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Abstract— Extracting invariant representations in unlabeled
electrocardiogram (ECG) signals is a challenge for deep neural
networks (DNNs). Contrastive learning is a promising method for
unsupervised learning. However, it should improve its robustness
to noise and learn the spatiotemporal and semantic represen-
tations of categories, just like cardiologists. This article pro-
poses a patient-level adversarial spatiotemporal contrastive learn-
ing (ASTCL) framework, which includes ECG augmentations,
an adversarial module, and a spatiotemporal contrastive module.
Based on the ECG noise attributes, two distinct but effective ECG
augmentations, ECG noise enhancement, and ECG noise denois-
ing, are introduced. These methods are beneficial for ASTCL to
enhance the robustness of the DNN to noise. This article proposes
a self-supervised task to increase the antiperturbation ability.
This task is represented as a game between the discriminator
and encoder in the adversarial module, which pulls the extracted
representations into the shared distribution between the positive
pairs to discard the perturbation representations and learn the
invariant representations. The spatiotemporal contrastive module
combines spatiotemporal prediction and patient discrimination
to learn the spatiotemporal and semantic representations of
categories. To learn category representations effectively, this
article only uses patient-level positive pairs and alternately uses
the predictor and the stop-gradient to avoid model collapse.
To verify the effectiveness of the proposed method, various
groups of experiments are conducted on four ECG benchmark
datasets and one clinical dataset compared with the state-of-
the-art methods. Experimental results showed that the proposed
method outperforms the state-of-the-art methods.

Index Terms— Adversarial learning, contrastive learning, data
augmentation, electrocardiogram (ECG).

NOMENCLATURE

Notation Definition
x Single instance ECG original data.
x̃ Augmented view of instance.
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N , C , and T Number of instances, number of leads,
and length of signals.

e Group of instances under the same patient.
u Number of elements in group e.
a and d ECG noise enhancement tag and ECG

noise denoising tag.
µ Ratio of signal to noise.
z Representation extracted by encoder

fE (•).
ẑ and z̃ No-gard representation and recombined

representation.
y Pseudolabel of representation.
K and D Length of representation and dimension of

the encoder.
τ Length of the past segment in representa-

tion.
sv Semantic vector extracted by transformer

fT (•).
M Dimension of the transformer.
p Projection extracted by projector h P(•).
q Prediction extracted by predictor hQ(•).
H Dimension of the projector.
w1, w2, and w3 Weight of loss function.

I. INTRODUCTION

REDUCING cardiovascular diseases (CVDs) mortality is
one of the nine global noncommunicable disease goals

proposed by the World Health Organization [1]. Electrocar-
diogram (ECG) is a crucial clinical medical detection tool for
CVDs. More than 300 million ECGs are obtained every year
worldwide [2]. The paroxysm from CVDs causes a change
in ECG signals that can be detected by a trained deep neural
network (DNN) [3]. Nevertheless, the performance of a DNN
inevitably depends on the quality and quantity of the labeled
data, but annotating ECG signals are very time and capital
consuming [4]. Therefore, a DNN has a weak generalization
ability when there is limited labeled data. To tackle this, a large
amount of unlabeled data must be effectively utilized in the
clinical application of intelligent diagnosis.

Self-supervised learning can learn useful representations
in unlabeled data with pretext tasks [5], such as jigsaw
puzzles [6], rotation prediction [7], multiview association [8],
instance discrimination [9], and so on. Contrastive learning is
a promising self-supervised learning method [10] that gen-
erates views of input instances through data augmentation
and considers views from the same instance as positive pairs
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Fig. 1. Research Motivation. (a) In the process of learning invariant
representations between positive pairs, the learned representations also include
perturbation representations caused by data augmentations. (b) In the process
of maximizing the dissimilarity of negative pairs, using negative pairs of the
same category is disadvantageous to learn the category invariant representa-
tions.

and views from different instances as negative pairs. Invariant
representations are learned by maximizing the agreement
of positive pairs and minimizing the agreement of negative
pairs [11]. An ECG signal, whose lead reflects the activity
of each part of the heart, is a physiological temporal signal
(PTS) that is often accompanied by noise [12]. Clinically,
cardiologists pay attention to the temporal changes of each
ECG lead and judge the CVDs by observing invariant category
features of the waveform. Even when noise exists, CVDs can
still be diagnosed through these invariant category features.
Thus, we believe that a DNN should, like cardiologists, on the
one hand, improve its robustness to noise for learning invariant
representations, and on the other hand, learn spatiotempo-
ral and semantic representations of categories. Nevertheless,
to achieve these two goals, there following issues in contrastive
learning should be addressed.

1) Are previously proposed augmentation methods suitable
for enhancing the robustness of DNN to noise? Choosing
an appropriate augmentation method is essential for the
success of contrastive learning [13]. ECG noise is one of the
key factors in reducing the performance of the DNN [14].
Existing augmentation methods are not customized based on
ECG noise, and some even change the shape of the signal
or disrupt the sequence, which is not conducive to improving
noise robustness.

2) Do the invariant representations obtained by contrastive
learning contain perturbation representations? In Fig. 1(a),
the two curves LD and LS represent the training processes
of the loss function of the augmentation discriminator and
contrastive learning framework (e.g., SimSiam [15]) on the
Chapman dataset. When LS has converged, the gradient of LD

is still declining. This means that although the agreement of
the positive pair is maximized, the perturbation representations
caused by augmentation are also captured, which will weaken
the antiperturbation ability of the DNN.

3) Are the ECG negative pairs in contrastive learning rea-
sonable for learning category representation? Some contrastive

learning studies [13], [16] have focused on spatiotemporal and
semantic representations. They encourage the negative pairs
to be dissimilar to avoid model collapse. However, as shown
in Fig. 1(b), when two instances of negative pairs belong
to the same category, their separation prevents the DNN
from learning category representations. For better learning
spatiotemporal and semantic representations of categories,
abandoning negative pairs is promising.

To address the above-mentioned issues, this article pro-
poses a patient-level adversarial spatiotemporal contrastive
learning (ASTCL) framework to learn useful invariant cat-
egory representations from unlabeled ECG data. According
to ECG noise and common filters, two distinct but effective
ECG augmentations for ECG signals, including ECG noise
enhancement and ECG noise denoising, are proposed. The
proposed two augmentation methods could reduce the impact
of ECG noise on representation learning and preserve the
properties of space-time and semantics of waveforms simul-
taneously, which are conducive to improving noise robust-
ness and learning invariant representations. To improve the
antiperturbation ability of the DNN, a self-supervised task is
developed in the adversarial module, which is a game between
a discriminator and an encoder. The discriminator is used to
identify which augmentation generates views, and the encoder
is used to learn invariant representations. By completing this
task, the extracted representations of the positive pair can
be pulled into the shared representation distribution to avoid
learning perturbation representations and promote learning
invariant representations. To learn spatiotemporal and semantic
representations of categories, we construct a spatiotemporal
contrastive module that employs spatiotemporal prediction
and patient discrimination as pretext tasks. This module only
utilizes patient-level positive pairs to better extract the category
representations. Predictor and stop-gradient are alternately per-
formed in contrastive branches to replace the role of negative
pairs in preventing model collapse.

