}
𝜓𝑗,𝑖,𝑏 ∀𝑖 ∈ 𝑉 ,∀𝑏 ∈ 𝐵, (12)

𝑖 ≤ 𝜎𝑗 + (1 − 𝜓𝑖,𝑗,𝑏)𝑀 ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗,∀𝑏 ∈ 𝐵, (13)

𝑖 = 𝜎𝑖 + 𝜙𝑖ℎtest
𝑖 + ℎberth

𝑖 ∀𝑖 ∈ 𝑉 . (14)

Constraints (15)–(16) define the conditions under which SP is utilized:

𝜙𝑖 = 𝑑𝑖 + 𝛼𝑖 ∀𝑖 ∈ 𝑉 , (15)

𝛼 ≤ (1 − 𝑑 )𝑀 ∀𝑖 ∈ 𝑉 . (16)
5

𝑖 𝑖 𝜎
Constraint (17) ensures that priority service is provided to ships equipped
ith SPE:

−𝑀(𝑒𝑎𝑟𝑟𝑗 − 𝜃𝑖)+ + (𝜙𝑗 − 𝜙𝑘)𝜓𝑖,𝑘,𝑏 ≤ (𝜙𝑗 − 𝜙𝑘)𝜓𝑖,𝑗,𝑏 + (𝑒𝑎𝑟𝑟𝑘 − 𝜃𝑖)+𝑀

∀𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜𝑏}, 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘,∀𝑏 ∈ 𝐵.
(17)

Constraints (18)–(20) define the domains of the decision variables:

𝑖, 𝛽𝑖,𝑏, 𝜙𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉 ,∀𝑏 ∈ 𝐵, (18)

𝑖,𝑗,𝑏 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑏 ∈ 𝐵, (19)
𝑖, 𝜃𝑖 ≥ 0 ∀𝑖 ∈ 𝑉 . (20)
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Fig. 3. Algorithm flow.

.3. Modified cplex solver for the single-objective problem

We utilize the optimal objective value from the single-objective prob-
em, solved using the Cplex solver, to control the quality of solutions
enerated by our heuristic algorithm for multi-objective problems. Specif-
cally, we establish an acceptance interval, denoted as 𝑎𝑐𝑐, based on the
ptimal value of the single-objective problem. For instance, we set the
cceptance interval at 5% . If the minimum objective value achieved by
he Cplex solver is 10,000, any solution from the heuristic algorithm with
cumulative objective value of 10,500 or less is considered satisfactory.

To improve the computational efficiency of the Cplex solver, we refine
he linearization method originally proposed by Zhen et al. (2022), and

focus on the non-negative taking formula applied to 𝐹time and constraint
(17). This formula, typically represented as (𝑡)+ or 𝑧 = 𝑚𝑎𝑥(𝑡, 0), can be
inearized using a binary variable 𝛿 and a large constant 𝑀 , leading to the
inear inequalities specified in (21)–(25):

≤ 𝑡 + (1 − 𝛿)𝑀, (21)

≥ 𝑡 + (1 − 𝛿)𝑀, (22)

≤ 𝛿𝑀, (23)

≤ 𝛿𝑀, (24)

≥ 0. (25)

These modifications significantly improve the solver’s efficiency, and we
ocument detailed performance comparisons in Section 4.3.

.4. Two-stage solution algorithm for multi-objective problems

Considering the complexity of our multi-objective models, we cannot
irectly solve them due to potential constraint violations and excessive com-
utation times. Therefore, this study proposes a novel, problem-oriented
ulti-objective algorithm that combines a two-stage solution process with

he non-dominated sorting genetic algorithm (NSGA-II). We implement this
pproach using Python and the Pymoo library (Blank & Deb, 2020) to
6

l

nsure efficient problem resolution. Fig. 3 illustrates the algorithm’s flow,
nd presents how we address the problem’s complexity.

In the first stage, we randomly generate a population 𝑇 1 of first-stage
olutions, using a basic greedy algorithm. Each solution is encoded as
𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = {𝑏1, 𝑏2,… , 𝑏𝑖, 𝛼1, 𝛼2,… , 𝛼𝑖} for 𝑖 = 1, 2..., |𝑉 |, and spans a length

of 2|𝑉 |. Here, 𝑏𝑖 represents that ship 𝑖 is assigned to berth 𝑏 = 𝑏𝑖, thus
satisfying 𝛽𝑖,𝑏𝑖 = 1. In the second stage, we transform these initial solutions
into a complete solution set, 𝑇 2, based on detailed parameters such as ships’
arrival times, service times, test times, and existing SPE installations. Fig. 4
illustrates an example with |𝑉 | = 3 and |𝐵| = 2, with an initial solution set
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = {1, 2, 1, 1, 0, 0}. In this scenario, the port assigns ships 1 and 3
to berth 1, and ship 2 to berth 2, and only the owner of ship 1 decides to
install SPE. Algorithm 1 further details the two-stage solution generation.

Algorithm 1. Two-stage solution algorithm:

First stage

Input: Number of berths |𝐵| and ships |𝑉 |, ships’ arrival times 𝑒arr
𝑖 , and

service times ℎberth
𝑖 .

Output: A valid first-stage partial solution, 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 of length 2|𝑉 |.

1 Initialize arrays 𝑃1, 𝑃2 and 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.𝑡𝑖𝑚𝑒𝑠; list 𝑏𝑒𝑟𝑡ℎ.𝑜𝑟𝑑𝑒𝑟 with a list
of berth indices;

2 For 𝑖 in |𝑉 | do:
3 If 𝑖 ≤ |𝐵| then 𝑏 ← 𝑏𝑒𝑟𝑡ℎ.𝑜𝑟𝑑𝑒𝑟[𝑖];
4 Else 𝑏 ← index of berth with the minimum departure time in
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.𝑡𝑖𝑚𝑒𝑠;

5 𝑏𝑖 ← 𝑏 and 𝑃1[𝑖] ← 𝑏𝑖; // Generate berth assignment 𝑏𝑖
6 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.𝑡𝑖𝑚𝑒𝑠[𝑏𝑖] ← 𝑒arr

𝑖 + ℎberth
𝑖 ;

7 𝑃2 ← np.random.randint(0, 2, |𝑉 |); // Generate SPE installation
decision 𝛼𝑖

8 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← np.hstack(𝑃1,𝑃2);

econd stage

Input: First-stage 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, number of berths |𝐵| and ships |𝑉 |, ship’s arrival
times 𝑒arr

𝑖 , service times ℎberth
𝑖 , test times ℎtest

𝑖 , and existing SPE installation
𝑑𝑖.
Output: A complete second-stage solution, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒.𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

