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A B S T R A C T   

This study introduces a relocation-routing problem with a fuzzy amount of sewage and stochastic travel time in 
natural gas production. In this study, a set of sewage treatment plants (STPs) and a certain number of gas- 
gathering stations (GGSs) are distributed on the field. With the increasing amount of production, however, 
the current STPs cannot satisfy the production level. Policymakers propose several location candidates to build 
new STPs and aim to minimize the total cost of running the newly built STPs and the original STPs. The practical 
attributes of the sewage return logistics, capacity of vehicles and STPs, uncertain amount of sewage, stochastic 
travel times, and other constraints are taken into account. The new problem proposed in this study is defined as 
Relocation-Routing Problem with Fuzzy Sewage and Stochastic Travel Time (RLRPFSSTT), which has never been 
investigated before. To minimize the total cost, including the construction cost of newly opened STPs and 
transportation cost between STPs and GGSs, this paper designs a memetic algorithm to optimize location and 
routing problems simultaneously. Benchmark-based experimental data is designed, and the computational results 
demonstrate the effectiveness of the proposed memetic algorithm. Sensitivity analysis and comparisons are also 
carried out to validate the advantage of considering uncertainties. The proposed model and algorithm are meant 
to further supplement and extend the location and routing models, as well as have great significance for the 
decision-makers of industrial logistics in oil fields and coal mines.   

1. Introduction 

During the past decade, the logistics industry has witnessed 
extraordinary growth. Stȩpień et al. [1] disclosed that the transportation 
cost had accounted for a significant part of the logistics cost. Notably, 
this value in developing countries, such as China, was about 70% to 90% 
[2]. Therefore, the optimization of material transportation and distri-
bution is of great significance for reducing logistics costs, as well as 
improving the operational efficiency of enterprises. 

A local gas enterprise, abbreviated LGE (Considering privacy, we are 
not convenient to disclose the name of the enterprise here. This article 
uses LGE to indicate the name of the company), has many gas-gathering 
stations (GGSs) and sewage treatment plants (STPs). Usually, LGE is 
located in a remote area with complex geomorphology. In each GGS, 
sewage, including condensate and methanol, is frequently generated 

daily during the pipe network operation in the production. These sewage 
need to be transported to the STPs for purification and separation, 
thereby refining useful substances such as condensate and methanol. 
With the expansion of each GGS’s production scale, the throughput of 
the original purification plant cannot meet the production requirements. 
To deal with this situation, policymakers proposed several candidate 
locations for building new STPs and aimed to minimize the total cost of 
running the newly built STPs and original STP. 

The STP relocation problem is an extended version of facility loca-
tion problem (FLP), which is a medium-term or a long-term decision- 
making of enterprises depending on the problems and has vital strategic 
significance for the development of enterprise’s logistics. However, 
rerouting problem is a variation of VRP, which is a short-term or a 
medium-term decision-making process for enterprises and has a crucial 
tactical reference value for logistics distribution for enterprises. From 
the logistics in practice, FLP and the VRP have much intrinsic relevance 
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in the decision-making process: both should generally consider the 
distribution of materials distribution centers and gas-gathering stations 
(GGSs). 

The procedures of identifying the final location of the STPs can be 
listed as follows: Firstly, the policy-makers need to provide a few 
candidate locations for constructing STPs by evaluating the relevant 
conditions, including land accessibility and environmental factors. 
Secondly, the specific opened facilities should be selected. The goal is to 
construct STPs with minimizing the total costs, including the construc-
tion cost of STPs, and transportation cost between STPs and GGSs by 
considering the uncertain capacity of STPs and uncertain transportation 
time between STPs and GGSs. From the practice of the GGS, observed 
that the amount of generated sewage (AGS) is not a deterministic value 
each day. Actually, the AGS has a great relationship with the daily 
temperature, humidity, air pressure, the actual amount of gas produc-
tion and other complex factors. So, it is unpredictable even by some 
experienced workers. Additionally, the gas filed is located in moun-
tainous maybe with complex terrain. In these areas, the travel time 
between each arc is non-deterministic due to the rugged road, change-
able and inclement weather. So, it is of great significance to consider 
these uncertainties when modeling our problem [3,4]. It is of great 
importance to integrate the two issues simultaneously, which was 
defined as location routing problem (LRP) [5]. This paper studies the 
STP relocation problem and rerouting problem considering the un-
certainties of amount of AGS and travel time, which has never been 
investigated before. Fig. 1 gives an overview of the studied problem. 
Fig. 1a presents the current situation faced by a LGE and the proposed 
solution method. Fig. 1b gives a solution scenario after applying the 

proposed solution method. 
The main contributions of this study are summarized as follows:  

(1) A relocation-routing problem in the field of green production of 
natural gas is studied and this problem is originally from real 
engineering applications. 

(2) To overcome the intractability of handling uncertainties consid-
ered in the optimization model, we transfer the constraints 
related to fuzzy and stochastic information to the handleable 
constraints, which could be directly used in the meta-heuristics 
(memetic algorithm).  

(3) Since the studied problem is computationally challenging, this 
study employees a memetic algorithm to solve the proposed 
optimization problem.  

(4) Stochastic simulation and memetic algorithms are integrated to 
solve the studied problem by minimizing the total cost, and 

sensitivity analysis is also performed to help the policy-makers 
make a reasonable decision.  

(5) Benchmark based instances are introduced and the experimental 
results demonstrate the effectiveness and efficiency of the pro-
posed memetic algorithm, as well as the advantage of considering 
uncertainties in the model. 

The remainder of the paper is organized as follows. Section 2 ana-
lyzes the relevant literature. The mathematical formulation and mem-
etic algorithm are presented in Sections 3 and 4, respectively. 
Computational experiments are given and analyzed in Section 5. Finally, 
the conclusions and future studies are presented in the Section 6. 

2. Literature review 

Considering that the studied problem is regarded as a further 
extension of the classical location-routing problem with considering the 
uncertainties. The literature review section is composed of four cate-
gories. First, the recent works on VRP and scheduling are discussed, then 
recent works about LRP are investigated. After that, the recent works on 
routing and scheduling problems with uncertainties are presented. 
Finally, we discuss the related work with the memetic algorithm, which 
is the main methodology in this study. 