The main contributions of this article are summarized as
follows.

1) This article proposes a novel patient-level contrastive
learning framework ASTCL for unsupervised representation
learning, which can, like cardiologists, improve the robustness
of the model to noise and learn the spatiotemporal and
semantic representations of categories.

2) Two distinct but effective augmentation methods are
introduced by utilizing the ECG noise enhancement and
denoising to facilitate the noise robustness. Based on adver-
sarial learning, a self-supervised task is proposed, which can
improve the antiperturbation ability by introducing a game
between a discriminator and an encoder.

3) Spatiotemporal prediction and patient discrimination are
used as pretext tasks to learn the spatiotemporal and semantic
representations of categories. The task only uses patient-level
positive pairs and alternately uses the predictor and the
stop-gradient to avoid model collapse, which can better extract
category representations.

4) Various experiments are conducted to verify learned
representations with ASTCL on four ECG benchmark datasets
and one clinical dataset. The experimental results show that
ASTCL outperforms the state-of-the-art methods.
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II. RELATED WORK

This section reviews the previous related to contrastive
learning and self-supervised learning for PTS. The details are
summarized as follows.

A. Contrastive Learning

The pretext tasks of contrastive learning research mainly
include time series prediction and instance discrimination.
Hyvärinen and Morioka [17] divided the time series data
according to the time window and predicted the position of
these segments to find effective representations. To extract a
general representation of variable length and multivariate time
series, Franceschi et al. [18] built a novel triple loss based on
temporal negative sampling and used an encoder based on
causal expansion convolution to learn universal embeddings of
time series. Oord et al. [19] proposed a temporal contrastive
learning framework, which used the past segment to predict
the future segment via an autoregressive model and learned
the representations of data by maximizing mutual information
between prediction and actuality. Although these studies can
learn temporal representations well, they are ineffective in
semantic representation learning.

Contrastive learning based on instance discrimination
is more suitable for learning semantic representations.
Hjelm et al. [20] constructed positive and negative pairs on
the sample’s local and global features to maximize the mutual
information. Recently, some methods with data augmentations
can better learn semantic representations by increasing the
difficulty of instance recognition tasks, such as the studies
of MoCo [11] and simple framework for contrastive learn-
ing of visual representations (SimCLR) [21]. Tian et al. [22]
improved the efficiency of comparison by expanding the
sample views to increase comparison pairs. Jiang et al. [23]
and Ho and Vasconcelos [24] added unsupervised adversarial
training in contrastive learning, which generated adversarial
examples to attack the model for increasing the model’s
robustness. Zhu et al. [25] proposed a novel feature-level data
operation to replace the augmentation, resulting in facilitating
representation learning. Caron et al. [26] and Xu et al. [27]
abandoned the traditional pairwise comparison. Their meth-
ods clustered the data and compulsorily unified different
views produced by cluster assignments. Liu et al. [28] pro-
posed a GNN-based contrastive learning framework from
high-dimensional attributes and local structure and measured
the agreement of each instance pair with its outputted scores
for graph anomaly detection. This framework can capture the
relationship between each node and its neighboring substruc-
ture in an unsupervised way. Kermiche [29] combined the back
propagation and contrastive Hebbian learning into the Boltz-
mann machines for applying to networks when optimizing a
loss objective and networks with stochastic binary outputs.
Grill et al. [30] and Chen et al. [15] achieved state-of-the-
art performance without establishing negative pairs by the
“stop grad” of the encoder. The above-mentioned methods are
without considering the learning of temporal representation.

ECG signals belong to PTS, and besides semantic rep-
resentations, their spatiotemporal representations should also
deserve attention in representation learning [31]. In addition,

data augmentations of the above-mentioned studies are unsuit-
able for ECG signals.

B. Self-Supervised Learning for PTS

With the continuous progress of self-supervised learning
technology, more and more researchers pay more attention
to self-supervised learning for PTS. Sarkar and Etemad [32]
extended six ECG transformation methods to learn the
high-level representations of data by identifying different
transformations. Yet, it could also learn transformation rep-
resentations. Banville et al. [33], [34] proposed two kinds of
pretext tasks: relative positioning and temporary shuffling
for EEG classification. These heuristic tasks may limit the
generality of the learned representations. Fan et al. [35], [36]
intercepted the EEG data into segments and learned the
data representations by predicting the relation of time series
segments. The heartbeats of ECG signals are approximately
periodic. The task of predicting relation is not suitable for
ECG signals. Zhao et al. [37] matched the feature distribution
offset between the source domain and the target domain
through the adversarial learning strategy to reduce the distri-
bution difference between related but different domains. Even
with fewer available tags, it can still improve the perfor-
mance of a single-subject performance in the target domain.
Ma et al. [38] combined time series prediction and clustering
and employed spectral analysis to constrain the pseudolabels
and align the predicted labels with the pseudolabels to opti-
mize the self-supervised training.

Due to the outstanding performance of contrastive learning,
more unsupervised representation learning research of PTS
improves on this basis. Cheng et al. [39] utilized contrastive
learning and adversarial training to learn the invariant repre-
sentation of subject specific. Alsentzer et al. [40] performed
contrastive learning on the fused features of multilead to learn
the sequential representation of EEG, but it also dramatically
increases the amount of calculation. Shen et al. [41] added
the idea of alignment intersubject in contrastive learning,
maximizing the similarity in EEG signals across subjects when
they received the same stimulus. Lan et al. [42] used the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) module to judge
whether the heartbeat of the intrasubject is “mutated” to
optimize the definition of heartbeat-level positive and neg-
ative pairs and performed the intersubject task to learn the
heartbeat representations. Eldele et al. [13] proposed a con-
trastive learning framework, which learns the temporal and
contextual representations of EEG via the temporal contrastive
module and contrastive contextual module. Kiyasseh et al. [16]
expanded the positive and negative pairs of samples from the
perspectives of time, space, and patients. They assume that the
multilead of ECG is spatially invariant, but some CVDs not
reflected in all leads, such as myocardial infarction [43].

