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a b s t r a c t

Cross-domain arrhythmia classification (CAC) aims to transfer the model trained on a label-sufficient
source domain to a label-scarce target domain. To the best of our knowledge, almost all existing CAC
models focus on the unsupervised setting, where no labeled target samples are available. However,
in most practical scenes, acquiring limited annotated target samples is feasible, which can provide
reliable target semantic information for model learning directly. Consequently, we first propose a
more realistic semi-supervised CAC setting, where only the source samples and extremely limited
target samples are annotated. Most previous CAC models realize cross-domain learning by aligning the
feature distributions of source and target domains coarsely and globally, where the semantic invariance
within each class is not taken into consideration during the domain alignment process. Additionally,
the semantic information contained in the feature space is not fully utilized for target pseudo label
mining. To address the above two issues, a unified framework containing the semantic-aware feature
alignment (SAFA) and prototype-based label propagation (PBLP) modules is proposed. In the proposed
framework, SAFA and PBLP are complementary to each other. Specifically, SAFA provides more robust
prototypes for PBLP by performing semantic-aware feature alignment, and PBLP offers more reliable
target pseudo labels for more effective semantic-aware feature alignment learning. Comprehensive
qualitative and quantitative experimental results on different benchmarks verify the effectiveness of
the proposed method.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Electrocardiogram (ECG) records the electric activity of the
eart, and the electrical signal of each heartbeat has been widely
sed for detecting heart diseases, especially arrhythmias [1,2].
ecently, the heartbeat-based arrhythmia classification models
rained in a fully supervised manner have made great success,
hich hinges on the large-scale annotated heartbeats. In addi-
ion, the supervised models assume that test samples share the
ame distribution with the training samples [3]. However, in
ost practical scenarios, obtaining large-scale annotated heart-
eats is difficult due to requiring enormous capital and time
nvestment [4]. Meanwhile, the heartbeats of different individuals
r databases are unfortunately varied, meaning that there are
istributional shifts between the training data (source domain)
nd test data (target domain). Thus, the well trained model in a
omain typically does not generalize to a new domain due to the
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distributional shifts [5]. Consequently, the scarcity of heartbeat
annotations in a new domain and distributional shifts are two
fundamental challenges in cross-domain arrhythmia classification
(CAC).

To cope with the above two challenges of CAC, existing works
[6–11] focus on improving the performance of a target model
with label-scarce data by using the knowledge from a label-
sufficient source domain. These existing methods can be divided
into two categories: fine-tuning methods [6,7] and deep domain
adaptation methods [8–11]. The fine-tuning methods usually first
train a model with label-sufficient source samples, and then
fine tune the model with labeled target samples. However, the
issue of over fitting may occur when label-scarce target samples
are used to fine tune the model. The deep domain adaptation
approaches focus on achieving domain alignment between the
source domain and target domain. To the best of our knowledge,
almost all existing methods focus on the unsupervised scenario,
where no labeled target samples are accessible during the train-
ing process. However, in most practical scenes, acquiring limited

labeled target data is feasible, which can provide reliable target
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Fig. 1. The illustration of our motivations. (1) The representations obtained by the global feature alignment on the source domain and the target domain cannot
be well discriminated, where the representations of several categories can be mixed (see Fig. 1(a)). In contrast, semantic-aware feature alignment considers the
semantic invariance within each class between the two domains during the domain alignment process (see Fig. 1(b)). (2) The target pseudo labels obtained by the
predictions of the model trained on the source domain inevitably contain false pseudo labels, due to the distributional shift between the source domain and the
target domain (see Fig. 1(c)). In contrast, prototype-based label propagation is introduced to assign reliable target pseudo labels by utilizing the similarities between
the representations of samples belonging to the same class in the target domain and class-wise prototypes. (see Fig. 1(d–f)).
information for model learning directly [12]. Consequently, this
paper first focuses on the semi-supervised CAC scenario, where
only the source samples and extremely limited target samples
are annotated. In fact, existing CAC methods achieve domain
alignment by reducing the gap between the feature distribution
of two domains coarsely and globally, where the fine-grained
semantic category information is not taken into consideration
during the domain alignment process. However, intuitively, the
semantic consistency of the same category in two domains should
be maintained, and the semantic discrepancy between different
categories should be large. Additionally, some methods [9–11]
do suggest that mining pseudo labels from unlabeled target data
to regularize model training is helpful to promote model perfor-
mance during the domain alignment process. For these methods,
the pseudo labels in the target domain are obtained by using the
predictions of the model trained on the source domain. Neverthe-
less, the obtained target pseudo labels are inevitably noisy since
there are the distributional shifts between the target domain and
source domain. Actually, the semantic information contained in
the feature space is helpful for target pseudo label learning, but
the existing methods ignore this point.

As mentioned above, two observations are summarized: (1)
A consideration of the semantic invariance within each class
between the source domain and the target domain is required
during domain alignment process. Intuitively, ignoring the fine-
grained semantic category information could result in poor dis-
tinguishability, as illustrated in Fig. 1(a). Namely, the represen-
tations of different categories from the source domain and the
target domain are mixed together, which makes the representa-
tions indistinguishable. (2) The reliability of target pseudo labels
needs to be considered. Prior pseudo label learning methods
utilize the model trained on the source domain to obtain target
pseudo labels. However, due to the distributional shifts between
the two domains, there are inevitably false target pseudo la-
bels, as illustrated in Fig. 1(c). In light of these observations,
the semantic consistency of the same category in two domains
should be maintained, and the semantic discrepancy between

different categories should be large. Furthermore, reliable target
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pseudo labels are required. Consequently, we consider align-
ing the feature distributions of samples from the same category
across domains, and utilizing semantic information within the
class to propagate label information. These considerations nat-
urally lead to a principled way of learning semantic-aware fea-
ture alignment and prototype-based label propagation to address
the above issues simultaneously. Consequently, a unified frame-
work containing the semantic-aware feature alignment (SAFA)
and prototype-based label propagation (PBLP) modules is pro-
posed. SAFA is designed to perform semantic-aware feature align-
ment and learn the semantic-aware feature representations, as
illustrated in Fig. 1(b). PBLP is introduced to obtain reliable target
pseudo labels by calculating the similarities between the repre-
sentations of samples belonging to the same class in the target
domain and class-wise prototypes, as illustrated in Fig. 1(d-f). In
the proposed framework, SAFA and PBLP can enhance each other.
Specifically, SAFA provides more robust prototypes for PBLP by
performing semantic-aware feature alignment, and PBLP offers
more reliable pseudo target labels for more effective semantic-
aware feature alignment learning.

The contributions of our work are summarized as follows.

• We first explore a realistic semi-supervised CAC scene and
analyze existing two issues of the global feature alignment
and noisy pseudo labels. A unified framework is introduced
to jointly address these problems for accurate arrhythmia
classification in the target domain.

• We design a SAFA module and a PBLP module to address
the global feature alignment and noisy pseudo labels issues
simultaneously. In specific, SAFA performs semantic-aware
feature alignment and learns the semantic-aware feature
representations by exploiting the semantic category infor-
mation across domains. PBLP obtains reliable target pseudo
labels by leveraging the similarities between the represen-
tations of samples from the same class and class-wise pro-
totypes as reliable supervision information.

• In the proposed unified framework, SAFA and PBLP modules
can enhance each other. Specifically, performing semantic-
aware feature alignment by the former is beneficial for



P. Feng, J. Fu, N. Wang et al. Knowledge-Based Systems 264 (2023) 110323
providing more robust prototypes, and the latter generates
more reliable target pseudo labels to facilitate more effective
semantic-aware feature alignment learning.

• Comprehensive quantitative and qualitative experiments
are constructed on four ECG benchmarks. The experimental
results are consistent with the theoretical analysis, indi-
cating the effectiveness and generalization of the proposed
method.

In what follows, Section 2 reviews related work and intro-
duces background. Section 3 describes the details of the proposed
method. The experimental setups and results are presented in
Section 4 and Section 5, respectively. Finally, the conclusions are
presented in Section 6.

2. Related work and background

In this section, the existing research and background related to
our work are summarized. First, we describe the related research
ares, including ECG classification, deep domain adaptation and
pseudo label learning. Second, we introduce the background of
the proposed method: domain adversarial network and prototype
learning.