2.1. Vehicle routing and scheduling problem 

Capacitated vehicle routing problem (CVRP), which could be 
regarded as a multi-traveling salesman problem problem with 

Nomenclature 

FLP facility location problem 
VRP vehicle routing problem 
LRP location routing problem 
RLRP relocation routing problem 
LGE a local gas enterprise 
STP sewage treatment plant 
GGS gas-gathering station. 
DPI dispatcher preference index 
API assignment preference index 
Cd cost of the depots 
Cr cost of the routes  

Fig. 1. An overview of the studied problem.  
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considering the capacitated constraints, was first proposed and defined 
by Dantzig and Ramser [6] and it is one of the most basic and repre-
sentative models in the family of VRPs. The algorithms for solving VRP 
are divide into two classes: namely exact algorithms and heuristic al-
gorithms. Exact algorithms mainly include Dynamic Programming, 
Branch and Bound, and Lagrangian relaxation, column generation etc. 
Meta-heuristic algorithms obtain the solution through the global search 
method and can temporarily accept the poor solution that appears in the 
search process. Meta-heuristic algorithms will improve the solution it-
self in the specific application process and make the final solution close 
to the optimal solution as much as possible. Common meta-heuristic 
algorithms have been applied to solve the classical VRP problem. 
These meta-heuristics include Genetic Algorithm, Simulated Annealing 
Algorithm, Tabu Search Algorithm implemented by, Particle Swarm 
Optimization, Ant Colony Algorithm etc.. Additionally, nesting and 
mixed algorithms are designed to improve the solution of the instances 
further. 

Han et al. [7] studied the job shop scheduling problem with taking 
into account minimizing the economic cost and the energy consumption. 
In this work, a multi-objective optimization is constructed, and to solve 
the model, the authors designed a discrete evolutionary algorithm. Qin 
et al. [8] investigated a blocking flow shop scheduling problem with 
taking into account the energy consumption criteria. In order to solve 
the model, a modified iterated greedy local search is proposed. Experi-
mental results for 140 benchmark instances have been reported, and the 
comparison performed with the state-of-the-art highlight the efficiency 
of the improved algorithm. 

2.2. Location routing problem 

LRP is also an NP-hard problem, which can be viewed as the com-
bination of FLP and VRP. When the size of clients and facilities are 
slightly larger, traditional exact algorithms (such as linear program-
ming, branch and bound method, cutting plane method, and dynamic 
programming method) tend to be powerless. The meta-heuristic algo-
rithms are the most commonly used approach to obtain a satisfactory 
solution. In an attempt to find a better solution or lower bound for LRP, 
many works [9–11] developed heuristics based on the attributes of the 
problem. Especially, Prins et al. [10] proposed a two-phase approach to 
solve the LRP problem. In the first phase, the routes and their customers 
are grouped into super-clients, which poses a problem of location of the 
facilities, which is then resolved by Lagrangian relaxation of the 

assignment constraints. In the second phase, routes from the resulting 
multi-destination VRP are enhanced using a granular tabular search 
heuristic. 

2.3. Routing and scheduling problem with uncertainties 

In the real practice of routing and scheduling problem, many factors 
such as customer’s demand, travel time, etc. are not always determin-
istic. If we ignore these uncertainties when modeling the problem, the 
optimal solution obtained may be not reasonable enough when apply 
into practice. Fuzzy theory and stochastic probability provide effective 
tool for describing uncertainties. In the past 10 years, many researchers 
have introduced fuzzy theory into FLP [12], LRP [13], and Vehicle 
Routing Problem [14]. Afsar et al. [15] proposed a multi-objective 
optimization model to solve the job shop scheduling problem with 
taking into account the uncertain times. More applications, in recent 
years, are summarized in Table 1. However, compared with the classical 
LRP and its extension, the relocation-routing problem is less 
investigated. 

2.4. Memetic algorithms 

On the basis of the genetic algorithm that simulates the biological 
evolution process, Moscato and Cotta [26] proposed a memetic algo-
rithm (MA) that simulates the cultural evolution process. MA is regarded 
as one of the most powerful population-based evolutionary algorithms, 
and a comprehensive survey of MA was conducted by Chen et al. [27], 
Neri and Cotta [28], Krasnogor and Smith [29]. 

Some early results about MA for routing problems are reported by 
Prins and Bouchenoua [30]. Labadi et al. [31] made the earliest attempt 
to design MA for solving the vehicle routing problem and time window. 
The main structure of MA is composed of the basic genetic algorithm and 
the local search operators, which provides a learning strategy for an 
individual in the genetic algorithm. Experimental results on the 56 
classical benchmark instances [32] demonstrated that the designed MA 
is efficient. Ngueveu et al. [33] proposed a MA for solving the classical 
cumulative capacitated vehicle routing problem (CCVRP), which 
considered minimizing the sum of the arrival time at customers. This 
work presented the lower bound and upper bound of the CCVRP. Spe-
cifically, the upper bound was obtained by the proposed MA. Nagata 
et al. [34] investigated the solving approach of VRPTW by introducing a 
new MA, which is composed of a new operator: existing edge assembly 
crossover. Additionally, they proposed a novel penalty-based function to 
eliminate capacity and time windows violations. The intensive experi-
mental results demonstrated that their algorithm could reach remark-
able results compared with the published results. Mendoza et al. [35] 
proposed the results for solving the vehicle routing problem with sto-
chastic demand. 

Wang et al. [36] studied the multi-objective periodic VRPTW by 
proposing a MA. Meanwhile, Wang and Lu [37] investigated a MA for 
solving the competition for a green CVRP. García-Ródenas et al. [38] 
integrated MA and gravitational search algorithm to train the feedfor-
ward neural networks, and simulation results showed that the proposed 
framework works well. 

Many researchers regarded MAs as hybrid genetic algorithms or 
genetic local search. In fact, MAs provide a framework or a concept. 
Under this framework, different search strategies are used. Dengiz et al. 
[39] investigated the communication network topologies optimization 
problem by designing a hybrid genetic algorithm and local search with 
specialized encoding and initialization. Asadzadeh [40] implemented a 
local search genetic algorithm to solve the job shop scheduling problem 
with agents. 

Compared with the analysis above, we conclude the following two 
points. 