The mentioned studies have not specially designed data
augmentations based on ECG noise, and there is no way to
prevent the model from learning perturbation representations.
Moreover, these PTS studies still use negative pairs for pre-
training. To solve the above-mentioned problems, this article
proposes ECG augmentations, an adversarial module, and
a spatiotemporal contrastive module with only patient-level
positive pairs.
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Fig. 2. ASTCL Architecture. The 12-lead ECG signal xi is randomly transformed by the proposed ECG augmentations to produce views x̂a
i or x̂d

i . The
adversarial module defines ẑa

i and ẑd
i as the “True” set, za

i and zd
i as the “Fake” set, which aims to promote za

i and zd
i into the shared representation distribution

via gaming between discriminator and encoder. The spatiotemporal contrastive module uses past segment za
i,≤τ and zd

i,≤τ to predict the future segment zd
i,>τ

and za
i,>τ for spatiotemporal representation learning, and maximize the similarity between projection and prediction in the same patient [i and j are the same

patients and maximize the similarity of qa
i and sg(pd

i ) and qa
i , and sg(pd

j )] for semantic representation learning.

III. METHOD

The overview of our proposed ASTCL is introduced in
Section III-A. The details of ECG augmentations, adver-
sarial module, and spatiotemporal contrastive module are
explained in Sections III-B–III-D, respectively. The complex-
ity of ASTCL is analyzed in section III-E. The notations used
in this article are summarized in the Nomenclature.

A. Overview

Each lead ECG records the electric potential changes of
the corresponding parts of the heart over a period [44].
In this article, the most commonly used in the clinic, a 12-
lead 10-s ECG signal, is used as input data. The dataset
is expressed as X = {x1, . . . , xi , . . . , xn} ∈ RN∗C∗T , where
N is the total number of instances, C is the number of
leads, and T is the length of signals. ASTCL is composed
of ECG augmentations, an adversarial module, and a spa-
tiotemporal contrastive module, specifically including an ECG
noise enhancement Aa(•), an ECG noise denoising Ad(•),
an encoder fE (•), a no-grad encoder f Ê (•), a discriminator
hD(•), a transformer fT (•), a projector h P(•) and a predictor
hQ(•). The overall structure of ASTCL is illustrated in Fig. 2.
By using our proposed ECG augmentations, the input data
xi is transformed into two distinct augmented views, which
are input into the adversarial module and spatiotemporal
contrastive module. The adversarial module aims to promote
the extracted representations of two views by the encoders
into the shared distribution to increase the antiperturbation
ability of the encoder. The spatiotemporal contrastive module
aims to learn spatiotemporal and semantic representations of
categories. It only uses patient-level positive pairs to learn
category representations more effectively. After unsupervised
pretraining, the trained encoder of ASTCL can be used for
downstream classification tasks.

B. ECG Augmentations

ECG noise is one of the key factors in reducing the
performance of representation learning in ECG [14], mainly
including baseline drift (BD) noise, muscle artifacts (MA)

Fig. 3. ECG augmentations cases. (a) Original data. (b) Noisy view
generated by ECG noise enhancement. (c) Clean view generated by ECG
noise denoising.

noise, and power frequency (PF) noise [45]. Nevertheless, the
existing PTS augmentation methods include waveform flip,
channel resize, random resized crop, and so on [16], [46].
These methods are not conducive to improving the robustness
of DNN to ECG noise. Therefore, we expend ECG noise
enhancement as one of the ECG augmentations by adding BD,
MA, and PF noise into the data. In contrast, we take ECG
noise denoising as the other ECG augmentations by removing
the original noise of data. The experimental data are converted
by ECG augmentations lead by lead. To reduce the effect of
amplitude differences caused by the instrument and individual,
the ECG signal is processed by Z-score normalization [47]
before ECG augmentations. The processed signal is shown in
Fig. 3(a).

In ECG noise enhancement, the MIT-BIH noise stress test
database is used as a noise source. This database includes three
half-hour recordings of noise typical in two-lead ambulatory
ECG recordings, and the sampling rate is 360 Hz [48].
We resample the BD and MA noise of MIT-BIH to the
same as the frequency of input data. To ensure the noise
difference between leads, the randomly 10-s BD noise and
MA noise from any lead are selected as AB(t)c and AM(t)c

and t ∈ T and c ∈ C , respectively. Since there is no PF
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noise in MIT-BIH, this article generates the PF noise AP(t)c

based on the modeling method of the literature [49]. We add
AB(t)c, AM(t)c, and AP(t)c to the cth lead original ECG
signals x(t)i,c at every moment in (1). Next, we repeat the
above-mentioned operations C times to obtain the noisy view
x̃a

i in (2). The view x̃a
i is shown in Fig. 3(b), where µ is the

signal-to-noise ratio (SNR)

Aa(x(t)i,c) = x(t)i,c + µAB(t)c + µAM(t)c + µAP(t)c

(1)

x̃a
i =

 Aa(x(1)i,1) · · · Aa(x(T )i,1)
...

. . .
...

Aa(x(1)i,C) · · · Aa(x(T )i,C)

. (2)

In ECG noise denoising, according to the study of [50] and
[51], Butterworth (BW) filter, finite impulse response (FIR)
filter, and infinite impulse response (IIR) filter are utilized to
remove the original noise that may exist in the data. First,
we employ the 0.5-Hz BW low-pass filter to extract BD noise
as DB(t)c and remove it from the data. The MA noise is white
noise with a frequency higher than 60 Hz. We use the 60-Hz
FIR high-pass filter to delete the MA noise DM(t)c of data.
Moreover, the 50-Hz IIR notch filter is used to remove PF
noise, which is denoted as D P(t)c. Then, we remove DB(t)c,
DM(t)c, and D P(t)c from the original signal x(t)i,c in (3).
Finally, as shown in Fig. 3(c), the clean view x̃d

i are generated
by repeating denoising operations, which is formulated as
follows:

Ad(x(t)i,c) = x(t)i,c − DB(t)c − DM(t)c − D P(t)c (3)

x̃d
i =

 Ad(x(1)i,1) · · · Ad(x(T )i,1)
...

. . .
...

Ad(x(1)i,C) · · · Ad(x(T )i,C)

. (4)

After ECG noise enhancement and ECG noise denoising,
the view x̃a

i becomes noisier, and the other view x̃d
i becomes

cleaner. Although their differences in noise are more signifi-
cant, their comparison helps to reduce the influence of ECG
noise in contrastive learning, which is conducive to improving
noise robustness for learning useful invariant representations
by adversarial module and spatiotemporal contrastive module.