1 For 𝑖 in |𝑉 | do:
2 𝛽𝑖,𝑏𝑖 ← 1; // Generate berth assignment 𝛽𝑖,𝑏
3 𝜙𝑖 ← 𝛼𝑖+𝑑𝑖; // Generate SPE installation status 𝜙𝑖
4 Set length(𝑃 ) ← number of berths |𝐵|;
5 For 𝑏 in |𝐵| do:
6 𝑃 (𝑏) ← ships of berth in 𝑃1 and sort 𝑃 (𝑏) based on 𝑒arr

𝑖 ;
7 For each 𝑖 in 𝑃 (𝑏) do: // Generate ship scheduling 𝜓𝑖,𝑗,𝑏 and

handling start time of ship 𝜎𝑖
8 If 𝑖𝑛𝑑𝑒𝑥(𝑖) = 0 then 𝜓

|𝑉 |,𝑖,𝑏 ← 1 and 𝜎𝑖 ← 𝑒arr
𝑖 ;

9 Else if 𝑖𝑛𝑑𝑒𝑥(𝑖) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 (𝑏)) − 1 then 𝜓𝑖,|𝑉 |+1,𝑏 ←1;
10 Else 𝜓𝑝𝑟𝑒.𝑖,𝑖,𝑏 ← 1, where 𝑝𝑟𝑒.𝑖 is the ship before 𝑖 in 𝑃 (𝑏)
11 If 𝜃𝑝𝑟𝑒.𝑖 > 𝑒arr

𝑖 then 𝜎𝑖 ← 𝜃𝑝𝑟𝑒.𝑖;
12 Else 𝜎𝑖 ← 𝑒arr

𝑖 ;
13 𝜃𝑖 ← 𝜎𝑖+𝜙𝑖ℎtest

𝑖 +ℎberth
𝑖 // Generate handling end time of ship

𝜃𝑖
14 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒.𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← np.hstack(𝛽𝑖,𝑏,𝛼𝑖,𝜙𝑖,𝜓𝑖,𝑗,𝑏,𝜎𝑖,𝜃𝑖)

After completing the initial two steps of the algorithm, we evaluate
the second-stage solution population, 𝑇 2, and return multi-objective values
using the functions defined in (5) or (6). Termination of the algorithm
ccurs when the average tolerance in the objective space is below 𝑡𝑜𝑙. Ad-
itionally, the algorithm skips 𝑛.𝑠𝑘𝑖𝑝 iterations after reaching this tolerance
evel before terminating. Here, we regularly check every 𝑝𝑒𝑟𝑖𝑜𝑑 iterations
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Fig. 4. Solution generation and transformation.
Fig. 5. A two-point crossover operation.
Fig. 6. A mutation operation.
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o ensure compliance with the termination criteria. If the termination
onditions are not met, we reproduce population 𝑇 1 through selection,
rossover and mutation, and then transform it into the two-stage population
2. We loop this process until the termination conditions are met, then
utput results.

Following the algorithm flow outlined in Fig. 3, we develop both basic
nd improved genetic operators for the first-stage population reproduction.
he basic genetic operators include random selection, high-rate mutation,
nd uniform crossover. Specifically, we randomly select 𝑝.𝑠𝑖𝑧𝑒 individuals
rom the mating pool to form a new parent population and apply uniform
rossover, where the crossover probability is 0.5 for inheriting traits from
ither parent. For mutations, we set a relatively high probability, 𝑝𝑟𝑜.ℎ𝑖𝑔ℎ,
nd mutate each gene segment based on a random draw. If the random
umber is less than 𝑝𝑟𝑜.ℎ𝑖𝑔ℎ, the mutation occurs.

Compared with the basic genetic operators, the improved genetic op-
rators for our problem are demonstrated to be more efficient, as detailed
n Section 4.3. Initially, we apply a binary tournament selection method
or parent selection in crossover. Specifically, we randomly select two
ndividuals from the mating pool, which includes 𝑝.𝑠𝑖𝑧𝑒 individuals from
7

he parent population and 𝑐.𝑠𝑖𝑧𝑒 individuals from the offspring population, 3
then choose the individual with superior fitness. This process is repeated
until the new parent population reaches 𝑝.𝑠𝑖𝑧𝑒. For crossover, we utilize a
two-point crossover method, which has proven to be efficient and error-free
for solutions obtained from the first stage, as shown in Fig. 5. Furthermore,
mutation of each gene segment occurs with a specific probability 𝑝𝑟𝑜, based
n its location. In the first-stage solution, 𝑏𝑖 represents berth assignments,
llowing for random mutations between berths with uniform probability.
s for 𝛼𝑖, which is a binary variable, mutation involves toggling between 0
nd 1. Fig. 6 presents mutations affecting the first and fifth gene segments
elow 𝑝𝑟𝑜, while those of other segments meet or exceed this threshold.

. Experiment study

In this section, we conduct experiments to demonstrate the effectiveness
f the proposed problem and algorithm. All experiments are run on a
omputer with an Intel(R) Core(TM) i7-10750H CPU @2.60 GHz and 16 GB
f RAM. Our algorithms are implemented using Cplex 12.10.0 and Python

.7.1.
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Table 3
Case settings.

Case ID |𝑆| |𝑉 | |𝐵|
∑

𝑖∈𝑉
𝑑𝑖

∑

𝑏∈𝐵
𝑎𝑏 Equality constraints Inequality constraints

Case 1 12 10 5 2 3 130 1670
Case 2 18 16 9 3 5 338 12 272
Case 3 22 20 11 4 6 502 29 300

* |𝑆|: Number of ships, including dummy ships;
* |𝑉 |: Number of incoming ships;
* |𝐵|: Number of berths at the port;
* ∑

𝑖∈𝑉
𝑑𝑖: Number of ships with SPE;

* ∑

𝑏∈𝐵
𝑎𝑏: Number of berths with SPI.
Table 4
Parameter settings.

Parameter Range/value Description

𝑐 $1000/day Average transformation cost of a ship
𝑝fuel $233/h Fuel consumption cost per hour for ship operation
𝑝oper $434/h Operational cost per hour for using SP, including electricity and service charges
ℎberth
𝑖 {6,8,10} h Handling time for ship 𝑖 based on class (feeder, medium, jumbo)
𝑒arr
𝑖 [0,24) h Expected arrival time for ship 𝑖 within a day
𝑒dep
𝑖 𝑒arr

𝑖 + ℎberth
𝑖 h Expected departure time for ship 𝑖

𝑥 0.8 Government subsidy rate for SPE installation
𝑦 0.6 Government subsidy rate for the operational cost of using SPI
ℎtest
𝑖 1 h Test time for ship 𝑖 connecting to SPI
𝑟w $66/h Waiting penalty per hour for ship 𝑖 beyond its expected arrival time
𝑟d $66/h Delay Penalty per hour for ship 𝑖 departing later than its scheduled time
4.1. Case and parameter settings

We set up three cases, as shown in Table 3, with different numbers
of berths (|𝐵|) and ships (|𝑉 |) arriving within a 24-h period. Since the
coverage of SPE is lower than that of SPI, we designated ⌈0.5|𝐵|⌉ berths
to have SPI and ⌊0.2|𝑉 |⌋ ships with SPE. Specifically, the berths equipped
with SPI are 1 to 3 in case 1, 1 to 5 in case 2, and 1 to 6 in case 3. In
different instances, we randomly assign ships equipped with SPE, according
to the specified numbers.