Table 1 
Recent research related to fuzzy variables and optimization.  

Authors Studied problem Solving approach 

Cao and Lai [16] Open vehicle routing problem Differential Evolution 
Zarandi et al.  

[17] 
Capacitated Location-routing 
problem 

Simulated Annealing 

Sadeghi et al.  
[18] 

Hybrid vendor-managed 
inventory and transportation 
problem 

PSO 

Sarkar and 
Mahapatra  
[19] 

Fuzzy inventory model Heuristic algorithm 

Berrichi et al.  
[20] 

Joint Integration of Production 
Schedule and Maintenance 
Planning 

Multi-objective GA 

Bahri et al. [21] Multi-objective VRP Scalable algorithms 
Sun et al. [22] flexible job shop scheduling hybrid cooperative co- 

evolution algorithm 
Sun [23] Road–Rail intermodal routing 

problem 
branch-and-bound 
algorithm 

Gupta et al. [24] green vehicle routing problem discrete fuzzy-hybridised 
GA 

Li et al. [25] flexible job shop scheduling Self-adaptive multi- 
objective evolutionary 
algorithm  
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Swarm and Evolutionary Computation 74 (2022) 101129

4

• (1) Despite the abundant studies about LRP, the current works are 
aimed at helping companies plan a completely new logistics layout. 
In developing countries, such as China, many companies are facing 
business expansion. This means that the most primitive logistics 
layout cannot meet the growing development needs. Therefore, it is 
necessary to optimize further and add new logistics facilities on the 
basis of the original logistics facility layout to keep the entire logis-
tics system in an optimal state. Therefore, this research is an essential 
reference value for making up for the existing deficiencies and 
providing logistics decision-making for developing enterprises.  

• (2) Despite the abundant investigations considering uncertainties in 
their models, few of them considers the fuzzy variables and sto-
chastic variables simultaneously. This work derives the formulations 
of AGS under fuzzy chance constrained programming, and designs a 
reasonable chromosome structure. Then the complex constraints are 
incorporated into the MA to obtain an approximate optimal solution 
of the problem. 

To sum up, our work formulates an relocation-routing problem with 
considering fuzzy AGS and stochastic travel time, then MA based heu-
ristic is developed to solve this issue. Finally, experimental results show 
the advantage of viewing the uncertainties when modeling the problem. 

3. Problem formulation 

This section gives details about the mathematical formulation of the 
studied problem. The description of fuzzy AGS is given in Section 3.1, 
then the assumption and the fuzzy chance programming are presented in 
Section 3.2. Finally, the important constraints related to fuzzy demand 
and stochastic travel time are clarified in Sections 3.3 and 3.4, 
respectively. 

3.1. Fuzzy AGS 

In this section, the theory of fuzzy credibility [41] is employed to 
describe the uncertain variables of AGS. Let us consider the triangle 
fuzzy variable d̃i = (di,1, di,2, di,3) as the AGS of a given GGS i, the 
detailed introduction about d̃i is shown in the supplementary material. 
Let r be a deterministic parameter. Let Cr(⋅) be the credibility operator, 
we can derive the formulation (1) to calculate the chance that the event 

d̃ ≥ r happens [3,41]. 

Cr{d̃ ≥ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ d1;

2d2 − d1 − r
2(d2 − d1)

, if d1 ≤ r ≤ d2;

d3 − r
2(d3 − d2)

, if d2 ≤ r ≤ d3

0, if r ≥ d3;

(1)  

3.2. Assumptions and model 

The assumptions of the model are itemized as follows.  

• The vehicles are homogeneous, i.e., each vehicle has an identical 
maximum speed, loading capacity, and empty vehicle weight.  

• Each vehicle starts from the STP.  
• Each vehicle cannot be used more than once.  
• The AGS of each GGS i is a triangle fuzzy variable which can be 

described as d̃i = (d1,i,d2,i,d3,i).  
• The transportation cost between ith GGS and jth GGS is cij.  
• Each driver carries out one route in the process of loading sewage; in 

case that remaining capacity is not sufficient for the next GGS, he/ 
she must return to the STP, and unload all the sewage of vehicle, then 
continues serving the remaining GGSs on the road (task list). 

The studied problem in our work defined on a complete, weighted 
and undirected network (N0,E,C). The detailed notations are explained 
in Table 2. 

Decision variables are described as follows. 

xijk =

{
1 if the kth vehicle travels from GGS i to GGS j,∀i, j∈N0;

0 otherwise.

yn =

{
1 if the nth candiate is selected to build the STP, ∀n∈ F;
0 otherwise.

zin =

{
1 if the nth GGS is assigned to STP n, ∀i ∈ F,∀n ∈ N;

0 otherwise.

minz =
∑

k∈K

∑

i∈N0

∑

j∈N0

cijxijk +
∑

n∈F
CFnyn +

∑

i∈F

∑

j∈N

∑

k∈K
CVkxijk + AC (2)  

subject to 
∑

k∈K

∑

j∈N0

xijk = 1, ∀i ∈ N (3)  

Cr

(
∑

j∈N

∑

i∈N0

d̃jxijk − VCk ≤ 0

)

≥ DPI,∀k ∈ K (4)  

∑

j∈N0

xijk −
∑

j∈N0

xjik = 0, ∀i ∈ N, k ∈ K; (5)  

∑

i∈F

∑

j∈N
xijk ≤ 1, ∀k ∈ K; (6)  

∑

i∈S

∑

j∈S
xijk ≤ |S| − 1, ∀S ⊆ N, k ∈ K (7)  

∑

u∈N
xiuk +

∑

u∈N,u∕=j

xujk ≤ 1 + zij, ∀i ∈ N, j ∈ N, k ∈ K; (8)  

Cr

(
∑

j∈N
djzij − SCiyi ≤ 0

)

≥ API,∀i ∈ F. (9)  

P

(
∑

i∈N0

∑

j∈N0

tξ
ijk ≤ B

)

≥ α (10)  

Table 2 
Notations in the mathematical model.  