C. Adversarial Module

The mechanism of adversarial learning [52] is a game
between the generator and the discriminator. Its goal is to
make the discriminator unable to distinguish between the
fake set and the true set. Zhao et al. [37] and Feng et al. [53]
leverage this idea to obtain domain-invariant features across
domains. Inspired by the above-mentioned studies, in the
adversarial module, an adversarial game task via adversarial
learning is proposed to reduce the gap between distribution
P (̃xa

i ) and distribution P (̃xd
i ). This task aims to discard

perturbation representations and learn invariant representations
for enhancing the antiperturbation ability. As shown in Fig. 2,
the adversarial module includes an encoder fE (•), a no-grad
encoder f Ê (•), and a discriminator hD(•). The structures
of fE (•) and f Ê (•) are the same, and both are four-block

Fig. 4. Architecture of main components. (a) Encoder. (b) Transformer.

convolutional architecture in Fig. 4(a), whose weights are
shared. We employ encoder fE (•) as the “Generator,” and
define a pseudolabel yσ for ẑσ

i = f Ê (̃xσ
i ) ∈ RK∗D, σ ∈ {a, d}

as follows in (5), where K is the feature-length, and D is the
hidden dimension of the encoder. The pseudolabels are divided
into two categories: “0” means σ = a and “1” means σ = d .
The discriminator hD(•) is a classifier with four linear layers,
it conducts self-supervised training based on pseudolabels to
identify which augmentations the view comes from

yσ
=

{
0, (i f σ = a)

1, (i f σ = d).
(5)

In classic adversarial learning, the encoder and discriminator
play the following two-player minimax game with a value
function V ( fE , hD) in [54, (eq. 6)]. Based on pseudolabels,
if ẑd

i and fE (̃xa
i ) are defined as the true set and the fake set,

respectively, then P (̃xa
i ) will approximate to P (̂zd

i ), which
only allows the encoder to learn the representations of x̃d

i ,
not the invariant representations between views x̃a

i and x̃d
i

min
fE

max
hD

V ( fE , hD) = Eẑd
i ∼P (̂zd

i )[log hD (̂zd
i )]

+Ex̃a
i ∼P (̃xa

i )[log(1− hD( fE (̃xa
i )))]. (6)

To overcome this, the representations ẑa
i and ẑd

i are defined
as the true set, and fE (̃xa

i )) and fE (̃xd
i ) are defined as the fake

set. During the training process of the discriminator hD(•), the
gradient of the no-grad encoder f Ê (•) is not updated. ẑa

i and ẑd
i

are input into the discriminator hD(•), and the discriminator
hD(•) predicts the probabilities hD (̂za

i ) and hD (̂zd
i ) that ẑa

i
and ẑd

i belong to pseudolabel categories. The parameters of
discriminator hD(•) are updated to minimize LD in training
process. The LD is defined in the following, which includes
two binary cross entropy (BCE) functions:

LD =
1

2N

N∑
i=1

[
BCE

(
hD (̂zd

i ), yd)
+ BCE

(
hD

(̂
za

i

)
, ya)]

= −
1

2N

N∑
i=1

[
log hD

(̂
zd

i

)
+ log

(
1− hD

(̂
za

i

))]
. (7)

In the process of training the encoder fE (•), the parameters
of discriminator hD(•) are fixed, and its input is fE (̃xa

i )
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and fE (̃xd
i ). The pseudolabels of fE (̃xa

i ) and fE (̃xd
i ) are

exchanged. The pseudolabel yd is assigned to fE (̃xa
i ), and

the pseudolabel ya is assigned to fE (̃xd
i ). We train encoder

fE (•) to minimize LG , which is formulated in the fol-
lowing. The learning objective of the encoder fE (•) is to
make hD( fE (̃xd

i )) = hD (̂za
i ) and hD( fE (̃xa

i )) = hD (̂zd
i )

simultaneously:

LG =
1

2N

N∑
i=1

[
BCE

(
hD

(
fE

(̃
xd

i

))
, ya)

+BCE
(
hD

(
fE

(̃
xa

i

))
, yd)]

= −
1

2N

N∑
i=1

[
log

(
1− hD

(
fE

(̃
xd

i

))
+ log hD

(
fE

(̃
xa

i

))]
.

(8)

Based on the value function Ṽ ( fE , hD) in (9), the encoder
fE (•) and discriminator hD(•) continuously game each other
during pretraining. The P (̃xa

i ) is similar to P (̂zd
i ), and P (̃xd

i ) is
similar to P (̂za

i ). Thus, the encoder fE (•) increasingly focuses
on the invariant representations between the views x̃a

i and
x̃d

i , rather than perturbation representations caused by ECG
augmentations, which can increase the antiperturbation ability

min
fE

max
hD

Ṽ ( fE , hD) = Eẑd
i ∼P (̂zd

i )

[
log hD

(̂
zd

i

)]
+Ex̃a

i ∼P (̃xa
i )

[
log

(
1− hD

(
fE

(̃
xa

i

)))]
+Ex̃d

i ∼P (̃xd
i )

[
log hD

(
fE

(̃
xd

i

))]
+Eẑa

i ∼P (̂za
i )

[
log

(
1− hD

(̂
za

i

))]
. (9)

D. Spatiotemporal Contrastive Module

The spatiotemporal contrastive module is used to learn
spatiotemporal and semantic representations of categories via
spatiotemporal prediction and patient discrimination in unsu-
pervised training. As shown in Fig. 2, this module has two
branches, whose inputs are views x̃a

i and x̃d
i after shuffling.

The representation zσ
i = fE (̃xσ

i ) is expressed as zσ
i =

{zσ
i,1, . . . , zσ

i,τ , . . . , zσ
i,K }, where zσ

i,≤τ is past segment of zσ
i ,

zσ
i,>τ is future segment of zσ

i , and τ is length of past segment.
By performing recombination RC(•), the future and past
segments of za

i and zd
i are recombined to generate z̃a

i and z̃d
i ,

respectively, which are defined in the following:

z̃a
i = RC

(
za

i , zd
i

)
=

{
za

i,1, . . . , za
i,τ , zd

i,τ+1, . . . , zd
i,K

}
(10)

z̃d
i = RC

(
zd

i , za
i

)
=

{
zd

i,1, . . . , zd
i,τ , za

i,τ+1, . . . , za
i,K

}
. (11)

In spatiotemporal prediction, because transformer [55] has
an excellent performance in regression tasks, it is adopted
in this module to capture spatiotemporal representations.
As shown in Fig. 4(b), the architecture of our used transformer
fT (•) is composed of an embedding block, four multihead
attention blocks, and four feed-forward blocks. To make the
gradient more stable, the residual connection used in trans-
former fT (•) is the prenorm residual connection proposed
in the literature [56]. z̃σ

i,≤τ is converted via embedding block
and concatenated with the generated token st . Afterward, z̃σ

i,≤τ

is input into the multihead attention blocks and feed-forward
blocks for extracting semantic vector svσ

i = fT (̃zσ
i,≤τ ) ∈ RM ,

where M is the hidden dimension of transformer fT (•). The

Fig. 5. Similarity matrix between prediction and projection.