We define input parameters for our numerical experiments based on
existing literature. Handling times for different ship classes (feeder, medium
and jumbo) range from 6 to 10 h, and the average transformation cost of a
ship is set at $1000/day, as referenced in Zhen et al. (2022). Fuel costs
𝑝fuel) and operational costs for SP (𝑝oper) are derived from the findings
f Cheng and Li (2019). Specifically, we set 𝑝fuel at $233/h, accounting

for an average power usage of 1880 kW, with fuel costs ranging from
$0.067/kWh to $0.181/kWh. The operational costs of using SP, which
include electricity and service charges, are set at $434/h, calculated based
on electricity and service costs at Shanghai Yangshan Port and an aver-
age electric load of 1900 kW. These parameters are consistently applied
across all scenarios to ensure comparability in performance evaluations. We
summarize detailed settings in Table 4.

4.2. Parameter impact analysis

To validate the parameter settings outlined in Table 4, we conduct a
comprehensive parameter impact analysis. The control group settings are
derived directly from Table 4, while experimental groups are tested with
varied parameter settings to explore their impacts. This analysis specifically
examines government subsidy rates (𝑥 and 𝑦), SP test time (ℎtest

𝑖 ) and
unit time penalties (𝑟w and 𝑟d). We employ the modified Cplex solver to
obtain a single optimal solution by minimizing the total costs, as specified
in Eq. (4), which allows us to assess the effects of these parameters on the
cost components: 𝐹fuel, 𝐹time and 𝐹SP. The detailed outcomes are presented
in Appendix A, which aggregates the mean results from both control and
experimental groups across 10 instances for the three cases outlined in
Table 3. The results also indicate percentage changes resulting from various
experimental groups compared to the baseline results in the control group.
We summarize our observations and conclusions as follows:
8

1. We set the subsidy rate for SPE installation at 𝑥 = 0.8. At this level,
compared to lower subsidy rates, there is a significant improvement
in the incentive effect on SPE installation decisions, leading to a
notable reduction in 𝐹fuel, which is a primary concern of the gov-
ernment. However, raising the subsidy to 𝑥 = 0.9, while increasing
the incentive, also results in higher costs associated with 𝐹time and
𝐹SP. These increased costs could potentially affect the satisfaction
levels of ports and shipowners. Similarly, we set the subsidy rate for
SPI usage at 𝑦 = 0.6 to effectively balance various cost concerns.
Furthermore, the variations in costs with 𝑥 = 0.6 and 𝑥 = 0.7, or
𝑦 = 0.4 and 𝑦 = 0.5 are minimal, and we highlight the distinct values
for these groups in the Table A.1 to underscore the efficiency of our
chosen settings.

2. We set the SP test time at 1 h based on regular operational scenarios.
Extended ℎtest

𝑖 times discourage shipowners from utilizing SP, as
reflected by decreased 𝐹SP and cases where 𝛼𝑖 = 0, which indicates no
SP installation decisions. Concurrently, the increased waiting times
in port lead to increased 𝐹fuel and 𝐹time. Our set aims at managing
these costs effectively while ensuring sufficient incentives for SP
installation.

3. We standardize the unit waiting and delay time penalties at 𝑟w = 𝑟d =
66. As demonstrated in Table A.1, these penalties distinctly influence
associated costs such as 𝐹fuel, 𝐹time and 𝐹SP. Specifically, increasing
𝑟d generally raises 𝐹time, however, in case 2, increasing 𝑟d from 132
to 264 markedly reduces this cost. Conversely, higher 𝑟d settings
discourage SPE installation and usage, as evidenced by reductions
in 𝛼𝑖 and a decrease in 𝐹SP, while simultaneously increasing 𝐹fuel.
Changes in 𝑟w have no significant impact on 𝐹fuel and 𝐹SP but tend
to increase 𝐹time. By setting 𝑟w and 𝑟d at a moderate level of 66, we
aim to promote adopting environmentally friendly SP practices while
maintaining operational efficiency at ports.

4.3. Algorithm efficiency evaluation

As discussed in Section 3.3, we introduce an acceptance interval, 𝑎𝑐𝑐, to
ensure high solution quality for multi-objective problems. For this study, we
set the acceptance interval at 5% for all cases. Additional details regarding
the parameters used in the multi-objective problems’ algorithm are outlined
in Table 5. Initially, the single-objective problem is solved using a modified

Cplex solver. Following this, our proposed algorithm is applied within a
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Table 5
Multi-objective problems’ algorithm parameter settings.

Parameter Value Description

𝑎𝑐𝑐 5% Acceptance interval for the sum of multiple objective values, set based on the single-objective problem’s optimal objective values
𝑡𝑜𝑙 0.005 Tolerance level for the difference between the best and worst multiple objective values on average
𝑛.𝑠𝑘𝑖𝑝 5 Number of generations to skip before checking if the termination criterion is met
𝑝𝑒𝑟𝑖𝑜𝑑 30 Number of generations after which the termination criterion is checked
𝑝.𝑠𝑖𝑧𝑒 20 Number of individuals in the parent population
𝑐.𝑠𝑖𝑧𝑒 10 Number of individuals in the offspring population
𝑝𝑟𝑜 0.5 Mutation rate determines the number of gene segments mutated in one generation
𝑝𝑟𝑜.ℎ𝑖𝑔ℎ 0.7 High-level mutation rate determines the number of gene segment mutated in one generation
Table 6
Efficiency improvement of the Cplex solver.

Case ID 𝑇MC (s) 𝑇C (s) (𝑇C − 𝑇MC)∕𝑇C (%)

Case 1 11.78 22.84 48.44
Case 2 38.12 731.32 94.79
Case 3 357.34 9233.47 96.13

* 𝑇MC: Average running time with the modified Cplex solver;
* 𝑇C: Average running time with the original Cplex solver proposed in Zhen et al. (2022).
Table 7
Algorithm performance comparison.