Notations Descriptions 

OS set of the original existing STP. 
N set of GGS; 
CS the set of candidates of STPs. 
F = OS ∪ CS set of STP. 
N0 = F ∪ N set of all the vertices, including STPs and GGSs; 
K set of the vehicles. 
vij average driving speed during GGSs i and j 
w the price for a unit distance. 
C = (i, j) : i, j ∈

N 
transportation cost matrix, and each element ci,j = w ∗ tξ

ijkvij 

CFi fixed cost of STP i 
CVk fixed cost of vehicle k 
SCi capacity of STP i 
VCk capacity of vehicle k; 
d̃i = [di1,di2,

di,3]

fuzzy AGS of GGS i 

TLi loading time for the sewage at GGS i 
DPI dispatcher preference index 
API assignment preference index 
tξ
ijk 

travel time on arc (i, j) in route k in the scenario ξ 

AC additional cost generated by the failure route in an uncertain 
environment 

PC planned cost for a specific solution in an uncertain environment 
TC total cost for a given solution in an uncertain environment  
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yi = 1; ∀i ∈ OS; (11)  

xijk ∈ {0, 1}, ∀i ∈ N, j ∈ N, k ∈ K; (12)  

yi ∈ {0, 1}, ∀i ∈ F; (13)  

zij ∈ {0, 1}, ∀i ∈ F, j ∈ N; (14) 

The objective function (2) aims to minimize all the costs, including 
transportation cost, the fixed cost of the vehicles and STPs, as well as the 
additional cost of AC caused by failure route in the fuzzy environment. 
Here we should emphasize that the approach of calculating AC can be 

Fig. 2. The main procedures for generating initial solutions.  

Fig. 3. Chromosome design.  
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obtained by Algorithm 3, which will be described later. The constraints 
(3) ensure that each GGS belongs to one and only one route and that 
each GGS has only one predecessor in the circuit. Capacity constraints 
with fuzzy variables of vehicles and STP are satisfied by inequalities (4) 
and (9) respectively. The constraints (5) and (6) ensure the continuity of 
each route and the return to the original STP. Constraints (7) are the sub- 
tours elimination constraints. Constraints (8) specify that a client can be 
assigned to a repository only if a route linking them is open. Typically, 

(10) describes the constraints of stochastic travel time, which is adapted 
from Zhang et al. [42]. Finally, the constraints (11)–(13) state the binary 
nature of the decision variables. 

As described above, constraints (4), (9), and (10) belong to the 
chance-constraints, which could not be applied to the solving approach 
directly. So, in the following two sections, we will transfer these con-
straints to the crisp equations [41]. 

Fig. 4. Example of chromosome encoding .  

Fig. 5. The assignment of STPs and GGSs.  

Fig. 6. The visiting order for each GGS.  
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3.3. Description of fuzzy chance constraints 

In the deterministic model, it is straightforward to describe the ca-
pacity constraints: the total AGS of the whole route should not exceed 
the vehicle capacity. However, in the RLRPFSSTT, the capacity con-
straints become more complex than the deterministic ones. Now, we 
have to consider the relationship between the fuzzy AGS and the ca-
pacity of the vehicles [43]. 

Indeed, in the planning stage, after serving the jth GGS, the 
remaining capacity (RC) also becomes a fuzzy variable named R̃Cj, 
where 

R̃Cj = VC −
∑j

i=1
d̃i =

(

VC −
∑j

i=1
d3,i, q −

∑j

i=1
d2,i,VC −

∑j

i=1
d1,i

)

=
(
RC1,j,RC2,j,RC3,j

)
.

In the deterministic model, if the remaining capacity of the vehicle is 
higher than the GGS’s AGS, this vehicle has the full chance to serve this 
GGS. However, when dealing with a fuzzy variable of AGS and 
remaining capacity, how can we decide whether the vehicle should 
continue visiting the (j + 1)th GGS or go to the STP directly? Fuzzy 
credibility theory plays a crucial role to measure the relationship be-
tween the AGS of (j + 1)th GGS and RC, which can be calculated by Eqs. 
(15) and (16). 

Cr=Cr{d̃j+1 ≤ R̃Cj} = Cr{
(
d1,j+1 − RC3,j, d2,j+1 − RC2,k, d3,k+1 − RC1,j

)
≤ 0
}

(15)  

Cr=Cr
{

d̃j+1 ≤ R̃Cj
}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, d1,j+1 ≥RC3,j

RC3,j − d1,j+1

2
(
RC3,j − d1,j+1+d2,j+1 − RC2,j

), d1,j+1 ≤RC3,j,d2,j+1 ≥RC2,j

d3,j+1 − RC1,j − 2
(
d2,j+1 − RC2,j

)

2
(
RC2,j − d2,j+1+d3,j+1 − RC1,j

), d2,j+1 ≤p2,j,d3,j+1 ≥RC1,j

1 d3,j+1 ≤RC1,j

(16)  

According to our common sense, if RC is very high, and AGS of the next 
GGS is very low, the next GGS’s in this route tends to have more chance 
to get the service from the current vehicle. (16) shows the credibility 
Cr ∈[0, 1] to measure the event that RC is greater than AGS of next GGS 
on the current route. When Cr = 0, we declare that the vehicle does not 
have enough RC to serve the next GGS and it should terminate service at 
the current GGS and return to the STP to unload sewage. When Cr = 1, 
we can be completely sure that the vehicle should serve the next GGS 
due to enough RC. However, the difficulty is that, in most cases, Cr is 
neither 0 nor 1, but Cr ∈ (0, 1). Dispatchers must make a trade-off be-
tween risk and cost according to their working experience. 

To describe the trade-off, let us introduce the dispatcher preference 
index DPI, where DPI ∈ [0, 1]. Note that DPI expresses the dispatcher’s 
attitude toward risk. When the dispatcher is not a risk-averse, he/she 
will choose lower values of parameter DPI. This scenario indicates that 
the dispatcher prefers to make full use of the available vehicle capacity, 
although there is an increase in the number of situations, in which the 
vehicle arrives at the next GGS and is not able to carry out planned 
service due to small RC. On the other hand, when the dispatcher is a risk- 
averse, he will choose greater DPI, this may result in less complete uti-
lization of vehicle capacity along the planned routes and less additional 
distance to cover due to failures [43]. 

Similarity, in constraints (9), if the STP’s RC for serving GGSs is high 
and the AGS at the next GGS is low, then the STP’s chance of loading the 
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next GGS becomes greater. Here we rename a parameter Assignment 
Preference Index (API) to describe the risk. Here to guarantee the pro-
duction, we order API = 1, which means the capacity of STP should be 
satisfied even if all the AGS are very high. 