semantic vector svσ
i is used to predict each latent represen-

tation z̃σ
i,τ+k of z̃σ

i,>τ , 1 ≤ k ≤ K − τ . The sequence x̃σ
i,τ+k

of view x̃σ
i is mapped to z̃σ

i,τ+k via the encoder. Inspired by
the study of [19], the log-bilinear model fk(•) is used to
preserve the mutual information between the sequence x̃σ

i,τ+k
and semantic vector svσ

i . The Wk(•) is a linear function, which
is used for mapping svσ

i to z̃σ
i,τ+k . To maximize the mutual

information of two branches, we minimize the LT , which is
defined in the following.

fk
(̃
xσ

i,τ+k, svσ
i

)
= exp

((̃
zσ

i,τ+k

)T Wk
(
svσ

i

))
(12)

La = −
1

K − τ

K−τ∑
k=1

log
fk

(̃
xa

i,τ+k, sva
i

)∑N
h=1 fk

(̃
xa

h,τ+k, sva
i

)
(13)

Ld = −
1

K − τ

K−τ∑
k=1

log
fk

(̃
xd

i,τ+k, svd
i

)∑N
h=1 fk

(̃
xd

h,τ+k, svd
i

)
(14)

LT =
1

2N

N∑
i=1

(La + Ld). (15)

In patient discrimination, the projector h P(•) used in this
module maps semantic vector svσ

i to projection space for
obtaining projection pσ

i = h P(svσ
i ) ∈ RH , where H is the

hidden dimension of the projector h P(•). To learn semantic
representations of categories effectively, we add the predictor
hQ(•) and the stop-gradient sg(•), as in the studies of [30]
and [15], to avoid model collapse without using negative
pairs. The goal of the predictor hQ(•) is to promote the
similarity of two branches representations via forecasting the
projection of the other branch, its prediction is defined as
qσ

i = hQ(pσ
i ) ∈ RH . The comparisons between qσ

i and pσ
i

are illustrated in the similarity matrix as Fig. 5. Kiyasseh et
al. [16] set forth that the clinical object should be at the patient-
level, rather than the instance-level, so we define positive pairs
at the patient-level. Based on the patient ID, we use a set
E = {e1, . . . , ei , . . . , en} to represent the relationship between
the patient and the instance, where ei refers to other instances
of the same patient as instance i . For example, ei = { j},
1 < j < N means that instance i and j come from the
same patient, the diagonal elements (qa

i , pd
i ), (qd

i , pa
i ) and

nondiagonal elements (qa
i , pd

j ), (qd
i , pa

j ) of similarity matrix
are defined as positive pairs for instance i . The similarity of
these positive pairs is quantified as (16). It is worth mentioning
that the stop gradient sg(•) of projection plays a crucial role
in preventing collapsing caused by abandoning negative pairs.
This operation is applied to pσ

i for the Ldiag and Lnondiag
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calculation. We maximize the similarity of all positive pairs
by minimizing the LC , which is defined in the following

Algorithm 1 ASTCL
Require: dataset X = {x1, · · · xi , · · · xn}, batchsize B, past

segment length τ , set E = {e1, · · · ei , · · · en}, set U =
{u1, · · · ui , · · · un}

1: for sampled minibatch xi
B
{i=1} ∈ X do

2: for xi in xi
B
{i=1} do

3: x̃a
i , x̃d

i ← Aa(xi ), Ad(xi )

4: ẑa
i , ẑd

i ← f Ê (̃xa
i ), f Ê (̃xd

i )

5: Get hD (̂za
i ), hD (̂zd

i )

6: za
i , zd

i ← fE (̃xa
i ), fE (̃xd

i )

7: Get hD(za
i ), hD(zd

i )

8: Recombine RC(za
i , zd

i ), RC(zd
i , za

i )→ z̃a
i , z̃d

i
9: sva

i , svd
i ← fT (̃za

i,≤τ ), fT (̃zd
i,≤τ )

10: pa
i , pd

i ← h P(sva
i ), h P(svd

i )

11: qa
i , qd

i ← hQ(pa
i ), hQ(pd

i )

12: Stop-gradient pa
i , pd

i → sg(pa
i ), sg(pd

i )

13: end for
14: Calculate LD , LG , LT , LC and LF by Eq.7, Eq.8,

Eq.15, Eq.19 and Eq.20
15: Update hD(•) to minimize LD

16: Update fE (•), fT (•), h P(•) and hQ(•) to minimize
LF

17: Share weight fE (•)→ f Ê (•)

18: end for
Ensure: encoder fE (•).

Sim
(
qa

i , pd
i

)
= −

qa
i

∥qa
i ∥2
·

pd
i

∥pd
i ∥2

(16)

Ldiag =
1
2

[
Sim

(
qa

i , sg
(

pd
i

))
+ Sim

(
qd

i , sg
(

pa
i

))]
(17)

Lnondiag =
1
ui

∑
j∈ei

[
Sim

(
qa

i , sg
(

pd
j

))
+ Sim

(
qd

i , sg
(

pa
j

))]
(18)

LC =
1

2N

N∑
i=1

(Ldiag + Lnondiag) (19)

where Sim(•) is the cosine similarity, and ui is the number of
elements in ei .

Trained by the self-supervised tasks, such as an adversarial
game, spatiotemporal prediction, and patient discrimination,
the encoder is updated via using LG , LT and LC simultane-
ously. The overall loss function of ASTCL is shown as follows:

LF = w1LG + w2LT + w3LC (20)

where w1, w2, and w3 are the weight of LG , LT , and LC

in LF , respectively. The main pseudocode of ASTCL is in
Algorithm 1.

E. Complexity Analysis

The complexity of the main components of ASTCL is
analyzed using the complexity theory, including ECG augmen-

tations, encoder, discriminator, transformer, projector, and pre-
dictor. In the pretraining stage, the time complexity of the core
steps of these components is O(T × C), O(ks × K × D2),
O(D2), O(K × M2

+ K 2
× M) and O(H 2), and their space

complexity are S(T × C), S(ks × D2
+K × D), S(D2

+1),
S(K 2

+ K ), and S(H 2
+ H), where ks is the kernel size

of the encoder, and the complexity of the projector and
predictor can be regarded as equal. However, in the above-
mentioned components of ASTCL, only the encoder works
in the fine-tuning stage and the testing stage. Thus, the time
complexity is O(ks × K × D2), and the space complexity is
S(ks × D2

+ K × D). The detailed complexity analysis of
ASTCL is presented in Supplementary Material.