2.1. ECG classification

Given the attracted representation learning capability and re-
markable model performance of deep learning, significant
progress has been made in ECG classification based on deep
neural networks recently [13]. Various networks [14–18] have
been investigated and modified to achieve the state-of-the-art
performance of ECG classification. The impressive classification
performance typically depends on large-scale annotated training
data. Meanwhile, these models assume that the training samples
follow the same distribution as test samples. Nevertheless, in
real-world applications, acquiring large-scale annotated samples
is difficult due to the large amount of capital and time investment.
In addition, the assumption constraint can be easily violated
since the ECG signals of different individuals or databases are
varied, resulting in different distributions of the training sam-
ples and test samples. To resolve these dilemmas, the transfer
learning technique has recently been successfully deployed to
ECG classification, aiming to transfer knowledge from a label-
sufficient source domain to a label-scarce target domain, avoiding
labor-intensive data annotations. The existing methods mainly
include two branches: fine-tuning methods based on parameter
transfer [6,7,19–22] and deep domain adaptation methods [8–
11,23–25]. The former methods utilize annotated target samples
to fine-tune the models trained with labeled source data. The
articles [19–22,26] first trained the model with label-sufficient
source samples, and then fine tuned the model with limited
labeled target samples. Al Rahhal et al. [6] and Wang et al. [7]
used the active learning technology to annotate ECG samples
from specific patients, and further utilized these labeled data
to fine tune the pre-trained model trained with labeled source
data. However, annotating data by the active learning technique
requires the assistance of clinicians. Meanwhile, the pre-trained
models easily lead to over fitting if the number of fine tuning
data is small. The latter deep domain adaptation methods usually
focus on alleviating the distribution discrepancy between the
source domain and the target domain, as to improve the model
performance in the target domain. The studies [10,23–25] mainly
focused on the unsupervised setting, where no labeled target
samples are available. For example, Deng et al. [25] proposed
a multi-source unsupervised domain adaptive model for ECG
classification. In the article [23], an asymmetric domain adaptive
model was presented to address the issue of the distributional
3

shifts for inter-patient atrial fibrillation detection. Jin et al. [24]
introduced a domain adaptive residual network, which combined
multi-kernel maximum mean discrepancy to detect atrial fibrilla-
tion across domains. Li et al. [10] proposed a mix-up asymmetric
tri-training model to improve the generalization ability of the
model under domain shifts. Among these methods, they generally
assume that no labeled target samples are available. In contrast,
this paper first explores another practical yet under-investigated
semi-supervised CAC scenario, where unlabeled target samples,
extremely limited labeled target samples and label-sufficient
source samples are available.

2.2. Deep domain adaptation

Recently, the success of deep learning methods and the de-
mand for label-sufficient data have made deep domain adap-
tation receive significant attention. The existing approaches are
mainly divided into unsupervised and semi-supervised domain
adaptation methods according to the quantity of labeled data
in the target domain. Most researches focus on the unsuper-
vised setting, where no labeled samples are accessible in the
target domain. As a pioneering approach for unsupervised do-
main adaptation, Ganin and Lempitsky [27] were inspired by the
generative adversarial network [28] and developed an adversarial
training method to align the global feature distribution of the
source domain and the target domain. The core mechanism of
this adversarial training has been widely used for CAC [8,29,30].
For instance, Niu et al. [8] proposed a deep adversarial network
with multi-scale feature fusion for CAC by aligning the global
feature distribution of two domains. Nevertheless, these methods
ignore the fine-grained semantic category information during the
domain alignment process, which may result in the mixture of the
category distribution of different domains. Consequently, Pei et al.
[31] incorporated a separate discriminator for each class and used
the task classification probability to weight the loss from each
discriminator during domain alignment process. However, the
task classification probability inevitably contains false semantic
information since there are the distributional shifts between the
source domain and the target domain. Recently, a more practical
and realistic semi-supervised domain adaptation setting has been
proposed to solve the domain adaptation problem. In the setting,
a small amount of labeled samples are provided for the tar-
get domain. As a pioneering semi-supervised domain adaptation
method, Saito et al. [32] proposed a deep neural network model
via optimizing the minimax loss on the conditional entropy of the
target samples. In addition, the articles [32–34] indicated that the
performance of the model can be further increased via additional
supervision training on a small amount of labeled target data,
which implied the importance of labeled target data. Besides, an-
other self-training mechanism was applied by training the model
with obtained pseudo labeled target samples [35]. In light of the
above methods, we observe that the contributions of the labeled
target samples may be significantly diluted, since the utilization
of these data is only restricted to optimizing ordinary super-
vised loss during the training process. Besides, the accessibility of
pseudo labels requires careful treatment, since incorrect pseudo
labels can severely degrade the model performance. Inspired by
the above observations, intuitively, the semantic consistency of
the same category in two domains should be maintained, and
the semantic discrepancy between different categories should
be large during domain alignment. In the paper, we take the
semantic information into consideration during the domain align-
ment process, and the labeled target samples are further utilized
to obtain reliable pseudo labels for unlabeled target data. To
obtain reliable pseudo labels in the target domain, we introduce a
prototype-based label propagation mechanism by exploiting the
labeled and the unlabeled target data.
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.3. Pseudo label learning

Learning robust models requires label-sufficient training sam-
les. However, obtaining label-sufficient samples is difficult in
ost practical applications. In the context of domain adaptation,
everal studies [9–11,36–38] attempted to mine pseudo labels
or adapting the pre-trained model to the target domain, where
he pre-trained model is trained with the label-sufficient source
amples. For example, Zou et al. [37,38] introduced the confi-
ence regularization to fight against overconfident pseudo labels
n the training process of cross-domain semantic segmentation
ask. Wang et al. [9] obtained target pseudo labels by the pre-
ictions of the source classifier, where the source classifier is
rained with the source labeled data. Li et al. [10] developed an
symmetric self-training scheme for arrhythmia detection, where
wo separate classifiers were trained with source data to obtain
arget pseudo labels, and the other classifier used these pseudo
abeled target samples to retrain the model. However, due to the
istributional shifts between the source domain and the target
omain, false target pseudo labels based on the pre-trained mod-
ls trained on the source domain inevitably exist. Unlike these
ethods, we propose a novel label propagation mechanism, in
hich the target pseudo labels are assigned by calculating the
imilarities between the unlabeled target representations and all
lass prototypes.

.4. Domain adversarial network

Domain adversarial training method [27] has shown that the
odel can learn domain-invariant representations between the
ource domain and the target domain by embedding the domain
iscriminator on the basis of deep neural network during the
omain adversarial training process. Due to the ingenious design
nd impressive performance improvement, domain adversarial
raining has attracted more and more attention. The common
pproach [27] is to align the feature distribution of two domains
ased on the adversarial training, which borrows the idea of the
enerative adversarial network [28]. In the process of the adver-
arial training, samples from different domains are encouraged to
e non-discriminative with respect to domain labels. Specifically,
he model includes a feature extractor fF , a task classifier fC , and a
domain discriminator fD. Through the adversarial training, the fF
is trained to deceive the fD, making the feature representations of
the target domain and the source domain indistinguishable. The
adversarial training process is realized by inserting the gradient
reversal layer between the fF and the fD. In addition, we need
o simultaneously minimize the ordinary supervised loss lC of
he fF and fC with the available labeled samples. To simplify
he notations, the domain discrimination loss is presented as
D. Formally, the ultimate goal of the model is to optimize the
ollowing objective,

(θF , θC , θD) = E(xs,ys)∈Ds lC (fC (fF (xs)) , ys)

− λExi∈Ds∪Dt lD (fD (fF (xi)) , di), (1)

here Ds and Dt represent the samples of source domain and
arget domain, respectively. θF , θC and θD denote the parameters
f fF , fC and fD, respectively. di means the domain label of the
ample xi. λ is the trade-off parameter between the two items in
he objective.