3.4. Transformation of fuzzy chance constraints 

Theorem 2. Based on the crisp equivalent and Theorem 1 (please refer to 
Theorem 1 in the supplementary material), we transfer the fuzzy chance 
constraint to the crisp equivalent.   

Proof. According the Theorem 1, let ξk = dk, hk(x) = yik, yik ∈ Binary;
so, we can get h†

k(x) = hk(x) ∨ 0 = hk(x) = yij, h−
k (x) = − hk(x) ∨ 0 =

hk(x) = 0, and finally we derive it to the Theorem 2.□ 

Theorem 3. Based on the crisp equivalent and Theorem 1 (in the appen-
dix), we can transfer the fuzzy chance constraint of capacity of STP to the 
crisp equivalent. 
⎧
⎪⎨

⎪⎩

(1 − 2∗API)
∑

j∈N
dj,1zij +2∗API ∗

∑

j∈N
dj,2zij − SCiyi ≤ 0; 1/2≤DPI ≤ 1

(2 − 2∗API)
∑

j∈N
dj,2zij +(2∗API − 1)

∑

j∈N
dj,3zij − SCiyi ≤ 0; 0≤API ≤ 1/2

(18)   

Proof. The process of the proof is similar with Theorem 2.□ 

The constrains (4) and (9) can be replaced by formulations (17) and 
(18) 

3.5. Uncertainty of travel time 

As mentioned before, the travel time on each arc is assumed to be 
independent and to satisfy to the normal distribution indicated by N(tijk,
σijk), where vijk is the average speed of the of vehicle k on arc (i,j), and σijk 

is the corresponding standard deviation [42]. 
The left part of the chance constraint (10) of the travel time for each 

vehicle k can be written as follows. 

Fig. 7. Partially mapped crossover of MA: An example.  

Fig. 8. An example of reverse mutation on segment 2 of the chromosome .  

⎧
⎪⎨

⎪⎩

(1 − 2 ∗ DPI)
∑

j∈N

∑

i∈N0

dj,1xijk + 2 ∗ DPI ∗
∑

j∈N

∑

i∈N0

dj,2xijk − VCk ≤ 0; 1/2 ≤ DPI ≤ 1

(2 − 2 ∗ DPI)
∑

j∈N

∑

i∈N0

dj,2xijk + (2 ∗ DPI − 1)
∑

j∈N

∑

i∈N0

dj,3xijk − VCk ≤ 0; 0 ≤ DPI ≤ 1/2
(17)   
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∑

i∈N0

∑

j∈N0

tξ
ijkxijk − Bk ∼ N

(
∑

i∈N0

∑

j∈N0

(cij

/

wvijk +TLi

)

xijk − Bk,
∑

i∈N0

∑

j∈N0

σ2
ijkx2

ijk)

(19)  

P

⎛

⎜
⎝η ≤ −

∑
i∈N0

∑
j∈N0

(
cij
/

wvijk + TLi
)
xijk − Bk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i∈N0

∑
j∈N0

σ2
ijkx2

ijk

√

⎞

⎟
⎠ ≥ α (20) 

We can rewrite this formulation into the following one. 

ϕ− 1(α) ≤ −

∑
i∈N0

∑
j∈N0

(
cij
/

wvijk + TLi
)
xijk − Bk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i∈N0

∑
j∈N0

σ2
ijkx2

ijk

√ (21)  

4. Memetic algorithm 

The problem considered in this study is a combination of facility 
relocation problem and vehicle routing problem. Therefore, the issue is 
more complicated, and it is an NP-hard problem. Exact methods, such as 
branch and price, cannot obtain the optimal solution in an acceptable 

time, especially for massive case problems. Therefore, we consider the 
meta-heuristic algorithm to solve our problem. MA is one of the most 
efficient population-based algorithm since it combines with both 
intensification and diversification strategy, which has been used to solve 
many combinatorial problems [44]. In this study, the main idea of the 
memetic algorithm is the hybridization of a genetic algorithm with a 
local search operator. 

4.1. Population initialization 

As an individual is a solution, a population in an arbitrary generation 
is a set of solutions. Maintaining the diversity of the population is a very 
significant criterion to the convergence of MA. In this study, to avoid the 
premature convergence of MA, two different population initialization 
algorithms, including greedy algorithms and random algorithms are 
proposed. If the entire population is initialized by the same greedy al-
gorithm, it will lead to the population containing similar solutions and 
very low diversity. 

The initial solution is generated by three steps, which are shown in 

Fig. 9. the procedures of each local search operator .  
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Fig. 2(a)–(d). The original map is displayed in Fig. 2(a). 
Firstly, a random seed is selected, and then inserted to the current 

route by selecting the nearest GGS. Once the newly inserted GGS (for 
example, i) exceeds the capacity of the current route, i will be used as a 
new seed to construct a new route. The insertion will be continuously 
performed until all the GGS are inserted into the route. Each route can be 
thought of as a cluster. 

Secondly, for each route, the arithmetic mean of the route center 
(also called the class center) is obtained by calculating the arithmetic 
mean of the coordinates. 

Finally, the open warehouse is allocated according to the distance 
between the center of the route and the distance between the STPs and 
the capacity of the STPs. Specifically, this step can be divided into two 
strategies. 

Strategy (1), randomly select a route as a seed, pick the nearest STP, 
then assign the closest routes to the STP until the STP capacity is 
exceeded. The strategy uses the route as the seed to choose to open the 
nearest STP and then allocates the adjacent route to the STP in turn until 
all the routes are allocated. 

Strategy (2) tends to open up STPs with large capacity and then al-
locates routes according to the nearest neighbor principle. This strategy 
will allow reducing the number of open STPs. 