Because the encoder of ASTCL can be replaced when the
pretrained encoder is used for clinical diagnosis, only the
architecture of the encoder and the size of the ECG signal will
affect the diagnosis efficiency, while ASTCL will not increase
time cost and memory cost in the diagnosis process.

IV. EXPERIMENTAL SETUP

The datasets and baseline methods used in the article
are specifically introduced in this section. In addition, the
evaluation of downstream tasks and experimental details are
also introduced.

A. Datasets

ECG classification studies are mainly divided into multiclass
and multilabel tasks [57]. As shown in Table I, we use two
multiclass benchmark ECG datasets, two multilabel bench-
mark ECG datasets, and the clinical ECG dataset to verify the
performance of the ASTCL. The description of these datasets
is as follows (see supplementary material for details).

Chapman [58] contains 12-lead ECG data of 10 646 patients,
which is a multiclass dataset. According to the suggestions of
the literature [58], we use four categories (i.e., AF, GSVT, SB,
and SR) instead of the original 11 categories.

PTB-XL [59] includes 21 837 12-lead ECG records from
18 885 patients, which is a multilabel dataset with five cate-
gories. To enrich the multiclass classification, we select single-
label data in five categories and reduce normal records.

CODE [60] consists of 2 322 513 12-lead ECG records from
1 676 384 patients. This dataset includes seven categories for
multilabel classification. We select the experimental data from
exams_part0 to exams_part3 in CODE.

CPSC2018 [61] includes 6877 patients with 12-lead records.
This dataset is a multilabel arrhythmias dataset with nine
categories. To standardize the length of the records, we cut
this dataset according to 10 s.

Clinical myocardial infarction (CMI) dataset is a multil-
abel clinical dataset, collected under the Cooperative Inno-
vation Center for Internet Healthcare, Zhengzhou Univer-
sity, Zhengzhou, China. This dataset includes 10 336 12-lead
records from 7317 patients, and it consists of five categories.

B. Baselines

The state-of-the-art data augmentation methods and con-
trastive learning frameworks are chosen as the baseline
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TABLE I
DESCRIPTION OF DATASET IN EXPERIMENTS

methods. The following is a detailed introduction from two
aspects: augmentation and framework.

In data augmentation, CLOCS [16] utilizes adding Gaussian
noise, the flipping x-axis or y-axis, and mask wave for ECG
transformation. TS-TCC [13] applies jitter-and-scale in weak
augmentation and permutation-and-jitter in strong augmen-
tation to augment EEG, respectively. The above-mentioned
augmentation methods are considered baseline methods, which
are implemented to compare with the proposed ECG augmen-
tations.

Regarding the framework, we reproduced the state-of-the-art
contrastive learning frameworks to compare with the proposed
ASTCL, including contrastive predictive coding (CPC) [19],
SimCLR [21], Bootstrap Your Own Latent (BYOL) [30], and
SimSiam [15] of computer vision or natural language process-
ing field, and TS-TCC [13] and CLOCS [16] of PTS field.
In addition, we also take randomly initialized training (Rand-
Init), supervised pretraining (presupervised), and supervised
training as the baseline in the experiments.

C. Verification Scenarios

We first employ contrastive learning frameworks to perform
unsupervised pretraining on the source domain dataset. The
pretrained encoder is used to implement downstream tasks,
including multiclass classification and multilabel classification.
The linear classifier acts as the downstream classifier, which
has a single-linear layer. To comprehensively examine the
effect of our proposed ECG augmentations and ASTCL, we
set up a series of scenarios to verify the augmented effect,
pretraining effect, antiperturbation ability, category learning
ability, transferability, semisupervised ability, and main com-
ponents effect.

Aiming to test whether the proposed augmentation methods
are useful, ECG augmentations and other baseline methods
are applied to contrastive learning frameworks to quantify
their effect, respectively. Meanwhile, the pretrained parameters
are used as the initialization parameters, which are fixed
in linear classifier training. The performance of the linear
classifier is used to evaluate the pretraining ability. To verify
the antiperturbation ability, the pretrained encoder is trained
on the noise enhancement dataset to test the robustness of
the encoder to noise. In category learning, the pretraining
parameters are fine-tuned by labeled data of the source domain
dataset. The performance of ASTCL in each category is
shown by the category learning ability. For transferability
evaluation, we fine-tune pretrained parameters when training
labeled data of the target domain dataset, then compare results
of ASTCL and baseline frameworks on the target domain
dataset. Moreover, the pretrained encoder is fine-tuned by the

TABLE II
AUC OF LINEAR EVALUATION

different percentages labeled data of the source domain dataset
to test semisupervised ability. To evaluate the effect of the
main components of ASTCL, we conducted an ablation study
to verify the ECG augmentations, adversarial game, and only
using patient-level positive pairs, respectively. Besides, we also
test the computational cost of our method in the pretraining
stage (see supplementary material).

D. Details

In data preprocessing, the amplitudes of these five datasets
are normalized between 0 and 1. We resample the data
to 250 Hz and extract 10 s of data as experimental data
(due to the mechanism, CLOCS uses 500-Hz data). Each
training set, validation set, and testing set are randomly
divided from each dataset according to the proportion of 60%,
20%, and 20%, respectively. We repeat these experiments five
times with five different seeds, respectively, and analyze the
mean and standard deviation of each experiment. Whether in
the pretraining stage, fine-tuning stage, or testing stage, the
batch size and epochs are set to 128 and 100, respectively.
Meanwhile, the dimension of the encoder, transformer, and
projector is set to D = 128, M = 100, and H = 32,
respectively. We employ the Adam optimizer to update the
parameters and set the learning rate to η = 3e-4 and weight
decay to β1 = 0.9 and β2 = 0.99. The SNR used in ECG
augmentations is defined as µ = 5 dB. The past segment
length τ is set to 0.6K , which is the same as in the study
of [13]. About the weight of LF , we set w1 = 1, w2 = 1, and
w3 = 1, which achieves the best performance in the ablation
study. In SimCLR, CLOCS, and TS-TCC, the temperature
parameter of the NT-Xent loss function is set as 0.2. For
BYOL, we set the decay rate to 0.90. To ensure fairness, the
input, data augmentations, encoder, optimizer, and classifier
used by each framework are consistent. Finally, we built
ASTCL using PyTorch 1.4 on Ubuntu 16.4 and trained it
on NVIDIA GeForce RTX 2080Ti GPU. The implementation
details are presented in supplementary material.