Performance of algorithms Case 1 Case 2 Case 3

Two-objective problem

𝐹fuel 𝐹time + 𝐹SP 𝐹fuel 𝐹time + 𝐹SP 𝐹fuel 𝐹time + 𝐹SP

Baseline (Cplex) Avg 78 871 7619 247 854 12416 393 071 7136

Basic operators
Avg 81 265 5919 252 886 10647 391 845 12668
Gap −3.04% 22.31% −2.03% 14.25% 0.31% −77.52%
SD 2514 3239 3655 3190 4004 3836

Improved operators
Avg 82 181 4015 254 757 6216 392 459 9085
Gap −4.20% 47.31% −2.79% 49.93% 0.16% −27.31%
SD 1928 1884 2795 2983 3142 3559

Three-objective problem

𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP

Baseline (Cplex) Avg 79 570 374 6387 250 042 575 9488 391 347 647 8030

Basic operators
Avg 82 229 663 4538 254 118 2014 8486 392 661 2455 10 221
Gap −3.34% −77.35% 28.95% −1.63% −250.17% 10.55% −0.34% −279.52% −27.28%
SD 2263 462 2473 3842 803 3189 4481 976 3654

Improved operators
Avg 81 899 277 4076 254 780 752 5632 393 081 1230 7385
Gap −2.93% 26.01% 36.18% −1.89% −30.70% 40.64% −0.44% −90.14% 8.03%
SD 2369 194 2228 3154 775 2794 2696 581 2297

𝐹fuel 𝐹time + 𝐹SP 𝐹fuel 𝐹time + 𝐹SP 𝐹fuel 𝐹time + 𝐹SP

Improved operators Avg* 81 899 4353 254 780 6384 393 081 8615
Gap* 0.34% −8.43% −0.01% −2.69% −0.16% 5.17%

* Avg: Average objective values from Cplex solutions and heuristic algorithms run across 10 seeds;
* Gap: Percentage improvement of heuristic operators over Cplex, calculated as (Baseline Avg - Operator Avg)/Baseline Avg*100%;
* SD: Standard deviation across heuristic algorithm seed runs;
* Avg*: Average of (𝐹time + 𝐹SP) for the three-objective model;
* Gap*: Percentage improvement of the three-objective model over the two-objective model with improved operators, calculated as (Two-objective Avg -
Three-objective Avg)/Two-objective Avg*100%.
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range determined by multiplying the single-objective problem’s optimal
objective value by (1 + 𝑎𝑐𝑐). Table 6 demonstrates the improved efficiency
f the Cplex method, especially for larger case scenarios, compared to the
ethod previously utilized in Zhen et al. (2022). Notably, the running times

eported represent the average across 10 instances, which indicates the
ethod’s consistent performance across multiple trials.

.3.1. Comparative analysis of heuristic algorithms performance
We conduct a comparative analysis with the traditional weighted sum

ethod, commonly used in multi-objective optimization, to assess the
fficiency of our heuristic algorithms, including both basic and improved
enetic operators. This method consolidates multiple objectives into a single
omposite objective by applying distinct weights to each goal as expressed
n Eq. (26):

min 𝐹total = 𝑤1𝐹fuel +𝑤2𝐹SP +𝑤3𝐹time, (26)

here 𝑤1, 𝑤2, and 𝑤3 are weights assigned to fuel costs, SP costs, and time
enalties, respectively.
9

c

To establish a comparison baseline, we utilize the modified Cplex solver
o test various weight configurations of Eq. (26), with detailed results
resented in Appendix B. For the two-objective model, we create 23 test
nstances where 𝑤1 ≠ 𝑤2 = 𝑤3, ranging from (1,1,1) to (1,20,20),
ncluding inversely proportional configurations such as (20,1,1), as detailed
n Table B.1. For the more complex three-objective scenarios, we further
xamine 68 configurations that feature equal weights (𝑤1 = 𝑤2 or 𝑤1 = 𝑤3)
nd varied weights (e.g., 𝑤1 = 1, 𝑤2 = 2, 𝑤3 = 3), as shown in Table B.2.
espite extensive testing, the weighted sum method exhibits limitations in
apturing all Pareto-optimal solutions within the solution space, and the
plex solver struggles to resolve some instances within a three-hour limit,
articularly in medium (Case 2) and large-sized cases (Case 3).

Quantitative comparisons in Table 7 assess the performance of our
euristic algorithms relative to the Cplex baseline. Across all cases, heuris-
ic algorithms generally perform close to or surpass the Cplex baseline,
ith improved operators mostly outperforming the basic operators. Specifi-

ally, in two-objective scenarios, heuristic operators slightly under-perform

ompared to Cplex for 𝐹fuel in small and medium cases, but they show
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advantages in larger cases. For 𝐹time +𝐹SP, improved operators significantly
outperform in both small and medium cases. In three-objective scenarios,
heuristic solutions for 𝐹fuel align closely with Cplex results. However, for

time and 𝐹SP, while improved operators generally outperform the basic
nes, they do not consistently exceed the Cplex benchmarks, especially
or 𝐹time in medium and large cases. Additionally, we evaluate 𝐹time + 𝐹SP

within the three-objective model to facilitate the inter-comparisons across
different multi-objective models using improved operators. As the case size
increases, the optimization benefits for 𝐹fuel become more pronounced in
the two-objective model. Conversely, the three-objective model significantly
enhances the exploration and optimization of 𝐹time and 𝐹SP. This distinc-
tion highlights the advantage of decomposing objectives, as it allows for
more precise enhancements tailored to each specific goal, aligning with
theoretical multi-objective optimization principles.

In Table 7, generally lower standard deviation (SD) values for the
improved operators across 10 seed runs indicate their enhanced reliability
and effectiveness compared to basic operators. The superior performance
is visually supported by Fig. 7, which displays all solutions generated by
Cplex from Appendix B alongside outcomes from both basic and improved
heuristic operators under identical settings. Specifically, in two-objective
scenarios (panels 1, 3, and 5), the improved operators achieve more efficient
convergence towards optimal solutions. In three-objective scenarios (panels
2, 4, and 6), both heuristic approaches explore a broader solution space than
the weighted sum method, with improved operators clustering more closely
to the Pareto front. These results highlight the superior exploration capabil-
10

ities and robust performance of the improved operators and emphasize the
effectiveness of our proposed algorithms in tackling complex multi-objective
optimization challenges.

4.3.2. Detailed performance metrics evaluation
Building on insights from Fig. 7, we further utilize five metrics summa-

rized by Zhou and Lee (2020) to assess and compare the the performance of
asic and improved genetic operators across 10 seed runs. These metrics are
ategorized into qualitative (items 1 to 3) and quantitative groups (items 4
nd 5):

1. Number of Pareto solutions (𝑁𝑃𝑆): Measures the count of non-
dominated solutions, where a higher count indicates greater flexi-
bility in decision-making.