4.2. Chromosome design 

The proper representation for a chromosome which should satisfy 
three principles: non-redundancy, soundness and completeness, plays a 
significant role in the development of MA. In this study, inspired from 
the work of Zhao et al. [45], a solution includes three parts: (1) opened 
STPs; (2) vehicles assigned to each opened STP and (3) the route in-
formation for each vehicle. Hence, we divide the chromosome into three 
segments and the chromosome design shows in Fig. 3. Now suppose that 
there are m gas gathering stations, an opened sewage treatment plant 
and n-1 candidate STPs to construct sewage treatment plant, respec-
tively. Assume that we now have k homogeneous vehicles. In Fig. 3, the 
first segment represents the GGS information and each bit corresponds 
to a GGS. The value in each bit of the first segment represents a specified 
vehicle serviced to the gas gathering station. 

The second segment represents the sequence of GGS. The last 
segment represents the information of vehicles assigned to STPs. The 
value in each bit in the last segment represents the STP that the vehicle 
serviced. Considering the particularity of the model in this study: that 
point O must be selected, and at least one vehicle and one GGS are 
served by the STP. In this paper, we design a reasonable chromosome 
structure. 

In order to describe the decoding process in more detail [45], a 
specific and small size example is given, assuming that m = 15, n = 3, 
and k = 4, which is shown in Fig. 4. 

Fig. 5 shows the GGSs serviced by each vehicle, which can be derived 
from the segment 1 of Fig. 4. 

By using the information from Fig. 5, we can derive the values of 
indexes shown in segment 2 of Fig. 4. Finally, we can obtain the routes of 
each vehicle by using the genes and index information in segment 2. The 
final vehicle routes are shown in Fig. 6. 

In this study, the solution is represented with a list that contains the 
information about routes and STPs. Encoding is the process of convert-
ing a solution into a chromosome. The main procedures of the encoding 
process are shown in Algorithm 1. 

As an inverse process, decoding is the process of converting a chro-
mosome into a solution. The pseudo of decoding is shown in Algorithm 
2. 

4.3. Fitness evaluation 

The goal of this study is to minimize the total costs. Hence, the fitness 
function takes the reciprocal of the objective function.When the 
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chromosome violates any of the constraints in the model, the objective 
function adds a large enough value M; otherwise, the objective function 
remains unchanged. In the continuous iterative process, by reducing the 
value of the fitness function, the individual who violates the constraint 
condition and the probability of inheriting it to the next generation is 
significantly reduced, thereby continuously increasing the number of 
feasible solutions in the population. The detailed steps of stochastic 
simulation [43] are described in Algorithm 3. 

4.4. Main operators 

Selection In this study, we mainly consider the elite retention strategy 
and the roulette method, which are also adopted by Podlena and 
Hendtlass [46]. First, the elite retention strategy is applied, the in-
dividuals with the highest fitness do not participate in the cross mutation 

and directly pass to the next generation. Then the remainder of the 
populations will be applied parents selection operation by using the 
roulette wheel method. 

Crossover Crossover operation is a significant operation in MA to 
generate new gene information. Due to the special structure of chro-
mosome which shows in Fig. 3, we apply different crossover operation 
methods for each segment of the chromosome. The encoding method of 
segment 1 and segment 3 are similar; hence they can apply the same 
crossover operation. The two-point intersections and the partially 
mapped crossover are adopted for segment 1, 3 and segment 2, 
respectively [47]. 

The two-point intersection is widespread and popular crossover 
operation used in the evolutionary algorithms. Here we omit the ex-
planations of the two-point intersection. Detailed information about 
two-point intersection can be found in Fu [48]. 

The partially mapped crossover consists of four steps including sub- 
string selection, sub-string exchange, mapping list determination and 
offspring legalization. Here we give an example to illustrate the four 
steps of partially mapped crossover operation. Fig. 7(a) shows the 
chromosomes of two parents. First two sub-strings are randomly 
selected (Fig. 7(b)). Then, the two sub-strings are exchanged (Fig. 7(c)). 
According to the mapping relationship between the gene of two off-
springs, two mapping lists are determined as shown in Fig. 7(d). Finally, 
the chromosomes of two offspring are legalized with the mapping 
relationship (Fig. 7(e)). 

Mutation Mutation strategy plays a significant role in enhancing the 
global searching ability and getting rid of local optimal. In this study, 
two different mutation operation strategies, including swap mutation 
and reverse mutation, are adopted for segments 1, 3, and segment 2 of 
the chromosome, respectively. In swap mutation, first, two positions on 
segments 1 and 3 of the chromosome are randomly selected, respec-
tively. Then the values on segments 1 and 3 of the chromosome are inter- 
exchanged. Fig. 8 shows an example of a reverse mutation in segment 2 
of the chromosome, which helps us understand how we can generate an 
offspring. First, we select genes randomly in the parent. The randomly 
selection of subset genes is shown in Figure8 (a). Then we invert the 
entire genes in the subset, and the offspring is shown in Fig. 8(b). 

Local search As discussed by Decerle et al. [49], the local search 
strategies could be regarded as a learning stage for improving an indi-
vidual. The local search operator aims to find a local optimal solution on 
the basis of the current individual, and it plays an essential role in 
improving individuals and boosting convergence in MA. In this section, 
considering the structure of the solution, we have designed six opera-
tors, which have comprehensive considerations in the searching space. 

Fig. 10. Conceptual framework of the proposed MA.  

Table 3 
Parameters for our model and experiments.  

Algorithm Parameters Values 

Mathematical 
Model 

w: the average price for each unit distance 1 
vijk : the average traveling speed during arc 
(i, j)

30 unit/min 

Bk : the due time for each vehicle k 480 min 
TLi: the loading time in GGS i 30 min 
d̃i: the fuzzy AGS of GGS i (represented by 
the nominal AGS di) 

[0.8di,di,1.2di]

α: the confidential value in stochastic travel 
time constraint 

0.8 

σijk : the stand deviation of travel time 
between arc i, j in vehicle k 

0.2 ∗ tijk 

Memetic 
Algorithm 

popsize: the number of individuals in the 
population. 

50 

maxgen: the max iteration of the MA. 50× size of the 
instance. 

rand ratio: the percentage of the randomly 
generated individuals in the initial 
population. 

90% 

pe: the percentage of elite in the current 
population taht will be kept in the offspring. 

0.05 

pc: the percentage of individuals selected to 
take part in crossover. 

0.8  

pm: the percentage of individuals selected to 
take part in mutation. 

0.07  

pl: the percentage of individuals selected to 
take part in local search. 