V. EXPERIMENTAL RESULT

This section shows the results of augmentation evaluation,
linear evaluation, noise evaluation, category evaluation, trans-
ferability evaluation, semisupervised evaluation, and ablation
study. We select the macro-F1 score and AUC as the metrics to
evaluate the results. In Section VI, the best experiment results
are marked in black and the second-best in red.
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TABLE III
F1 SCORE OF NOISE STRESS EVALUATION

Fig. 6. Effects of different data augmentations applied to contrastive learning
frameworks on Chapman dataset.

A. Augmentation Evaluation

The proposed ECG augmentations (EAs), data augmenta-
tions of CLOCS (CA), and data augmentations of TS-TCC
(TA) are used in a series of contrastive learning frameworks,
respectively (except CPC, because it does not need data
augmentations). The two augmented views of ASTCL must be
different. Thus, ASTCL does not participate in the evaluation
of CA. These frameworks are pretrained on the Chapman
dataset and performed linear evaluation using 50% labeled
data.

Fig. 6 shows the AUCs of these augmentation methods in
the linear evaluation. It is not difficult to find that EA is better
than CA and TA in the pretraining of contrastive learning
frameworks. For example, the results of CLOCS on three aug-
mentation methods are AUCEA = 92.55%, AUCTA = 90.01%,
and AUCCA = 79.17%. Overall, the average AUCs of EA,
TA, and CA are 91.02%, 89.98%, and 77.23%, respectively.
The proposed EA performs better than TA and CA, which
verifies that the two augmented views generated by ECG noise
enhancement and ECG noise denoising are more conducive to
representation learning of contrastive learning frameworks.

B. Linear Evaluation

To test whether the proposed ASTCL is effective, the param-
eters of the pretrained encoder are used as the initialization
parameters of the encoder in the downstream classification
task. In Rand-Init, the initialization parameters are random
parameters. During training, the parameters of the encoder are
fixed, and the linear classifier is updated with the half-labeled
data to perform the classification task, in order to compare the
performance of our ASTCL with the baseline frameworks.

Table II shows the AUCs of the ASTCL and baseline
frameworks on four ECG datasets. The AUCs of TS-TCC
and CLOCS are better than other baselines, which verify
the importance of spatiotemporal and semantic representa-
tions. The performance of BYOL and SimSiam is better
than SimCLR, which also shows that discarding negative
pairs play a useful role in representation learning. Compared
with the above-mentioned state-of-the-art frameworks, ASTCL
performs better than them on all datasets. Especially on the
CODE dataset, the AUC of ASTCL reaches 92.18%, which
improves by 0.78% over the second-best framework. To further
demonstrate the influence of pretrained parameters on the
encoder, we employ the t-SNE [62] to visualize learned
representations in 2-D space. Fig. 7 shows visualization results
of ASTCL and baseline frameworks on the Chapman dataset.
Obviously, the results of ASTCL are more instrumental in
distinguishing each category, and ASTCL provides a better
parameter space for the linear classifier. These experiments
mean that the combination of adversarial game and spatiotem-
poral comparison of patient-level positive pairs is effective.

C. Noise Evaluation

To verify the antiperturbation ability of the encoder pre-
trained by ASTCL, we designed a series of experiments to
test the robustness of the encoder to noise. According to the
general noise stress evaluation [63], we add BD, MA, and PF
noises to the original signal using the SNR of 2, 5, and 10 dB.
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Fig. 7. t-SNE visualization of the learned representations on Chapman dataset. Different colors represent different categories. (a) Rand Init. (b) CPC [19].
(c) SimCLR [21]. (d) BYOL [30]. (e) SimSiam [15]. (f) TS-TCC [13]. (g) CLOCS [16]. (h) ASTCL (ours).

After the pretraining of all contrastive learning frameworks,
the pretrained encoder is fine-tuned by 50% labeled noised
ECG data to perform the classification task.

As shown in Table III, when BD, MA, and PF noises are
integrated into the original signal, the performance of the
model in supervised training is degraded significantly on all
datasets, which indicates that ECG noises seriously disturb
the model to learn representations. Despite noise perturbation,
ASTCL still outperforms other baseline frameworks. In the
twelve evaluation scenarios on four datasets, the F1 score of
ASTCL is almost the top 1. Especially on the CPSC2018
dataset, the F1 scores of ASTCL are 2.93%, 2.81%, and 2.86%
higher than the top 2. Compared with supervised training,
when the SNR is 2 dB, the F1 score of ASTCL increases
by 13.16%. The experimental results show that the encoder
pretrained by ASTCL has been strengthened in antiperturba-
tion ability. Even if there is more serious noise, ASTCL can
still maintain its robustness to noise.

D. Category Evaluation

For the ECG classification task, it is significant to effectively
learn the category representations and improve the classifi-
cation precision of each category. We further examine the
category representation learning ability of ASTCL by a series
of category evaluation experiments. We first pretrain these
contrastive learning frameworks on five datasets, respectively,
and then use 50% labeled data of pretraining datasets for fine-
tuning. In supervised training, we use the same labeled data
to train for comparison.

The experimental F1 scores of each category are shown
in Table IV. We show that the proposed ASTCL is supe-
rior to other frameworks in category representation learning.
On the Chapman dataset, the F1 scores of ASTCL in four

categories achieve 82.99%, 87.43%, 96.96%, and 90.80%,
which are higher than the second-best framework. On the other
datasets, the experimental results of ASTCL are stable in the
top 1 or top 2. To qualitatively show the learned category
representations, the confusion matrices of ASTCL fine-tuning
results and supervised results are illustrated in Fig. 8. Since
most datasets have more than four categories and duplicate
categories, we only retain categories different from other
datasets in the confusion matrix. The number of confusing
matrix elements is ns/nt , where ns is the predicted number of
the category samples, and nt is the total number of the category
samples. As shown in Fig. 8, ASTCL effectively improves
the classification performance of each category. Especially in
the MI category of the PTB-XL dataset, ASTCL can achieve
20.9% improvement compared with supervised training. These
experimental results prove that compared with other frame-
works, ASTCL can better learn category representations.

E. Transferability Evaluation

In this section, we test the transferability of contrastive
learning frameworks through transfer learning experiments.
We utilize ASTCL and baseline frameworks to pretrain the
source domain dataset. The pretrained parameters are the ini-
tialization parameters of the encoder. In presupervised, we take
supervised pretraining on the source domain dataset. During
fine-tuning, the partially labeled data of the target domain
dataset is used to fine-tune the parameters of the pretrained
encoder and update the linear classifier.