.5. Prototype learning

The core mechanism of prototype learning is to use prototypes
o represent each category. A prototype usually refers to the most
epresentative point, so it can also be considered as the anchor
oint or the exemplar. After obtaining the prototypes, for the
4

iven sample x, the probability value of x that belongs to a certain
category can be obtained by the similarity between the sample
and the prototypes. The similarity can be measured by a metric
function d. Formally, the prototype µk of class k is represented as
follows,

µk =
1
nk

nk∑
j=1

hj
k, (2)

where hj
k represents the embedding of the sample belonging

to category k. nk indicates the number of samples belonging to
category k. For a given sample x, the class distribution is shown
as follows,

pθ (y = k|x) =
exp(−d[fθ (x), ck])∑
j exp(−d[fθ (x), cj])

, (3)

where fθ (x) represents the embedding of the sample x.
Recently, Snell et al. [39] proposed a prototypical network to

ddress the challenge of limited training samples. The network
earns the metric space and classifies the embedding of samples
y calculating the shortest distance between embedding and
ifferent prototypes. To the best of our knowledge, this is the first
ime that prototype learning and domain adversarial network are
ombined for CAC.

. Proposed methodology

In Section 3.1, we first describe the problem formulation and
he overview of the proposed framework. The proposed frame-
ork mainly includes SAFA and PBLP modules. The two mod-
les are elaborated in Sections 3.2 and 3.3 respectively. Finally,
he overall training scheme is detailed in Section 3.4 and the
feasibility of the proposed method is analyzed in Section 3.5.

3.1. Problem formulation and framework

Problem formulation. The goal of the semi-supervised CAC
is to learn a model that preforms well in the target domain by
using datasets in both domains. In the source domain, the source
data and the corresponding labels Ds = {(xsi , y

s
i )}

Ns
i=1 are given. In

he target domain, we are given unlabeled samples Du
t = {xtui }

Nu
i=1

nd extremely limited labeled data and the corresponding labels
l
t = {(xtli , y

tl
i )}

Nl
i=1. In addition, the label space is shared between

he source domain and the target domain. In view of the above
otations, we aim to learn a heartbeat classification model that is
rained on Ds, Dl

t and Du
t , and tested on Du

t .
Framework. The outline workflow of the proposed framework

s shown in Fig. 2. The model in this framework consists of three
omponents: a feature extractor fF , a heartbeat classifier fC and
ultiple category-level domain discriminators fDk

⏐⏐K
k=1, where the

denotes the number of all categories. The framework containing
AFA and PBLP modules is composed of four stages. During the
odel training process, for the pre-training stage, the proposed
odel (composed of fF , fDk

⏐⏐K
k=1 and fC ) is trained with the avail-

ble labeled data Ds and Dl
t . The first stage is implemented by the

AFA module, which aligns semantic-aware feature representa-
ions of the two domains and provides robust initial prototypes
or the PBLP module. Then, in the pseudo labeling stage, pseudo
abeled target data Dp

t =
{
(xtui , ypi )

}Nu
i=1 for unlabeled target sam-

les Du
t are obtained. Meanwhile, in the re-training stage, the

dditional pseudo-labeled data and available labeled data are fur-
her utilized to train the model by the SAFA module. The pseudo
abeling stage and re-training stage are conducted iteratively
ntil the total loss of the model converges. Finally, the heartbeat
lassification model (composed of fF and fC ) is applied to predict
he target test samples. The following subsections describe SAFA
nd PBLP modules in detail.
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w
l
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l

Fig. 2. The overview workflow of the proposed framework. The framework comprises of SAFA and PBLP modules to achieve four stages: pre-training, pseudo-labeling,
re-training, and testing. SAFA module aims to alleviate inter-domain discrepancy via learning semantic-aware feature alignment. PBLP module aims to obtain reliable
target pseudo labels for more effective semantic-aware feature alignment learning. The different colored solid lines with arrows denote the flow of different types
of data. The symbols are consistent with those defined in Section 3.
3.2. Semantic-aware feature alignment module

In the process of domain alignment, intuitively, the feature
representations of the samples belonging to the same category
in different domains are pushed close, and the distribution gaps
between different categories are enlarged. In addition, each heart-
beat sample only belongs to a certain semantic category for
CAC. Inspired by these observations, we propose SAFA module
to perform semantic-aware feature alignment to alleviate inter-
domain discrepancies of CAC. Specifically, the proposed model
(composed of fF , fDk

⏐⏐K
k=1 and fC ) is based on the adversarial learn-

ing. During the adversarial learning process, the fF is trained
to deceive each fDk

⏐⏐K
k=1, making the feature representations of

samples belonging to the same category in different domains
indistinguishable by each domain discriminator fDk

⏐⏐K
k=1, in which

each domain discriminator is used to distinguish whether the
feature representations come from the source domain or the
target domain. Namely, the parameters θF of fF are learned by
maximizing the domain discrimination loss lDk of each fDk

⏐⏐K
k=1,

hile the parameters θDk |
K
k=1 are learned by minimizing each

oss lDk of each fDk

⏐⏐K
k=1. In addition, the parameters θF of fF

nd θC of fC are learned by minimizing the ordinary supervised
oss of a heartbeat classification model (composed of fF and fC )
simultaneously.

Using the notations in the above definitions, the supervised
classification loss LC (θF , θC ) is formulated as follows,

LC (θF , θC ) = E(x,y)∼Ds∪Dl
t
lC (fC (fF (x)), y) . (4)

The domain discrimination loss of all domain discriminators
fDk

⏐⏐K
k=1 is defined as follows,

LD
(
θF , θDk

⏐⏐K
k=1

)
=

K∑
k=1

E(x,y)∼Ds∪Dt lDk

(
fDk (fF (x)|y = k), d

)
, (5)

where Dt = Dl
t ∪ Dp

t . As above the outline workflow, in the
pre-training stage, Dp

t = φ. In the re-training stage, the newly ob-
tained pseudo labeled target data are utilized to perform
5

semantic-aware feature alignment to alleviate inter-domain dis-
crepancies. lC is the weighted cross-entropy loss. lDk denotes the
binary cross-entropy loss of fDk . d represents the domain label of
the sample x, where d equals to 0 when x comes from the source
domain and d equals to 1 when x comes form the target domain.

Overall, the objective of the SAFA module is the following
function,

L(θF , θC , θDk

⏐⏐K
k=1) = LC (θF , θC ) − λLD(θF , θDk |

K
k=1), (6)

where the hyper-parameter λ controls the trade-off between the
two terms during adversarial training. In light of the adversarial
learning process, after optimizing the above objective functions,

the parameters (θ̂F , θ̂C , θ̂Dk

⏐⏐⏐K
k=1

) are learned.

(θ̂F , θ̂C ) = argmin
θF ,θC

L(θF , θC , θ̂Dk

⏐⏐⏐K
k=1

), (7)

θ̂Dk

⏐⏐⏐K
k=1

= arg max
θD1 ,...,θDK

L(θ̂F , θ̂C , θDk

⏐⏐K
k=1). (8)

3.3. Prototype-based label propagation module

During the domain alignment process, the semantic-aware
category feature representations from the target domain are in-
sufficient since only extremely limited labeled target samples
are available. To address the issue, we resort to providing more
reliable target pseudo labels for more effective semantic-aware
feature alignment learning. Inspired by the fact that the feature
representations of the same category are similar in the same
domain, we attempt to make full use of the semantic information
contained in the feature space to obtain target pseudo labels.
Specifically, a PBLP module is proposed to obtain target pseudo
labels by using the intra-class semantic label propagation in the
target domain. First of all, the initial class-wise prototypes in the
target domain are obtained by using the available labeled target
data, where the class-wise prototypes denote the average feature
representations of the samples associated with its class. Then, the
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imilarities between the unlabeled target feature representations
nd all class-wise prototypes in the target domain are estimated,
n which the similarities can be measured by a distance function.
inally, the target pseudo labels are obtained by selecting the
ost likely ones, and the selected pseudo labels are used to

etrain the model by the SAFA module.
Formally, we first obtain the initial prototype of class k,

init
k =

∑
(xtl ,ytl )∈Dl

t
I(

∼

ytl , ytl ) ∗ I(ytl , k) ∗ fF (xtl )∑
(xtl ,ytl )∈Dl

t
I(

∼

ytl , ytl ) ∗ I(ytl , k)
, (9)

here
∼

ytl represents the pseudo label of the sample xtl predicted
y the pre-trained model (composed of fF and fC ). If the pseudo
abel is predicted true, the corresponding target data is selected. fF
epresents the initially trained feature extractor obtained through
he pre-training stage by the SAFA module. I(a, b) denotes a
inary indicator function, where the function is only activated
hen a and b are equal. The class-wise prototypes characterize
he semantic distribution information of different categories in
he target domain. If the feature representations of the unlabeled
arget sample xtu are the most similar to the prototype of class k,
he label of xtu is assigned to category k. In order to measure the
similarities, a metric function is introduced. Formally, the pseudo
label yp of unlabeled data xtu can be obtained via maximizing the
similarity measurement,

yp = argmax
k

Mea(fF (xtu ), µinit
k ), k ∈ {1, 2, . . . , K }, (10)

here Mea(a, b) denotes the cosine similarity function between a
nd b. Afterward, we compute the class-wise prototypes µ′

k based
n newly obtained pseudo labels of the current training batch X tu ,
pdate the class-wise prototypes and obtain the updated pseudo
abels. The calculation process is as follows,

′

k =

∑
xtu∈X tu I(yp, k) ∗ fF (xtu )∑

xtu∈X tu I(yp, k)
, (11)

k = αµinit
k + (1 − α)µ′

k, (12)

yp = argmax
k

Mea(fF (xtu ), µk), (13)

where α represents the linear weight value of the prototype up-
date scheme. The smaller the value, the faster the update rate. The
pseudo label of unlabeled target data is generated by calculating
the similarity between the corresponding feature representation
and the class-wise prototypes obtained in an updated manner.