2. Diversity (𝐷𝑖𝑣): Reflects the range of values across the Pareto
front,with greater diversity suggesting a better spread of solutions.
It is calculated using the following formulas for two- and three-
objective models, respectively:

• For the two-objective model:

𝐷𝑖𝑣 =

√

(

max
𝑖≤𝑁𝑃𝑆

𝐹 𝑖
fuel − min

𝑖≤𝑁𝑃𝑆
𝐹 𝑖

fuel

)2

+
(

max
𝑖≤𝑁𝑃𝑆

(𝐹SP + 𝐹time)𝑖 − min
𝑖≤𝑁𝑃𝑆

(𝐹SP + 𝐹time)𝑖
)2

.

(27)

• For the three-objective model (see Box I):

3. Spacing (𝑆𝑝.𝑣𝑎𝑟): Assesses the evenness of the distribution of solu-
tions along the Pareto front, where lower variance indicates a more
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𝐷𝑖𝑣 =

√

(

max
𝑖≤𝑁𝑃𝑆

𝐹 𝑖fuel − min
𝑖≤𝑁𝑃𝑆

𝐹 𝑖fuel

)2
+
(

max
𝑖≤𝑁𝑃𝑆

𝐹 𝑖SP − min
𝑖≤𝑁𝑃𝑆

𝐹 𝑖SP

)2
+
(

max
𝑖≤𝑁𝑃𝑆

𝐹 𝑖time − min
𝑖≤𝑁𝑃𝑆

𝐹 𝑖time

)2
. (28)

Box I.
Fig. 8. Five performance metrics for basic and improved genetic operations..
uniform spread. Calculated as:

𝑆𝑝.𝑣𝑎𝑟 = 1
𝑁𝑃𝑆 − 1

𝑁𝑃𝑆
∑

𝑖=1

(

𝑑 − 𝑑𝑖
)2 , (29)

where 𝑑𝑖 is the nearest neighbor Manhattan distance for the 𝑖th
solution, and 𝑑 is the average of all 𝑑𝑖.

4. Mean ideal distance (𝑀𝐼𝐷): Averages the Euclidean distance from
each solution to an ideal point, where lower values indicate closer
proximity to this ideal. Calculated as:

• For the two-objective model:

𝑀𝐼𝐷 =

∑𝑁𝑃𝑆
𝑖=1

√

𝐹 2
fuel + (𝐹SP + 𝐹time)2

𝑁𝑃𝑆
. (30)

• For the three-objective model:

𝑀𝐼𝐷 =

∑𝑁𝑃𝑆
𝑖=1

√

𝐹 2
fuel + 𝐹

2
SP + 𝐹 2

time

𝑁𝑃𝑆
. (31)

5. Computation time (𝐶𝑇 ): Measures the time required to complete an
algorithm run, with shorter times indicating higher efficiency.

We analyze five key metrics across each run and average the results, as
epicted in Fig. 8. Improved operators demonstrate a consistent advantage
n the spacing metric, especially within small cases of the two-object model.
n terms of computation time, both improved and basic operators efficiently
esolve small and medium cases across different objective models. As case
11
complexity increases, the improved algorithm maintains average computa-
tion times of less than 450 s for large cases, significantly outperforming
the basic operators. The mean ideal distance (𝑀𝐼𝐷) exhibits minimal
differences between the two types of operators under the same settings, with
only slight variations between the two-objective and three-objective models.
And 𝑀𝐼𝐷 values tend to increase with the size of the case. For the number
of Pareto solutions, improved operators outperform in small and medium
cases. In large cases, the performance of improved operators in the two-
objective model aligns more closely with the basic operators and slightly
lags in the three-objective model. Diversity metrics vary between models
and case sizes, with basic operators generally achieving greater diversity.
However, despite their higher diversity, these solutions often fall into
local optima, compromising solution quality. On the other hand, improved
operators, though featuring lower diversity, generally deliver solutions that
more effectively approach Pareto optimally. In summary, improved genetic
operations generally show superior performance compared to basic ones,
particularly in terms of efficiency and solution quality, by more effectively
approaching Pareto optimally and maintaining stability across varying case
complexities.

Fig. 9 presents the box plot of metrics results, where the median is
marked by the middle line of each box and statistical outliers are pre-
sented by small circles. The box plots illustrate that improved operators
consistently demonstrate advantages in the number of Pareto solutions in
small and medium cases, and exhibit more efficient computation times in
large cases, as indicated by their compact box ranges. In terms of spacing,
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Fig. 9. Box plot of five performance metrics for basic and improved genetic operations..
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mproved operators maintain smaller and tighter distributions than basic
perators, and basic operations occasionally result in large spacing values,
otably in two-objective scenarios. Although the differences in the mean
deal distance are minimal, improved operators show relatively smaller box
anges, further underscoring their stability across various case complexities.

.4. Policy impact analysis

Using the proposed heuristic algorithm, which incorporates improved
enetic operators, we evaluate multi-objective outcomes and SPE instal-
ation decisions under four distinct scenarios: 1. Application of both the
overnment subsidy incentive policy (GSIP) and the berthing priory in-
entive policy (BPIP), denoted as ’with policies’; 2. Application of only
SIP, denoted as ’with GSIP’; 3. Application of only BPIP, denoted as ’with
PIP’; 4. Non-application of either policy, denoted as ’without policies’. Our
tandard model formulation, outlined in Section 3.2, integrates both policies
y default. If GSIP is not implemented, we set the subsidy rates 𝑥 and 𝑦 to
ero. If BPIP is not applied, the associated constraint, denoted by (17), is
emoved.
12
.4.1. Impact on multi-objective results
Fig. 10 provides a comprehensive analysis of the impact of policy

nterventions on objective values across two-objective and three-objective
cenarios, illustrated through the Pareto fronts.

1. BPIP in small cases: In situations where port capacities sufficiently
meet the demands of incoming ships, BPIP shows a minimal impact
on operations. Particularly in the three-objective scenarios, the ex-
clusive use of BPIP maintains SP and time costs within acceptable
ranges. Thus, in small case scenarios where the fleet size matches
the terminal capacity, it is recommended that ports implement BPIP
directly, as it does not disrupt existing operations and may enhance
long-term SP utilization and financial returns.