Table V shows the F1 scores of ASTCL and baseline
frameworks in transfer learning experiments. The 50% labeled
data of the target domain dataset is used for fine-tuning.
Compared with all baseline frameworks, ASTCL is the best
in transferability. It can be seen from the F1 score of ASTCL
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TABLE IV
F1 SCORE OF CATEGORY EVALUATION ON ALL EXPERIMENTAL DATASETS

that it ranks the top 1 in the nine transfer scenarios and the
top 2 in the rest scenarios. In particular, when pretraining on
the PTB-XL dataset and fine-tuning on four target domain
datasets, the F1 scores of ASTCL reach 90.09%, 82.69%,
62.84%, and 70.01% respectively, all ranking first. Above
all, our proposed ASTCL can improve the transferability
of learned representations over the presupervised by about
1.37% on average in terms of F1 score, which consistently
outperforms other baseline frameworks.

F. Semisupervised Evaluation

A series of semisupervised evaluation experiments are set
up to test the semisupervised ability of ASTCL. The 5%, 10%,

20%, 50%, and 100% labeled data of the training dataset are
randomly selected to fine-tune pretraining parameters. Fig. 9
shows the F1 scores of ASTCL and supervised training when
training with different proportions of labeled data. The orange
line indicates ASTCL fine-tuning and the blue line indicates
supervised training.

We find that when the number of labeled training data is
the same, ASTCL fine-tuning on any dataset performs better
than supervised training. Especially in the case of a few
labels, the effect of ASTCL improvement is significant. When
training with 5% labeled data, compared with the supervised
training, ASTCL is improved by 44.02%, 24.06%, 13.51%,
16.05%, and 23.37% on five datasets, respectively. In addition,
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TABLE V
F1 SCORE OF TRANSFER LEARNING CROSS DOMAIN

TABLE VI
AUC OF LINEAR EVALUATION IN ABLATION STUDY

on the four-fifths semisupervised scenarios, the performance
of ASTCL fine-tuning with only 50% labeled data is better
than that of supervised training using 100% labeled data. This
means that ASTCL can use limited labeled data to pretrain
outstanding models.

G. Ablation Study

Compared with other contrastive learning studies, the main
improvements of our work are ECG augmentations, adversarial
games, and only using patient-level positive pairs. Although
the ECG augmentations have been demonstrated in the aug-
mentation evaluation, we replace ECG augmentations with the
data augmentations of [13], namely ASTCL (-EA), to study the
contribution of ECG augmentations to ASTCL. To examine the
effectiveness of the adversarial game, the adversarial game is
taken out from ASTCL, which is expressed as ASTCL (-AG).
To test whether it is useful by only using the patient-level
positive pairs, we delete the predictor and update the gradient
of projection, and the NT-Xent loss function of [21] is used
instead of our LC . This modified framework is called ASTCL
(-RP). We carry out the linear evaluation, noise evaluation,
and category evaluation in the ablation study to verify the
three improvements.

Table VI shows linear evaluation results of the ablation
study on four datasets. We observe that the performance of
the complete ASTCL remains the best. However, the overall
performance of ASTCL (-EA) decreases obviously. Especially
on the PTB-XL dataset, the AUC of ASTCL (-EA) decreases
by 4.82%. This indicates that ASTCL (-EA) is greatly affected

without ECG noise enhancement and ECG noise denoising.
By using spatiotemporal prediction and patient discrimination
with only patient-level positive pairs, ASTCL (-AG) achieves
the second-best AUC. But due to the lack of an adversarial
game, ASTCL (-AG)’s performance is not robust. After using
instance-level positive pairs and employing negative pairs, the
performance of ASTCL (-RN) is also weaker than that of
complete ASTCL on all datasets. This is obvious because
negative pairs of the same category can weaken the cate-
gory representation learning ability of the model. In a word,
the three improvements of ASTCL are indispensable during
pretraining. Meanwhile, the noise evaluation and category
evaluation in the ablation study prove that the adversarial game
and only using patient-level positive pairs play a crucial role
in improving antiperturbation ability and increasing category
representation learning ability, respectively (see supplementary
material). In addition, this article also applies these improve-
ments to other frameworks and discusses their availability in
supplementary material.

To analyze the selected weight of the LF , this article also
carries out a series of experiments on the selected weight of
the LF . One weight is changed from 0.001 to 1000, and the
other two weights are fixed to 1. Fig. 10 shows the AUCs of
w1, w2, and w3 under each value, respectively. When w1, w2,
and w3 are all set to 1, the results of ASTCL are the best.

In general, the performance of the complete ASTCL is the
best, which means that our improvements in ECG augmenta-
tions, adversarial games, and only using patient-level positive
pairs are effective. In the optimization of LF , the chosen
weight is also correct.
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Fig. 8. Confusion matrices. In each subfigure, the left-hand side is the
supervised training results, and the right-hand side is the ASTCL fine-tuning
results. Among them, “Pos” represents positive and “Neg” represents negative.
(a) Chapman. (b) PTB-XL. (c) CODE. (d) CPSC2018. (e) CMI.

Fig. 9. F1-score of supervised training and ASTCL fine-tuning in semisu-
pervised experiments on the same amount of labeled data. (a) Chapman.
(b) PTB-XL. (c) CODE. (d) CPSC2018. (e) CMI.

Fig. 10. Weight analysis of loss function on Chapman dataset. (a) w1. (b) w2.
(c) w3.

VI. CONCLUSION

This article proposes a patient-level ASTCL framework for
unsupervised representation learning in ECG signals, which
consists of ECG augmentations, an adversarial module, and a
spatiotemporal contrastive module. The goal of this framework
is to improve noise robustness and learn the spatiotemporal
and semantic representations of categories. To reduce the
impact of noise, the proposed ECG augmentations generate
two distinct but effective augmented views for each data via
ECG noise enhancement and ECG noise denoising. The aim
of the adversarial module is to pull the representations into
the shared distribution between positive pairs by an adversarial
game task to discard the perturbation representations and learn
the invariant representations. The spatiotemporal contrastive
module learns the spatiotemporal and semantic representations
of categories by spatiotemporal prediction and patient dis-
crimination. To better learn category representations, we only
employ patient-level positive pairs and alternately utilize the
predictor and the stop-gradient to replace negative pairs.

Extensive experiments are presented on four ECG bench-
mark datasets and one clinical dataset. The experiments show
that ASTCL outperforms the state-of-the-art methods in terms
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of augmentation effect, pretraining ability, antiperturbation
ability, category learning ability, transfer ability, and semisu-
pervised ability. The main components of ASTCL profit to
better and more stable learning representations of ECG.

Heartbeat-level classification is an important task in diag-
nosing arrhythmias. In the future, we will probe the
self-supervised task of capturing heartbeat-level features and
assembling them into the proposed ASTCL. According to
the features of the heartbeat, a general augmented paradigm
will be explored. In addition, the proposed ASTCL would be
extended to the study of unsupervised clustering in ECG.
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