3.4. Overall training scheme

As illustrated in Fig. 2, the proposed framework is based on
SAFA and PBLP modules to perform four stages: pre-training,
pseudo-labeling, re-training, and testing. The pre-training stage
aims to learn an initial feature extractor for capturing robust tar-
get representations, which is achieved by the SAFA module. Then,
the pseudo-labeling stage and re-training stage are performed
iteratively. Specifically, the pseudo-labeling stage leverages the
PBLP module to obtain reliable target pseudo labels, and the
re-training stage leverages the SAFA module to perform more
effective semantic-aware feature alignment learning. Note that
performing semantic-aware feature alignment by the SAFA mod-
ule is beneficial for providing more robust prototypes, and the
PBLP module obtains more reliable target pseudo labels to facil-
itate more effective semantic-aware feature alignment learning.
Consequently, the SAFA and PBLP modules can benefit from each
other. Finally, the testing stage uses the learned heartbeat clas-
sification model to evaluate the model performance. The overall
training procedure is summarized in Algorithm 1.
6

Algorithm 1 : The training scheme of the proposed framework

Input: Ds, Dl
t , Du

t , prototype generation function: Prototypes,
pseudo-labeling generation function: Labeling, prototype up-
date function: PrototypesUpdate, the number of training
iterations: iter

Output: model parameters θF , θC , θDk |
K
k=1

1: Ds, Dl
t , D

u
t , pseudo-labeled target data Dp

t = φ

2: for i = 1 to iter do
3: train fF , fC , and fDk |

K
k=1 with mini-batches from Ds, Dl

t
4: end for
5: for j = 1 to iter do
6: µinit

k = Prototypes(fF , fC ,Dl
t )

7: Dp
t = Labeling(fF , µinit

k ,Du
t )

8: µ
′

k = Prototypes(fF ,D
p
t )

9: µk = PrototypesUpdate(µinit
k , µ

′

k)
10: Dp

t = Labeling(fF , µk,Du
t )

11: train fF , fC , and fDk |
K
k=1 with mini-batches from Ds, Dl

t ∪ Dp
t

12: end for

3.5. Theoretical analysis

In this subsection, we provide interpretations from a theoretic
perspective to analyze the reasons why the proposed frame-
work is effective in semi-supervised CAC. Ben-David et al. [40]
proposed a domain adaptation theory, which stated that the
expected loss RT (h) for the target domain is bounded by three
terms: the expected error for the source domain RS (h), the
omain divergence between the two domains D(S, T ), and the
hared minimum error value of the ideal joint hypothesis C.
ormally, given the source domain S and the target domain T ,
et H be the hypothesis class. For any hypothesis h ∈ H, we have

T (h) ≤ RS (h) + D(S, T ) + C. (14)

n the proposed setting, the source labels are available, so the er-
or RS (h) can be easily minimized by optimizing a model trained
n a fully supervised manner. In inequality (14), the second term
(S, T ) can be minimized by the global feature alignment be-
ween the source domain and the target domain. However, the
hird term C can easily become large when the representations
f samples belonging to the same category cross domains are not
xplicitly aligned. Therefore, semantic-aware feature alignment
eeds to be considered during the domain alignment process.
ince the available labels of target data are limited, we resort
o the pseudo labels of unlabeled target data. Assume that D̂t
enotes the pseudo-labeled target data and labeled target data.
T ′ (•) is the expected risk on the dataset D̂t . The excepted
abeling function of the source (target) domain is denoted as fS
fT ). The pseudo labeling target function is denoted as fT̂ . Then,
he C is bound by the following four terms.

≤ min
h∈H

RS (h, fS)+RT ′

(
h, fT̂

)
+2RT ′

(
fS, fT̂

)
+RT ′

(
fT , fT̂

)
. (15)

roof. The proof of inequality (15) relies on the triangle inequal-
ty, where for any prediction functions f1, f2, and f3, we have
(f1, f2) ≤ R (f1, f3) + R (f2, f3). Then,

= min
∀h∈H

RS (h, fS) + RT ′ (h, fT ) , (16)

≤ min
∀h∈H

RS (h, fS) + RT ′ (h, fS) + RT ′ (fS, fT ) , (17)

≤ min
∀h∈H

RS (h, fS) + RT ′

(
h, fT̂

)
+ RT ′

(
fS, fT̂

)
+ R ′

(
f , f

)
+ R ′

(
f , f

)
, (18)
T S T̂ T T T̂
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= min
∀h∈H

RS (h, fS) + RT ′

(
h, fT̂

)
+ 2RT ′

(
fS, fT̂

)
+ RT ′

(
fT , fT̂

)
.

(19)

Therefore, the inequality (15) holds.

In light of above analysis, RT (h) is bounded by the three terms
RS (h), D(S, T ) and C. Since the first two small terms do not guar-
antee small C, we need to prove the third term C tends to be small.
In addition, from the inequality (15), a suitable function h in H is
easily obtained to minimize the errors RS (h, fS) and RT ′

(
h, fT̂

)
by using available labeled source data and pseudo labeled tar-
get data. Besides, the semantic-aware feature representations of
source domain and target domain can be progressively aligned
by the proposed SAFA module, then the semantic-aware domain-
invariant feature representations are obtained. Thus, the term
RT ′

(
fS, fT̂

)
is expected to be minimized. Meanwhile, the reliable

pseudo labeled target samples are obtained by the proposed PBLP
module, and these pseudo labeled data can be utilized to mini-
mize RT ′

(
fT , fT̂

)
. To sum up, the term C is expected to be small.

Consequently, the proposed framework in theory is effective in
the semi-supervised CAC task.

4. Experimental setup

This section presents the experimental details of the semi-
supervised CAC task, including datasets, competitors, network
architecture, implementation details and evaluation indicators.

4.1. Datasets

We evaluate the proposed framework over three challenging
semi-supervised CAC tasks based on four public databases from
PhysioNet [41]. These databases contain heartbeat type informa-
tion marked and verified by independent experts. According to
the AAMI EC57:1998 standard [42], there are five heartbeat types:
N (normal or bundle branch block), S (supraventricular ectopic
beat), V (ventricular ectopic beat), F (fusion beat), and Q (unas-
signed beat). This paper focuses on four heartbeat types: N, V, S,
and F. While the Q is ignored because the data of the heartbeat
type Q in these databases is extremely few. The details of the
four datasets are summarized in Table 1. Specifically, the MIT-BIH
arrhythmia database [41] (ARDB1) includes 48 recordings from
47 patients. Each record has two lead signals, and each is band-
pass filtered at 0.1–100 Hz and sampled at 360 Hz. According
to AAMI convention [42], four paced records (102,104,107,217)
are excluded in evaluating model performance. Each record is
approximately longer than 30 min. The St. Petersburg institute
of cardiological technics 12-lead arrhythmia database [41] (IN-
CART2) contains 75 records of 30 min of 12 leads. The sampling
rate of each record is 257 Hz. The MIT-BIH supraventricular
arrhythmia database [41] (SVDB3) consists of 78 recordings with
wo leads. Each record is approximately 30 min and sampled
t 128 Hz. The MIT-BIH long-term ECG database (LTDB4) [41]

contains 7 long-term records. Each record contains approximately
14 to 20 h of recording with two leads, and each record has a
sampling rate of 128 Hz. Besides, Fig. 3 displays one sample of
each heartbeat type from the four datasets, indicating that there
are distributional shifts among the datasets.