1 

stochastic 
Simulation 

M: the times for stochastic simulation 500  
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Table 4 
Comparison with the LRP benchmarks.  

instance ID LB GRASP MA   

Cost nb_depot nb_vehicle cd cr Obj nb_depot nb_vehicle cd cr computing time (s) gap1 (MA VS LB) gap2 (MA VS GRASP) 

20-5-1a 54,793 55,131 3 5 25,549 29,582 54,793 3 5 25,549 29,244 8.181 0.00% − 0.61% 
20-5-1b 39,104 39,104 2 3 15,497 23,607 39,104 2 3 15,497 23,607 7.046 0.00% 0.00% 
20-5-2a 48,908 48,908 3 5 24,196 24,712 48,908 3 5 24,196 24,712 6.424 0.00% 0.00% 
20-5-2b 37,542 37,542 2 3 13,911 23,631 37,542 2 3 13,911 24,951 5.832 0.00% 0.00% 
50-5-1 87109.64 90,160 3 12 25,442 64,718 90,111 3 12 25,442 64,669 64.019 3.45% − 0.05% 
50-5-1b 61595.22 63,256 2 6 15,385 47,871 65,461 2 6 15,385 50,076 46.043 6.28% 3.49% 
50-5-2 86055.01 88,715 3 12 29,319 59,396 90,495 3 12 32,714 57,781 58.898 5.16% 2.01% 
50-5-2b 65787.75 67,698 3 6 29,319 38,379 70,334 3 6 32,714 37,620 42.924 6.91% 3.89% 
50-5-2bis 83,439 84,181 3 12 19,785 64,396 84,423 3 12 19,785 64,638 59.35 1.18% 0.29% 
50-5-2bbis 51,822 51,992 3 6 18,763 33,229 52,105 3 6 18,763 33,342 40.481 0.55% 0.22% 
50-5-3 84075.08 86,203 2 12 18,961 67,242 86,203 2 12 18,961 67,242 69.867 2.53% 0.00% 
50-5-3b 61607.4 61,830 2 6 18,961 42,869 63,096 2 6 10,711 52,385 40.332 2.42% 2.05% 
100-5-1 272082.37 277,935 3 24 132,890 145,045 283,840 3 24 132,890 150,950 333.635 4.32% 2.12% 
100-5-1b 207037.38 214,885 3 11 132,890 81,995 222,271 3 11 132,890 89,381 169.215 7.36% 3.44% 
100-5-2 186916.59 196,545 2 24 102,246 94,299 198,113 2 25 102,246 95,867 445.558 5.99% 0.80% 
100-5-2b 153827.05 157,792 2 11 102,246 55,546 164,618 2 12 102,246 62,372 173.035 7.01% 4.33% 
100-5-3 194202.03 201,952 2 24 88,287 113,665 204,375 2 25 88,287 116,088 417.571 5.24% 1.20% 
100-5-3b 149985.58 154,709 2 12 88,287 66,422 163,908 2 11 88,287 75,621 174.676 9.28% 5.95% 
100-10-1 258242.64 291,887 3 26 154,942 136,945 321,836 4 25 196,308 125,528 307.649 24.63% 10.26% 
100-10-1b 218825.96 235,532 3 12 154,942 80,590 276,836 4 12 196,308 80,528 177.236 26.51% 17.54% 
100-10-2 226904.99 246,708 3 24 145,956 100,752 246,579 3 24 145,956 100,623 314.529 8.67% − 0.05% 
100-10-2b 194627.72 204,435 3 11 145,956 58,479 217,366 3 12 149,940 67,426 169.91 11.68% 6.33% 
100-10-3 222353.23 258,656 3 25 139,411 119,245 256,629 3 24 139,411 117,218 326.805 15.42% − 0.78% 
100-10-3b 189308.5 205,883 3 11 139,411 66,472 210,757 3 11 139,411 71,346 169.555  2.37% 
200-10-1 – 481,676 3 47 253,840 227,836 497,001 3 48 253,840 243,161 1629.152 – 3.18% 
200-10-1b – 380,613 3 22 253,840 126,773 437,505 3 23 236,209 201,296 599.107 – 14.95% 
200-10-2 – 453,353 3 48 280,370 172,983 470,034 3 47 280,370 189,664 1339.867 – 3.68% 
200-10-2b – 377,351 3 23 280,370 96,981 392,187 3 23 280,370 111,817 624.029 – 3.93% 
200-10-3 – 476,684 3 47 272,528 204,156 485,869 3 46 234,660 251,209 1307.321 – 1.93% 
200-10-3b – 365,250 3 22 234,660 130,590 391,085 3 22 234,660 156,425 607.811 – 7.07% 

Note: nb_vehicle:number of vehicles; nb_depot:number of depots; cd: cost of depots; cr: cost of routes. 
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The introduction of the operators is described as follows, and they are 
depicted in Fig. 9.  

(op1) intra-route- swap: two GGSs are randomly selected, and their 
positions are swapped.  

(op2) intra-route-reverse: two GGSs are randomly selected, then all the 
arcs along the two vertices are reversed.  

(op3) inter-route-opt: two GGSs in different routes are selected, then 
their places are swapped.  

(op4) inter-route-insert: a GGS, and also a route excluding this GGS are 
randomly selected, then the GGS is inserted to the best position of 
the selected route.  

(op5) inter-STP-opt: two STPs are randomly chosen, then the two STPs 
are swapped.  

(op6) inter-STP-insert: one STP is selected, and another un-enabled STP 
replaces the current STP. 

Generally, the six operators could be divided into three categories, 
namely (op1) and (op2) can be viewed as the improvement of a single 
route, while (op3) and (op4) are regarded to optimize the assignment of 
GGSs and vehicles. Finally, (op5) and (op6) are performed at the loca-
tion stage. What should be highlighted here is that, in the local search, 

(op4) can help reduce the number of used vehicles and reduce the 
number of opened STPs. 

As presented above, each operator has a different role in exploring 
the solution space and finding a new solution. Considering that per-
forming all the operators for a single individual in one generation may 
be time-consuming, we choose to perform one operator in one genera-
tion each time. All the operators are selected randomly but with the 
same probability and the pseudo is shown in Algorithm 4. We find that 
the complexity of the local search algorithm is O(n2). 