2. Effectiveness of GSIP: GSIP, whether implemented alone or alongside
BPIP, consistently improves performance metrics closer to the ideal
point than scenarios without GSIP. This is evidenced by lower fuel
costs and combined SP and time costs in two-objective scenarios
(panels 1, 3, and 5), as well as reduced 𝐹fuel and 𝐹SP in three-
objective settings (panels 2, 4, and 6), albeit with some increase
in time costs. GSIP effectively aligns the interests of both the gov-
ernment and shipowners, although it necessitates some compromises
regarding time efficiency.
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Fig. 10. Pareto fronts in two-objective and three-objective problems across four scenarios..
3. Policy impact in larger cases: As the case size increases, GSIP’s focus
on minimizing 𝐹fuel becomes more pronounced and maintains its ef-
fectiveness even when combined with BPIP. However, utilizing BPIP
alone in medium and large cases negatively impacts both 𝐹fuel and
𝐹time. Specifically, achieving lower 𝐹SP necessitates higher 𝐹fuel, and
moderate 𝐹fuel correlates with increased SP and time expenses. This
indicates that without effective GSIP support, the sole application of
BPIP fails to balance various costs adequately. We advise that ports
should not implement BPIP without GSIP in larger scenarios as it
diminishes operational efficiency.

In summary, for optimal environmental benefits, the government should
ead with GSIP and set appropriate subsidy rates as tested in Section 4.2.
he application of BPIP should be context-specific; it is typically effective
hen integrated with actively promoted GSIP. In contrast, BPIP alone in

arger cases fails to align stakeholder interests adequately and negatively
mpacts operational efficiency, which is a significant concern for ports.

.4.2. Impact on SPE installation decisions
We further analyze how policies influence decisions regarding SPE

nstallations (𝛼𝑖) across different scenarios. Table 8 presents the average
number of SPE installations per scenario.

Interestingly, the combination of GSIP and BPIP does not consistently
13

lead to the highest rates of SPE installation. This trend is particularly
Table 8
Average SPE installation decisions.

Case ID with policies with GSIP with BPIP without policies

Two-objective problem

Case 1 1.25 1.45 0.84 0.45
Case 2 2.80 2.25 2.07 1.50
Case 3 1.56 2.40 0.00 0.80

Three-objective problem

Case 1 1.00 1.68 0.65 0.95
Case 2 3.50 2.75 2.31 1.70
Case 3 1.75 1.58 0.00 0.36

notable in large cases within the two-objective problem, where the com-
bined policies result in fewer installations than in scenarios featuring
GSIP alone. This outcome may be attributed to BPIP potentially increasing
service times for ships utilizing SPI, along with longer waiting periods for
other ships, which could diminish its incentive effect. Across all scenarios,
GSIP consistently encourages more SPE installations than other conditions,
which underscores the strong influence of financial incentives on promoting
environmental investment decisions. In contrast, BPIP alone generally has
a lower impact on SPE installations compared to GSIP.
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Fig. 11 shows the detailed relationship between different objectives and
SPE installation decisions under various policy frameworks. The results
indicate that increased SPE installations can mitigate fuel consumption but
lead to higher SP and time costs.

1. Effectiveness of dual policy implementation: Implementing both
GSIP and BPIP sometimes reduces SP and time costs more effectively
than using GSIP alone. This is particularly evident in medium-
sized cases within two-objective scenarios, where the combination
shows an advantage in reducing the combined objective function
𝐹SP + 𝐹time at equivalent levels of SPE installation. In corresponding
three-objective scenarios, this benefit primarily impacts 𝐹time, while
maintaining relatively acceptance values of 𝐹fuel and 𝐹SP.

2. Comparison of GSIP and BPIP: GSIP alone generally tends to result
in higher SPE installations than BPIP alone. The integration of both
policies shows that GSIP can amplify the effectiveness of BPIP. This
synergy is especially pronounced in large cases, where the combined
policies typically lead to the highest installation decision number of
5, which significantly improves outcomes observed with BPIP alone.

In summary, to improve the coverage of SPE installation, GSIP proves to
e an effective policy. When combined with BPIP, this dual-policy approach
an further satisfy both port authorities and shipowners, and occasionally
ore effectively encourage shipowners to install SPE. However, BPIP alone

hould not be used, especially in large cases, which can lead to higher
14
osts for governments and ports, while achieving only lower levels of SPE
nstallation decisions.

.4.3. Carbon emission considerations in extended problems
Building on our comprehensive analysis of policy impacts on multi-

bjective outcomes and SPE installation decisions, we introduce a carbon
mission factor, 𝐶𝑒, to transition from solely fuel-based costs (with the
elated parameter 𝑝fuel set at $233/h) to broader environmental concerns.
ased on the emission coefficient of diesel at 3.021 kg of pollutant per kg
f fuel according to Zis (2019), alongside data on the average power of ship

auxiliary engines (1880 kW) and a fuel consumption rate of 0.235 kg/kWh
from Cheng and Li (2019), we redefine the environmental cost parameter
s 𝐶𝑒 = 1335 kg/h. This adjustment allows us to replace the traditional fuel
onsumption cost (𝐹fuel) with a carbon emission cost, denoted as 𝐹carbon,
n all proposed multi-objective models, which aligns more closely with
overnmental environmental priorities. The new objective formulation is
resented in Eq. (32):

𝐹carbon =
∑

𝑖∈𝑉
𝐶𝑒(𝜎𝑖 − 𝑒arr

𝑖 ) +
∑

𝑖∈𝑉

∑

𝑏∈𝐵
[𝜙𝑖𝑎𝑏𝛽𝑖,𝑏𝐶𝑒(ℎtest

𝑖 − ℎberth
𝑖 ) + 𝐶𝑒ℎberth

𝑖 ]. (32)

Fig. 12 displays the outcomes under the revised objective across dif-
ferent policy scenarios. The introduction of 𝐹carbon significantly shifts the
optimization focus, evident from the expanded range of 𝐹SP + 𝐹time in two-
objective scenarios and 𝐹SP in three-objective scenarios. This enhanced

environmental consideration leads to higher SPE installation decisions,
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Fig. 12. Objectives and decisions in two-objective and three-objective problems considering carbon emission.
reaching up to 9, compared to a previous maximum of 7 in the results
shown in Fig. 11.

Notably, the synergistic effects of combining GSIP and BPIP become
more pronounced under the new multi-objective models considering carbon
emissions, particularly in medium cases. Despite some trade-offs in 𝐹time
and 𝐹SP, the dual-policy framework allows for more substantial reductions
in carbon costs. Thus, to enhance environmental benefits, it is crucial for
governments to implement reasonable GSIPs and encourage ports to adopt
BPIP. This combination facilitates easier decisions for shipowners regarding
SPE installations.