1 https://www.physionet.org/content/mitdb/1.0.0/.
2 https://www.physionet.org/content/incartdb/1.0.0/.
3 https://www.physionet.org/content/svdb/1.0.0/.
4 https://www.physionet.org/content/ltdb/1.0.0/.
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Table 1
The number of heartbeat types in the four databases.
Database The number of heartbeat types Number of records

N S V F

ARDB 89705 2766 6982 802 44
INCART 152348 1944 19863 219 75
SVDB 161901 12177 9922 23 78
LTDB 600110 1499 64081 2906 7

4.2. Competitors

We compare with the following approaches, source + target (S
T) [34], domain adversarial neural network (DANN) [27], multi-

dversarial domain adaptation (MADA) [31], classification and
ontrastive semantic alignment (CCSA) [43], entropy (ENT) [33]
nd minimax entropy (MME) [32]. These methods are either
pecifically designed or tailored to deal with the domain adap-
ation problem. In addition, several state-of-the-art researches
n the CAC task [6,7,9,11] are compared. We also report the
xperimental results of the baseline model ‘Source Only’ and the
ull supervised (Full-T) model.

(1) ‘Source Only’: The model is only trained on the labeled
ource data, and then directly applied to the target domain for
lassification.
(2) S + T [34]: The S + T model trains the model using the

abeled source and target data. It is a fine-tuning model based on
arameter transfer.
(3) DANN [27]: The DANN is a common unsupervised domain

daptation method based on the domain adversarial training. In
he semi-supervised CAC setting, limited labeled target data is
vailable and they are used to train the DANN.
(4) MADA [31]: The MADA utilizes multiple domain discrim-

nators and pseudo labels to perform fine-grained feature repre-
entation alignment between the two domains, where the pseudo
abels are obtained by the predictions of the model trained on the
ource domain.
(5) CCSA [43]: The CCSA introduces the classification and con-

rastive semantic alignment loss to learn an embedding function
nd a classification function from the source domain to the target
omain.
(6) ENT [33]: The ENT is trained with available samples by

sing standard entropy minimization.
(7) MME [32]: The MME is an adaptive domain model based

n the class-wise prototypes, which optimizes the minimax loss
f conditional entropy on the unlabeled target data.
(8) Proposed Method: The proposed framework comprises

AFA and PBLP modules. The two modules benefit from each
ther and perform together to achieve the semi-supervised CAC
ask.

(9) Full-T: The model is implemented in full supervised prac-
ice to obtain the upper limit of model performance.

.3. Network architecture and implementation details

For the semi-supervised CAC task, the proposed model is
ased on the unsupervised semantic-aware adaptive feature fu-
ion network (USAFFN) [11], including a feature extractor, multi-
le category-level domain discriminators, and a heartbeat classi-
ier. The network structures of the heartbeat classification model
nd each domain discriminator are the same as those of the clas-
ification model and the global domain discriminator in USAFFN.
n order to combine the morphological and rhythmic information
f ECG signals, the 3-D input is constructed as the same prepro-
essing pipelines in USAFFN. In addition, the feature extractor
ncludes multiple atrous spatial pyramid pooling modules and

https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/incartdb/1.0.0/
https://www.physionet.org/content/svdb/1.0.0/
https://www.physionet.org/content/ltdb/1.0.0/
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Fig. 3. Heartbeat examples for each class in different ECG databases.
ultiple multi-perspective adaptive feature-fusion modules at
ifferent levels, aiming to extract multi-view features and reduce
he redundancy of these features.

All the experiments in this study are implemented in Py-
orch [44]. In the experiments, 50 annotated samples of each
ategory in the target domain are available, and we take 90%
f the remaining samples as unlabeled training data and 10%
s the validation data. The optimizer is Adam, and the batch
ize is set to 128. We set the balancing hyper-parameters λ

and α to 0.01 and 0.99, respectively. The training stages can be
termed as two processes. In the first training process, the pro-
posed model is trained with available labeled data for 100 epochs.
Afterward, the pseudo-labeling stage and re-training stage are
iteratively trained, and the maximum number of training during
the process is 200. In the testing stage, the heartbeat classification
8

model (composed of the feature extractor and the heartbeat
classifier) is used to evaluate the model performance with the
unlabeled target samples. Comprehensive qualitative and quanti-
tative experiments are performed, and the corresponding results
are described in Section 5. For the quantitative evaluation, we
repeat the experiment 5 times to calculate the mean and standard
deviation of these results.

4.4. Evaluation metrics and visual analysis

In this paper, the quantitative evaluation of model perfor-
mance is based on several common evaluation indicators: sen-
sitivity (Sen), positive productivity (Ppr), F1 score (F1), F1-macro
score, the overall classification accuracy (ACC), and the area under
the curve of ROC (AUC). Sen represents the rate of correctly
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Table 2
Comparison results of each category on INCART.
Approach N (%) V (%) S (%) F (%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

Full-T 99.9 ± 0.00 99.8 ± 0.06 99.9 ± 0.03 99.6 ± 0.11 99.9 ± 0.00 99.8 ± 0.05 95.0 ± 2.87 99.9 ± 0.00 96.7 ± 2.18 73.3 ± 4.5 99.9 ± 0.00 84.7 ± 2.9

Rahhal et al. [6]a – – – 75.1 37.6 50.0 15.6 2.5 1.0 – – –

Wang et al. [7]a – – – 83.9 93.0 88.0 78.3 22.6 35.0 – – –

S + T [34]a 99.9 ± 0.03 85.4 ± 0.17 92.1 ± 0.10 99.4 ± 0.05 78.3 ± 1.49 87.6 ± 0.92 12.8 ± 2.60 92.7 ± 2.86 22.5 ± 4.0 1.0 ± 0.09 89.8 ± 0.70 1.9 ± 0.14

Wang et al. [9]b – – – 82.5 95.2 88.0 66.7 47.6 55.0 – – –

Feng et al. [11]b 98.0 97.0 98.0 85.0 95.0 89.0 70.0 44.0 54.0 0.0 0.0 0.0

DANN [27]b 99.2 ± 0.06 94.5 ± 0.12 96.8 ± 0.09 89.8 ± 0.13 95.1 ± 0.24 92.4 ± 0.18 35.8 ± 0.36 54.8 ± 4.4 43.2 ± 1.18 0.8 ± 0.02 25.1 ± 1.29 1.58 ± 0.05

MADA [31]b 98.4 ± 0.01 97.2 ± 0.01 97.8 ± 0.01 86.2 ± 0.01 92.2 ± 0.00 89.1 ± 0.00 39.3 ± 0.39 45.2 ± 0.50 42.1 ± 0.42 0.8 ± 0.00 2.1 ± 0.05 1.2 ± 0.01

CCSA [43]b 97.2 ± 0.07 99.7 ± 0.03 98.4 ± 0.04 98.0 ± 0.05 84.0 ± 0.08 90.4 ± 0.06 79.1 ± 0.34 36.3 ± 0.17 49.8 ± 0.23 12.4 ± 0.04 0.6 ± 0.01 1.2 ± 0.03

ENT [33]b 99.2 ± 0.03 95.2 ± 0.08 97.1 ± 0.03 98.9 ± 0.02 70.1 ± 0.07 82.0 ± 0.05 16.3 ± 0.03 62.1 ± 0.34 25.9 ± 0.07 0.3 ± 0.03 13.6 ± 0.38 0.6 ± 0.07

MME [32]b 97.8 ± 0.01 99.5 ± 0.01 98.6 ± 0.01 89.8 ± 0.04 84.8 ± 0.06 87.3 ± 0.05 76.8 ± 0.93 19.9 ± 0.35 31.6 ± 0.52 0 0 0

Source Only 99.3 ± 0.03 80.9 ± 0.05 89.2 ± 0.03 62.1 ± 0.09 87.3 ± 0.07 72.6 ± 0.07 10.1 ± 0.03 77.1 ± 0.19 17.9 ± 0.05 0.2 ± 0.02 12.9 ± 0.10 0.5 ± 0.04
Proposed methodb 99.3 ± 0.02 97.4 ± 0.03 98.3 ± 0.03 99.6 ± 0.03 92.0 ± 0.06 95.6 ± 0.04 40.6 ± 0.25 93.5 ± 0.04 56.6 ± 0.24 6.6 ± 0.12 89.7 ± 0.80 12.4 ± 0.23

aParameter-based fine-tuning scheme.
bDomain adaptation scheme.
Table 3
Overall performance comparison on INCART.

Full-T S + T [34] DANN [27] MADA [31] CCSA [43] ENT [33] MME [32] Source Only Proposed method

F1-macro 0.953 ± 0.78 0.510 ± 1.23 0.585 ± 0.36 0.575 ± 0.10 0.599 ± 0.05 0.514 ± 0.01 0.543 ± 0.14 0.450 ± 0.03 0.657 ± 0.04
ACC (%) 99.8 ± 0.05 84.9 ± 0.37 94.3 ± 0.14 94.9 ± 1.07 97.3 ± 0.19 94.3 ± 2.49 95.2 ± 1.29 83.7 ± 2.23 96.7 ± 0.00
AUC 0.999 ± 0.01 0.917 ± 0.60 0.931 ± 0.46 0.866 ± 0.89 0.977 ± 0.01 0.923 ± 0.02 0.856 ± 0.25 0.772 ± 0.49 0.995 ± 0.20
classified events among all events. Ppr is the rate of correctly
classified events among all detected events. F1 is the harmonic
mean of the positive productivity and sensitivity, which is used
as the comprehensive criterion for each category. F1-macro is the
average of the F1 score for each category. ACC is the ratio of
correctly classified samples to the total classified samples. ROC
represents a probability curve, and AUC denotes the degree of
separability.

In addition, to qualitatively evaluate the model performance,
e use t-distributed stochastic neighbor embedding (t-SNE) [45]
o visualize how the model maps samples from two different do-
ains to a feature space. Specifically, the samples from the source
nd target domains are compressed to their 2D features, and
he visualization of these features is displayed in a 2D subspace.
n this paper, we use two different shapes to represent source
amples and target samples, and different colors denote different
ategories. Specifically, the symbol • presents the source samples,
nd the symbol × denotes the target samples. In addition, red,
lue, green, and black are used to represent heartbeat types N, V,
, and F in the source domain. Light-coral, light-sky-blue, light-
reen, and gray colors are used to represent heartbeat types N, V,
, and F in the target domain.

. Experimental results

In this section, we quantitatively and qualitatively analyze
he experimental results of the proposed method in the semi-
upervised CAC task. The task can be represented as ARDB →

arget domain, where the target domain belongs to INCART, SVDB,
nd LTDB, respectively. Specifically, the effectiveness of the pro-
osed method is verified on the task: ARDB → INCART. After-
ard, the effectiveness of the proposed SAFA and PBLP modules

s validated, and the impact of the number of labeled target
amples on the model performance is further explored. Finally, to
urther testify the generalization ability of our proposed method,
he influence of different distributional shifts is explored on the
asks: ARDB → SVDB and ARDB → LTDB. Meanwhile, we use the
-SNE [45] to qualitatively investigate the characteristics of the

eatures obtained by the proposed method.

9

5.1. Classification performance

To verify the effectiveness of the proposed method, the semi-
supervised CAC task: ARDB → INCART is conducted and the
proposed method is compared with the studies based on the
deep domain adaptation [6,7,9,11] and several representative
methods [27,31–34,43] on INCART. The results of competitors
on INCART are reported in Tables 2, 3, and Fig. 4. Specifically,
Tables 2 and 3 report the results of each category and overall
model performance, respectively. Fig. 4 displays the AUC for each
category of these competitors. From these results, several obser-
vations can be obtained. (1) The proposed method shows superior
performance among the reported counterparts. The encouraging
experimental results highlight the importance of semantic-aware
feature alignment learning, and reliable pseudo labels mining is
conducive to effective semantic-aware feature alignment learn-
ing. (2) The approaches [6,7] based on the active learning scheme
require constantly interacting with experts and picking up infor-
mative samples of new records to adapt to the model. When the
number of new records is large, it would introduce additional
manual labeling workload. Compared with these approaches, the
proposed method only needs to train the model with limited
labeled samples of each category. (4) Compared with the existing
algorithms [9,11,27,31–33,43] based on the deep domain adap-
tation scheme, the proposed method achieves the best F1-macro
score, indicating that learning semantic-aware feature alignment
between the two domains and semantic label propagation within
the class in the target domain is valid for the semi-supervised
CAC task. The performance can be attributed to the alignment of
semantic-aware features between the two domains and the full
supplement of semantic-aware target information.

To sum up, the proposed model shows the competitive per-
formance among these methods. It only requires annotating ex-
tremely limited heartbeat data of the new subjects, which is
relatively practical and highly operable.

5.2. Ablation study

To examine the contributions of the SAFA and PBLP modules

to the semi-supervised CAC task, we first define several notations.
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Fig. 4. ROC curve of competitors in each category on INCART.
Table 4
Ablation studies of SAFA and PBLP modules on INCART.
Method N (%) V (%) S (%) F (%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

Source Only 99.3 ± 0.03 80.9 ± 0.05 89.2 ± 0.03 62.1 ± 0.09 87.3 ± 0.07 72.6 ± 0.07 10.1 ± 0.03 77.1 ± 0.19 17.9 ± 0.05 0.2 ± 0.02 12.9 ± 0.10 0.5 ± 0.04
SDA 99.9 ± 0.05 82.9 ± 0.26 90.6 ± 0.19 88.6 ± 0.08 81.7 ± 0.64 85.0 ± 0.31 8.3 ± 0.63 97.2 ± 1.75 15.3 ± 1.11 1.6 ± 0.01 71.3 ± 0.74 3.9 ± 1.07
SAFA-label 98.4 ± 0.18 96.9 ± 0.05 97.7 ± 0.07 92.8 ± 0.01 89.3 ± 0.07 91.0 ± 0.04 30.5 ± 0.02 69.2 ± 0.03 42.3 ± 0.02 6.5 ± 0.41 28.4 ± 1.53 10.6 ± 0.72
SAFA + CBPL 90.5 ± 0.01 94.4 ± 0.04 92.4 ± 0.02 97.2 ± 0.03 92.2 ± 0.03 94.7 ± 0.01 19.0 ± 0.04 98.0 ± 0.04 31.8 ± 0.06 7.6 ± 0.19 55.1 ± 0.03 13.4 ± 0.30
SAFA + PBLP 99.3 ± 0.03 97.4 ± 0.03 98.3 ± 0.03 99.6 ± 0.03 92.2 ± 0.06 95.6 ± 0.04 40.6 ± 0.25 93.5 ± 0.04 56.6 ± 0.24 6.6 ± 0.12 89.7 ± 0.80 12.4 ± 0.23
Specifically, ‘Source Only’ represents that the model is trained
with only labeled source data, and then directly evaluates on the
target domain, which serves as the baseline method. SDA denotes
that the model performs the global feature alignment between
the source domain and the target domain with labeled data.
SAFA-label means that the SAFA model performs semantic-aware
feature alignment between the two domains with only avail-
able labeled data. SAFA + CBPL represents the model performs
semantic-aware feature alignment between the two domains
with labeled and pseudo labeled samples, where the pseudo
labeled target data are obtained by the classifier-based pseudo
labeling module (CBPL) and the classifier is trained on the source
domain. SAFA + PBLP represents the proposed model. In light
f the above notations and interpretations, we compare these
odels in the semi-supervised CAC task: ARDB → INCART, and
10
their results on INCART are reported in Table 4 and Fig. 5. In spe-
cific, compared with the results of SDA and SAFA-label, a certain
average performance improvement is achieved by the SAFA-label
model. After that, compared with the results of SAFA-label, SAFA
+ CBPL and SAFA + PBLP, we can see that the performance of
the model SAFA + PBLP outperforms the performance of SAFA-
label or SAFA + CBPL. This indicates that the proposed SAFA and
PBLP modules are complementary. Concretely, the SAFA focuses
on aligning semantic-aware category feature representations be-
tween two domains and learning more compact semantic-aware
representations. At the same time, PBLP focuses on providing
more reliable target training samples to further alleviate the
distribution discrepancies between the two domains, which can
provide more robust target features. Therefore, when the SAFA
and PBLP modules are included at the same time, the model
performance performs clearly the best.
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Fig. 6. The effect of the number of labeled target data on INCART.