5. Conclusions

This study studies the effects of the government subsidy incentive
policy (GSIP) and the berthing priority incentive policy (BPIP) on various
objectives, including environmental benefits, operational efficiency, and
cost management. We consider these impacts from the perspectives of
governments, ports, and shipowners, highlighting the complex balance re-
quired for sustainable port development. Moreover, we focus on optimizing
ship-side shore power (SPE) deployment, berth allocation, and ship schedul-
ing through the application of multi-objective mixed-integer programming
models. To address these complex challenges, we develop a specific algo-
rithm that combines a two-stage solution process with the non-dominated
sorting genetic algorithm (NSGA-II), enhanced by improved genetic oper-
15

ations. The proposed method consistently delivers superior performance
in handling complex multi-objective problems by achieving better-aligned
Pareto fronts. Through comprehensive experiments, we summarize insights
for various stakeholders as follows:

1. Government perspective: Our research underscores the pivotal role of
government in steering sustainable port initiatives. By leveraging our
model, policymakers can seek appropriate subsidy rates to maximize
their impact on shore power expansion while balancing stakeholders’
satisfaction. In this paper, GSIP with subsidy rates set through
parameter impact analysis is proven to be effective in experiment
analysis. Furthermore, our analysis highlights the importance of GSIP
in fostering the adoption of BPIP, while considering its operational
scale implications.

2. Port perspective: For port authorities and operators, our research
offers nuanced insights into the integration of sustainable practices
within the operational framework. While BPIP presents opportu-
nities for enhancing returns through shore-side electricity supply
infrastructure (SPI) utilization, its applicability depends on the scale
of operations and the efficiency of other policies in practice. Our
study emphasizes the need for port operators to carefully assess the
operational implications of BPIP implementation through our model
to mitigate potential efficiency losses.

3. Shipowners perspective: Shipowners stand to benefit significantly
from our research through decision-making regarding SPE installa-

tions. By utilizing our model, ship fleets can optimize SPE installation
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rates to balance cost-effectiveness and operational efficiency, while
aligning with regulatory policies and industry standards.

In summary, our study contributes a comprehensive framework for
takeholders to navigate the complexities of sustainable port development
n the context of shore power systems. By integrating empirical evidence
ith robust modeling techniques, we provide a holistic approach to evaluat-

ng policy interventions and operational strategies, thus fostering resilience
nd efficiency within the maritime industry.

The future studies could be considered the following aspects. The
einforcement learning method is a powerful tool used for solving com-
lex combinatorial optimization problems in recent years, which could be
dopted for solving the studied problem.
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Appendix A. Results of parameter impact analysis
See Table A.1.
Table A.1
Control and experimental group results across settings.

Setting Case ID 𝐹fuel 𝐹time 𝐹SP 𝛼𝑖
Control groups (baseline)

𝑥 = 0.8; 𝑦 = 0.6; Case 1 85 884 686 6318 3
ℎtest
𝑖 = 1; 𝑟w = 66; Case 2 251 454 422 10 679 3
𝑟d = 66 Case 3 388 667 594 14 640 5

Experimental groups (percentage changes)

Case 1 88004(+2.47%) 627(−8.65%) 4662(−26.21%) 2
𝑥 = 0.6 Case 2 258374(+2.75%) 205(−51.56%) 4311(−59.64%) 0

Case 3 398104(+2.43%) 297(−50.00%) 5988(−59.10%) 0

Case 1 88004(+2.47%) 627(−8.65%) 4512(−28.58%) 2
𝑥 = 0.7 Case 2 258374(+2.75%) 205(−51.56%) 4301(−59.73%) 0

Case 3 397894(+2.37%) 304(−48.89%) 6161(−57.91%) 0

Case 1 83624(−2.63%) 799(+16.35%) 8103(+28.25%) 4
𝑥 = 0.9 Case 2 247027(−1.76%) 607(+43.75%) 14369(+34.55%) 6

Case 3 383495(−1.33%) 812(+36.67%) 18864(+28.86%) 8

Case 1 91709(+6.78%) 640(−6.73%) 1666(−73.63%) 1
𝑦 = 0.4 Case 2 263383(+4.74%) 205(−51.56%) 20(−99.81%) 0

Case 3 404977(+4.20%) 297(−50.00%) 60(−99.59%) 0

Case 1 91243(+6.24%) 640(−6.73%) 1866(−70.47%) 1
𝑦 = 0.5 Case 2 263383(+4.74%) 205(−51.56%) 20(−99.81%) 0

Case 3 404977(+4.20%) 297(−50.00%) 60(−99.59%) 0

Case 1 81760(−4.80%) 957(+39.42%) 8157(+29.10%) 6
𝑦 = 0.7 Case 2 243415(−3.20%) 825(+95.31%) 14594(+36.65%) 9

Case 3 369305(−4.98%) 990(+66.67%) 18345(+25.31%) 11

Case 1 90031(+4.83%) 911(+32.69%) 3008(−52.39%) 2
ℎtest
𝑖 = 2 Case 2 260657(+3.66%) 422(0.00%) 2624(−75.43%) 0

Case 3 400364(+3.01%) 594(0.00%) 4524(−69.10%) 0

Case 1 91709(+6.78%) 1175(+71.15%) 1664(−73.67%) 1
ℎtest
𝑖 = 3 Case 2 263430(+4.76%) 620(+46.88%) 0(−100.00%) 0

Case 3 405047(+4.21%) 865(+45.56%) 20(−99.86%) 0

Case 1 85884(0.00%) 591(−13.49%) 6318(0.00%) 3
𝑟w = 33 Case 2 251454(0.00%) 422(0.00%) 10679(0.00%) 3

Case 3 388667(0.00%) 591(−0.56%) 14640(0.00%) 5

Case 1 85884(0.00%) 878(+27.88%) 6318(0.00%) 3
𝑟w = 132 Case 2 251454(0.00%) 422(0.00%) 10679(0.00%) 3

Case 3 388667(0.00%) 601(+1.11%) 14640(0.00%) 5

Case 1 85884(0.00%) 1261(+83.65%) 6318(0.00%) 3
𝑟w = 264 Case 2 251454(0.00%) 422(0.00%) 10679(0.00%) 3

Case 3 388667(0.00%) 614(+3.33%) 14640(0.00%) 5

Case 1 83973(−2.22%) 482(−29.81%) 8175(+29.39%) 4
𝑟d = 33 Case 2 248005(−1.37%) 284(−32.81%) 14036(+31.43%) 6

Case 3 384403(−1.10%) 389(−34.44%) 18791(+28.35%) 8

Case 1 85884(0.00%) 1181(+72.12%) 6318(0.00%) 3
𝑟d = 132 Case 2 251454(0.00%) 845(+100.00%) 10679(0.00%) 3

Case 3 388877(+0.05%) 1168(+96.67%) 14446(−1.32%) 5

Case 1 87981(+2.44%) 1907(+177.88%) 4382(−30.64%) 2
𝑟d = 264 Case 2 258374(+2.75%) 818(+93.75%) 4291(−59.82%) 0

Case 3 398104(+2.43%) 1168(+96.67%) 5928(−59.51%) 0
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Appendix B. Results of weighted sum method