5.3. The number of labeled target samples

We discuss the performance of the proposed method when
the number of labeled target samples varies in the process of
training. Specifically, five scenarios are conducted on the semi-
supervised CAC task: ARDB → INCART, where the number of
abeled target samples in each category, i.e., the number of shots,
nly varies during the training process. Five scenarios include
rom 10 to 50 shots. In the process of model training, labeled
arget data is required in two stages. Concretely, in the pre-
raining stage, labeled target samples are required to perform
he SAFA module. In the pseudo-labeling stage, labeled target
amples are required to perform the PBLP module. The effect of
he number of the labeled target data on INCART is illustrated
n Fig. 6. The results illustrate that the model performance can
e improved consistently when more labeled target samples are
vailable.

.4. Generalization evaluation

To further verify the generalization ability of the proposed
odel, two different distributional shift tasks are conducted:
RDB → SVDB and ARDB → LTDB. Specifically, comprehensive
uantitative experiments on the task ARDB → SVDB are per-

formed and the corresponding results are reported in Tables 5
and 6, and the corresponding qualitatively visual analyses are
illustrated in Fig. 8. In addition, the quantitative results on the
task ARDB → LTDB are reported in Tables 7 and 8, and the
ualitative analyses are illustrated in Fig. 9.
The quantitative results on the SVDB dataset are reported in

ables 5 and 6. The performance of the proposed method out-
erforms that of the comparison methods, especially for category
. The superior classification performance is largely attributed
 d

11
o the semantic-aware specific category feature alignment and
he reliable representations obtained by effectively guiding the
abel propagation through the utilization of limited labeled target
amples.
For the CAC task: ARDB → LTDB, Tables 7 and 8 show the

uantitative results of each category and the overall performance
n LTDB. It can be seen that the proposed method achieves com-
etitive model performance. Specifically, our method performs
uch better than the model S + T when the limited labeled target
amples are given, indicating that the simple fine-tuning strategy
as a larger room for improvement. In addition, the performance
f the proposed method in different categories is better than that
f the DANN model. The excellent performance can be attributed
o the specific training of semantic-aware domain discrimina-
ors and reliable feature representations. They can help reduce
he category-level feature distribution gap between the source
omain and the target domain, and retain semantic consistency
ithin the class between the two domains.
In general, we can find that the performance of the proposed

ethod is superior to that of most state-of-the-art methods
n the SVDB and LTDB benchmarks, which denotes that the
emantic-aware adversarial learning mechanism and prototype-
ased label propagation strategy are effective for the semi-
upervised CAC task. In addition, we can conclude that the per-
ormance improvement of the proposed method on LTDB bench-
ark is not as significant as other benchmarks. An interpretation

s that the number of different categories on the LTDB benchmark
s highly imbalanced. In the future work, we will further make
ttempts to explore several effective strategies to deal with the
hallenge of imbalanced training samples.

.5. Visual analysis

For intuitive qualitative analysis, t-SNE [45] is utilized to visu-
lize the feature representations of the source domain and the
arget domain on three semi-supervised CAC tasks: ARDB →

NCART, ARDB → SVDB, and ARDB → LTDB, and their corre-
ponding results are illustrated in Figs. 7, 8 and 9, respectively.
pecifically, from Fig. 7, the ‘Source Only’ or S + T model cannot
ell align the representations of source domain and target do-
ain, while the DANN or MADA can better align, but the DANN
r MADA cannot discriminate the categories well. Besides, SAFA-
abel can better align the representations of the two domains
nd the categories can be discriminated well, while the proposed
ethod is evidently better than SAFA-label. Specifically, the rep-

esentations of the same category between the two domains are
ompact, and the representations of different categories between
he source and target domain lie far away from each other.
n addition, comparing Figs. 7(a), 8(a), and 9(a), we can find
hat there are significant distribution discrepancies between the
eature representation spaces of the same category in the two

omains. In addition, comparing Fig. 8(a)–(c) (Fig. 9(a)–(c)), the
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Table 5
Comparison results of each category on SVDB.
Algorithm N (%) V (%) S (%) F (%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

Full-T 99.7 ± 0.10 96.4 ± 0.75 98.1 ± 0.38 95.2 ± 0.35 94.8 ± 0.87 95.0 ± 0.31 67.6 ± 2.43 97.3 ± 1.40 79.8 ± 1.25 49.9 ± 0.03 99.9 ± 0.00 66.6 ± 0.01

Al Rahhal et al. [6] – – – 65.2 9.3 16.0 8.8 14.3 11.0 – –

Wang et al. [7] – – – 85.7 48.3 61.8 25.4 36.7 30.0 – –

Guo et al. [46] – – – 86.8 58.8 70.1 7.90 64.5 14.1 – –

Wang et al. [9] – – – 84.3 56.2 68.0 23.6 53.8 33.0 – – –

Li et al. [10] – – – 78.5 72.4 75.3 23.8 47.2 31.6 – – –

S + T [34] 98.4 ± 0.11 74.6 ± 0.62 85.2 ± 0.01 33.1 ± 0.91 88.1 ± 0.66 48.4 ± 0.31 68.9 ± 0.70 34.1 ± 0.43 43.9 ± 0.53 0.01 ± 0.01 68.4 ± 0.12 0.03 ± 0.02

DANN [27] 96.8 ± 0.05 72.2 ± 0.45 82.7 ± 0.28 25.9 ± 0.97 92.2 ± 0.02 40.5 ± 1.19 26.5 ± 1.11 28.7 ± 1.08 27.6 ± 1.10 0.0 ± 0.00 6.2 ± 0.02 0.1 ± 0.01

MADA [31] 97.4 ± 0.22 92.9 ± 0.78 95.1 ± 0.30 53.8 ± 0.53 89.5 ± 1.09 67.2 ± 0.72 52.6 ± 1.00 45.3 ± 0.35 48.7 ± 0.22 0.45 ± 0.30 37.3 ± 0.12 0.88 ± 0.59

CCSA [43] 95.6 ± 0.80 96.0 ± 0.89 95.8 ± 0.10 75.5 ± 0.82 84.4 ± 1.28 77.3 ± 0.87 53.2 ± 0.15 42.7 ± 0.44 47.3 ± 0.39 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00

ENT [33] 99.5 ± 0.12 83.9 ± 0.09 91.0 ± 0.10 68.2 ± 0.22 87.2 ± 0.11 76.5 ± 0.03 30.0 ± 1.01 84.3 ± 0.44 44.3 ± 0.38 2.22 ± 0.40 87.4 ± 1.20 4.3 ± 0.60
MME [32] 99.1 ± 0.05 89.5 ± 0.13 94.1 ± 0.08 79.5 ± 0.41 73.7 ± 0.11 78.1 ± 0.02 40.7 ± 1.01 87.5 ± 0.44 55.5 ± 0.38 0.77 ± 0.37 93.7 ± 0.52 1.5 ± 0.24

SAFA-label 96.8 ± 0.02 94.5 ± 0.02 95.6 ± 0.02 66.2 ± 0.17 86.4 ± 0.04 75.0 ± 0.12 54.2 ± 0.05 49.9 ± 2.56 51.5 ± 0.57 0.51 ± 0.03 49.9 ± 0.02 1.0 ± 0.08

Source Only 97.4 ± 0.39 70.2 ± 0.77 81.4 ± 0.50 22.7 ± 0.06 95.1 ± 0.05 36.1 ± 0.07 26.6 ± 0.09 27.8 ± 0.08 27.0 ± 0.08 0.04 ± 0.002 6.2 ± 0.03 0.08 ± 0.04
Proposed method 98.5 ± 0.04 97.5 ± 0.03 98.0 ± 0.03 85.1 ± 0.06 92.0 ± 0.08 88.4 ± 0.06 78.2 ± 0.06 75.4 ± 0.07 76.8 ± 0.05 0.1 ± 0.02 12.4 ± 0.03 0.3 ± 0.003
Table 6
Overall performance comparison on SVDB.

Full-T S + T [34] DANN [27] MADA [31] CCSA [43] ENT [33] MME [32] Source Only Proposed method

F1-macro 0.849 ± 0.40 0.419 ± 0.05 0.446 ± 0.24 0.529 ± 0.01 0.533 ± 0.10 0.540 ± 0.42 0.573 ± 0.34 0.361 ± 0.05 0.659 ± 0.11
ACC (%) 96.0 ± 0.84 71.4 ± 1.87 79.2 ± 0.48 89.5 ± 0.65 91.5 ± 0.30 84.1 ± 0.32 88.7 ± 0.53 70.4 ± 0.00 96.0 ± 0.27
AUC 0.995 ± 0.14 0.871 ± 0.70 0.759 ± 0.35 0.932 ± 0.49 0.890 ± 0.17 0.937 ± 0.03 0.951 ± 0.06 0.767 ± 1.05 0.979 ± 0.28
Table 7
Comparison results of each category on LTDB.
Algorithm N (%) V (%) S (%) F (%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

Full-T 99.9 ± 0.05 97.3 ± 0.80 98.6 ± 0.40 99.4 ± 0.08 98.5 ± 0.88 98.9 ± 0.41 9.21 ± 0.05 98.6 ± 0.39 16.8 ± 0.08 61.7 ± 0.42 95.2 ± 1.56 74.5 ± 0.94

S + T [34] 99.8 ± 0.21 62.3 ± 0.14 73.7 ± 0.43 87.7 ± 0.01 98.0 ± 0.15 92.5 ± 0.06 0.61 ± 0.52 92.3 ± 0.22 1.21 ± 0.65 39.3 ± 0.59 71.4 ± 1.80 50.7 ± 0.62

DANN [27] 98.3 ± 1.21 68.4 ± 0.24 80.7 ± 0.76 29.5 ± 0.21 76.9 ± 1.26 42.6 ± 0.74 0.43 ± 1.32 19.0 ± 0.54 0.85 ± 0.73 4.78 ± 1.35 35.3 ± 3.21 8.42 ± 1.58

MADA [31] 99.8 ± 0.03 92.4 ± 0.01 95.9 ± 0.01 93.0 ± 1.04 95.3 ± 1.71 94.1 ± 0.82 4.06 ± 2.05 94.7 ± 0.03 7.80 ± 0.97 19.6 ± 0.85 95.4 ± 2.72 32.5 ± 1.61

CCSA [43] 98.0 ± 0.13 83.8 ± 0.21 90.3 ± 0.11 99.3 ± 2.51 74.0 ± 1.63 84.8 ± 1.54 60.2 ± 2.05 61.2 ± 1.07 60.7 ± 1.86 3.84 ± 0.65 0.03 ± 1.12 0.07 ± 0.91

ENT [33] 94.1 ± 0.15 98.2 ± 0.51 96.1 ± 0.35 49.5 ± 2.13 73.1 ± 1.82 59.0 ± 1.05 83.9 ± 1.74 1.67 ± 0.79 3.28 ± 0.98 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00

MME [32] 99.8 ± 0.08 35.2 ± 0.17 52.1 ± 0.54 61.6 ± 0.54 98.6 ± 1.74 75.8 ± 2.24 0.40 ± 1.82 97.2 ± 1.48 7.59 ± 1.65 22.2 ± 1.54 77.9 ± 2.37 34.6 ± 2.02

SAFA-label 98.5 ± 0.28 95.8 ± 0.19 97.1 ± 0.31 97.7 ± 0.17 80.5 ± 0.25 88.3 ± 0.20 3.86 ± 0.06 71.2 ± 0.07 7.33 ± 0.11 44.4 ± 0.32 80.0 ± 0.52 57.1 ± 0.36
Source Only 98.8 ± 0.11 58.1 ± 0.09 73.2 ± 0.07 22.6 ± 0.13 81.1 ± 0.09 35.3 ± 0.16 0.52 ± 0.05 5.3 ± 0.72 0.7 ± 0.30 0.51 ± 0.007 5.3 ± 0.03 0.9 ± 0.01
Proposed method 99.3 ± 0.02 96.7 ± 0.04 98.0 ± 0.02 84.8 ± 0.06 94.6 ± 0.12 89.5 ± 0.03 9.46 ± 0.09 67.9 ± 0.56 16.6 ± 0.15 47.9 ± 0.08 39.0 ± 0.06 43.0 ± 0.02
Table 8
Overall performance comparison on LTDB.

Full-T S + T [34] DANN [27] MADA [31] CCSA [43] ENT [33] MME [32] Source Only Proposed method

F1-macro 0.722 ± 0.29 0.545 ± 0.26 0.331 ± 0.41 0.576 ± 0.79 0.589 ± 0.82 0.396 ± 0.47 0.425 ± 0.53 0.275 ± 0.08 0.617 ± 0.04
ACC (%) 97.9 ± 0.52 65.8 ± 0.62 69.0 ± 0.73 92.7 ± 0.35 96.8 ± 1.57 90.5 ± 0.46 41.6 ± 0.21 60.0 ± 0.52 96.2 ± 0.12
AUC 0.996 ± 0.36 0.977 ± 0.42 0.843 ± 0.52 0.971 ± 0.71 0.992 ± 0.78 0.762 ± 0.78 0.935 ± 0.43 0.784 ± 0.54 0.970 ± 0.42
representations of the same category between the source and
target domain by the proposed model in Fig. 8(c) (Fig. 9(c)) are
ompact, and the representations of different categories between
he source and target domain lie far away from each other in
he 2D subspace. An interpretation is that more compact fea-
ure learning obtained by the proposed method can help the
odel capture more reliable heartbeat type prototypes. Thus the
rototypes-based label labeling strategy provides more reliable
arget training samples for further alleviating distribution dis-
repancies between the two domains, which can provide more
obust target features.

. Conclusions

We have explored two critical issues that hinder the perfor-
ance of the semi-supervised CAC: the gaps in the distribution

f semantic features across domains and insufficient semantic

12
information in the target domain. Accordingly, we propose a
unified framework to address these issues simultaneously. The
framework comprises a SAFA module and a PBLP module. First,
the SAFA module performs semantic-aware feature alignment to
alleviate inter-domain discrepancies. Second, the PBLP module
provides reliable pseudo labels in the target domain through the
intra-class label propagation scheme. The two modules are com-
plementary. The semantic-aware domain-invariant feature rep-
resentations learned by the former are beneficial for extracting
more accurate prototypes for the latter, and the latter provides
high-quality pseudo training samples to promote more robust
representation learning.

Advantages: (1) Comprehensive quantitative and qualitative
experiments demonstrate the superiority of the proposed method;
(2) The proposed model requires extremely limited annotated
training samples from the target domain, relieving the annota-

tion burden; (3) The SAFA can not only reduce the global gap
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Fig. 7. ARDB → INCART. Comparisons of our method with other methods via using t-SNE [45] to visual the feature representations. (a) Source Only. (b) S + T. (c)
ANN. (d) MADA. (e) SAFA-label. (f) Proposed Method.
Fig. 8. ARDB → SVDB. Comparisons of our method with other methods via using t-SNE [45] to visual the feature representations. (a) Source Only. (b) SAFA-label.
c) Proposed Method.
etween two domains but also retain the feature consistency
f the same category in different domains, where the category-
evel domain discriminator specifically for each sample is trained
uring the adversarial training. (4) The PBLP is proposed to mine
igh-quality target pseudo labels by considering the semantic
nformation, so as to improve the model performance. The se-
antic information here refers to the semantic similarity of the
13
same category and the semantic discrepancies between different
categories in the same domain.

Disadvantages: (1) When the number of training samples be-
longing to different categories is extremely imbalanced, the im-
balance problem leads to performance degradation, which signif-
icantly challenges the domain adaptation classification task. (2)
Granted ECG data is highly sensitive and private, and it can reveal
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Fig. 9. ARDB → LTDB. Comparisons of our method with other methods via using t-SNE [45] to visual the feature representations. (a) Source Only. (b) SAFA-label.
(c) Proposed Method.
the disease status of patients. Moreover, it can also be used for
human identification. Therefore, the proposed method requires
to access the source data during learning to adapt, which is not
efficient for data transmission and may violate the data privacy
policy.

In the future work, we will attempt to solve the data imbal-
ance and privacy concern problems, and design a more robust and
general arrhythmia classification model.
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