See Tables B.1 and B.2.
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Table B.1
Weighted sum results in two-objective problem.
𝑤1, 𝑤2, 𝑤3 Case 1 Case 2 Case 3

(𝑤1 ≠ 𝑤2 = 𝑤3) 𝐹fuel 𝐹time 𝐹SP 𝐹time + 𝐹SP 𝐹fuel 𝐹time 𝐹SP 𝐹time + 𝐹SP 𝐹fuel 𝐹time 𝐹SP 𝐹time + 𝐹SP

1,1,1 79 686 264 5955 6219 249 776 396 9280 9676 385 615 660 12 952 13 612
1,2,2 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,3,3 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,4,4 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,5,5 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,6,6 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,7,7 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,8,8 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,9,9 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,10,10 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,15,15 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
1,20,20 86 210 132 0 132 260 261 330 0 330 400 527 660 0 660
2,1,1 75 026 528 10 922 11 450 241 155 1188 18 466 19 654 – – – –
3,1,1 74 560 858 11 816 12 674 – – – – – – – –
4,1,1 74 560 858 11 816 12 674 241 155 1188 18 466 19 654 – – – –
5,1,1 74 560 858 11 816 12 674 – – – – – – – –
6,1,1 74 560 858 11 816 12 674 – – – – – – – –
7,1,1 74 560 858 11 816 12 674 240 223 990 19 013 20 003 – – – –
8,1,1 74 560 858 11 816 12 674 – – – – – – – –
9,1,1 74 560 858 11 816 12 674 – – – – – – – –
10,1,1 74 560 858 11 816 12 674 – – – – – – – –
15,1,1 74 560 858 11 816 12 674 – – – – – – – –
20,1,1 74 560 858 11 816 12 674 – – – – – – – –
Table B.2
Supplementary results in three-objective problem.
𝑤1, 𝑤2, 𝑤3 Case 1 Case 2 Case 3

(𝑤1 ≠ 𝑤2 ≠ 𝑤3) 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP

1,2,3 86 210 132 0 260 261 330 0 400 527 660 0
1,3,2 86 210 132 0 260 028 264 200 400 061 528 400
2,1,3 86 210 132 0 260 261 330 0 400 527 660 0
2,3,1 75 026 528 10 922 240 223 990 19 013 – – –
3,1,2 75 026 528 10 922 240 223 990 19 013 – – –
3,2,1 75 026 528 10 922 – – – – – –
1,3,5 86 210 132 0 260 261 330 0 400 527 660 0
1,5,3 86 210 132 0 260 261 330 0 400 527 660 0
3,1,5 86 210 132 0 260 261 330 0 400 527 660 0
3,5,1 75 026 528 10 922 240 223 990 19 013 – – –
5,1,3 75 026 528 10 922 – – – – – –
5,3,1 74 560 858 11 816 – – – – – –
1,5,10 86 210 132 0 260 261 330 0 400 527 660 0
1,10,5 86 210 132 0 260 261 330 0 400 527 660 0
5,1,10 86 210 132 0 260 261 330 0 400 527 660 0
5,10,1 75 026 528 10 922 240 223 990 19 013 – – –
10,5,1 74 560 858 11 816 – – – – – –
10,1,5 75 026 528 10 922 – – – – – –
1,10,20 86 210 132 0 260 261 330 0 400 527 660 0
1,20,10 86 210 132 0 260 261 330 0 400 527 660 0
10,1,20 86 210 132 0 260 261 330 0 400 527 660 0
10,20,1 75 026 528 10 922 240 223 990 19 013 – – –
20,1,10 74 560 858 11 816 – – – – – –
20,10,1 74 560 858 11 816 – – – – – –
2,2,1 75 026 528 10 922 240 223 990 19 013 – – –
3,3,1 75 026 528 10 922 – – – – – –
4,4,1 75 026 528 10 922 – – – – – –
5,5,1 75 026 528 10 922 – – – – – –
6,6,1 75 026 528 10 922 240 223 990 19 013 – – –
7,7,1 74 560 858 11 816 240 223 990 19 013 – – –
8,8,1 74 560 858 11 816 – – – – – –
9,9,1 74 560 858 11 816 – – – – – –
10,10,1 74 560 858 11 816 – – – – – –
15,15,1 74 560 858 11 816 240 223 990 19 013 – – –
20,20,1 74 560 858 11 816 – – – – – –
1,1,2 86 210 132 0 260 261 330 0 400 527 660 0
1,1,3 86 210 132 0 260 261 330 0 400 527 660 0
1,1,4 86 210 132 0 260 261 330 0 400 527 660 0

(continued on next page)
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Table B.2 (continued).
𝑤1, 𝑤2, 𝑤3 Case 1 Case 2 Case 3

(𝑤1 ≠ 𝑤2 ≠ 𝑤3) 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP

1,1,5 86 210 132 0 260 261 330 0 400 527 660 0
1,1,6 86 210 132 0 260 261 330 0 400 527 660 0
1,1,7 86 210 132 0 260 261 330 0 400 527 660 0
1,1,8 86 210 132 0 260 261 330 0 400 527 660 0
1,1,9 86 210 132 0 260 261 330 0 400 527 660 0
1,1,10 86 210 132 0 260 261 330 0 400 527 660 0
1,1,15 86 210 132 0 260 261 330 0 400 527 660 0
1,1,20 86 210 132 0 260 261 330 0 400 527 660 0

𝑤1, 𝑤2, 𝑤3 Case 1 Case 2 Case 3

(𝑤1 = 𝑤3 ≠ 𝑤2) 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP 𝐹fuel 𝐹time 𝐹SP

2,1,2 78 055 330 7544 244 883 594 14 046 380 722 858 17 718
3,1,3 78 055 330 7544 244 883 594 14 046 380 722 858 17 718
4,1,4 78 055 330 7544 244 883 594 14 046 380 722 858 17 718
5,1,5 78 055 330 7544 244 883 594 14 046 – – –
6,1,6 78 055 330 7544 244 883 594 14 046 – – –
7,1,7 78 055 330 7544 244 883 594 14 046 – – –
8,1,8 78 055 330 7544 244 883 594 14 046 380 722 858 17 718
9,1,9 78 055 330 7544 244 883 594 14 046 – – –
10,1,10 78 055 330 7544 244 883 594 14 046 380 722 858 17 718
15,1,15 78 055 330 7544 244 883 594 14 046 380 722 858 17 718
20,1,20 78 055 330 7544 244 883 594 14 046 – – –
1,2,1 79 686 264 5955 249 776 396 9280 385 615 660 12 952
1,3,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,4,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,5,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,6,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,7,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,8,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,9,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,10,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,15,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
1,20,1 83 880 132 2083 253 970 264 5408 389 809 528 9080
18
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