4.5. Framework of the proposed MA 

We summarize the conceptual framework of the proposed MA as 
follows.  

Step (1): Initialize the population with three greedy methods and 
random method, then evaluate all the individuals.  

Step (2): Move the elitist individuals to the next generation.  
Step (3): Apply parents selection and crossover operation to generate 

new offsprings. 
Step (4): Do mutation operation for all the individuals with the muta-

tion probability. 

Table 5 
Average simulation results with different DPI values for the instance named URLRP020-5-1.  

Instance ID DPI TC AC nb_depot nb_vehicle cd cr(PC) Total routes computing time (s) 

URLRP20-5-1 0.0 90276.54 13,335.96 4 4 31,999 45,281 58,616.96 53.814 
0.1 89324.64 7,098.90 3 5 25,908 56,836 63,934.90 119.332 
0.2 81639.52 2,219.12 3 5 25,908 53,748 55,967.12 171.336 
0.3 81894.56 3,553.00 3 5 25,908 53,149 56,702.00 221.147 
0.4 77509.64 542.46 3 5 25,908 51,240 51,782.46 274.729 
0.5 74573.56 250.48 3 5 25,908 48,633 48,883.48 326.732 
0.6 78037.76 443.44 3 5 25,908 52,036 52,479.44 377.438 
0.7 85,681 0.00 3 6 25,908 59,773 59,773.00 439.714 
0.8 79,433 0.00 3 6 25,908 53,525 53,525.00 545.937 
0.9 81,515 0.00 3 6 25,908 55,607 55,607.00 667.707 
1.0 79,497 0.00 3 7 25,908 53,589 53,589.00 766.437 

Note: nb_vehicle:number of vehicles; nb_depot:number of depots (STPs); cd: cost of depots (STPs); cr: cost of routes; TC: total cost; AC: additional cost; PC: planned cost. 

Fig. 11. The costs change tendencies with different DPI values .  

Fig. 12. Evaluating procedures of each solution in an uncertain environment.  
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Step (5): Apply local search to the newly generated offsprings.  
Step (6): Calculate the fitness value for all the individuals. 
Step (7): If the stop conditions are met, return the best solution other-

wise go to Step (2). 

Fig. 10 shows the conceptual framework of the proposed MA. 

5. Experimental results 

In the above sections, we have formulated a model named 
RLRPFSSTT and proposed a memetic algorithm based heuristic to solve 
the problem. This section mainly reports and analyzes some of the 
experimental results. As mentioned, the RLRPFSSTT is not only a feature 
of combinatorial optimization, but also belongs to uncertain optimiza-
tion. So, the classical commercial solvers like CPLEX, or GUROBI could 
not solve the model directly. 

To validate the proposed models and algorithms, we have performed 
several series of experiments. In this section, firstly, the newly developed 
instances are presented in Section 5.1, then Section 5.2 reports the 
experimental results for the reduced model. Thirdly, the detailed ex-
periments and analysis of the uncertain model are presented in section 
6.3, in which the sensitivity analysis of parameters are also performed to 
guide the policymakers. 

5.1. Introduction to the instances 

To the best of our knowledge, no standard benchmark instances in 
the literature are completely suitable for our problem. We generate in-
stances for our problem based on the benchmark instances provided by 
Prins et al. [9]. The instances generated by Prins et al. [9] are grouped 
into a few groups according to their scale of customers and depots. Each 
category has its own characteristic of depots and customers. For each 
instance, Prins et al. [9] has defined coordinates of the location, de-
mand, the value of capacity, and fixed cost. 

In our studied problem, there is an analogy with the instances 
developed by Prins et al. [9]. Each STP corresponds to one depot, and 
every GGS is equivalent to a customer. We make no changes to the 
customers’ locations, AGS, and capacity in Prins et al. [9]’s original 
instances, but we have introduced the following changes to the original 
data to adapt it to our problem. Firstly, we assume that the first GGS is 
the original built, and others are new location candidates waiting to be 
selected. Secondly, we consider a uniform speed between arcs. Thirdly, 
we have added a new parameter DPI to make the trade-off between the 
risk and full utilization of the vehicles and STPs. To distinguish the 
difference between our instances and classical instances of Prins et al. 
[9], we name our instances as “URLRP-a-b-X,” in which a is the number 
of GGS, while b is the number of STP, and X is the specific name of this 
instance. All the codes are implemented by java in the ubuntu 18.04 
system on the laptop with Intel®Core™ i7 Processors and 2.4 GHZ. 

The main parameters used in the proposed algorithms and model are 
listed in Table 3. The tuning of the parameters are obtained by the 
Design of Experiments[50]. 

5.2. Comparison with the published results 

Because the proposed model is entirely new, and no other researcher 
has solved these same instances, we could not compare the published 
works to validate our proposed heuristics. Our problem will be reduced 
to a classical LRP presented by Prins et al. [9] if we assume the following 
aspects. (1) The constraints of the fuzzy AGS and stochastic travel times 
become deterministic. (2) The original set if STP O is an empty set; STPs 
and GGSs are regarded as depots and customers, respectively. To vali-
date the efficiency of our algorithm, we first apply the MA to test the 
instance of Prins et al. [9]. 

Table 4 reports the results of MA and GRASP for solving the classical 
benchmarks. The first column shows the ID of the instance by indicating Ta
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the size. For example, 20-5-1 discloses that the number of customers is 
20, and the amount of given candidates for building depots is 5. The BKS 
column indicates the best solutions found so far. The LB column has 
missing values because it is difficult to seek a good lower bound in a 
limited time when the instances’ size becomes greater. We report our 
results in the final column with MA by comparing them with BKS and 
Prins et al. [9]. As shown in the last column, we find that for nine in-
stances, the GRASP approach gives better solutions; for two instances, 
we have the same solutions, and for the remaining instances, our 
approach is better. We have also made a full comparison with the recent 
results reported by Lopes et al. [51] and Peng et al. [52]. Please check 
the detail in the supplementary material. 

We would like to emphasize that this article’s primary purpose is not 
to develop the best algorithm to obtain a better algorithm than historical 
results. Instead, this article summarized a model from a practical 
problem, and the most exciting part is to develop an effective heuristic 
algorithm to solve the real-life application. The comparison with the 
published results is only used to illustrate the proposed MA is effective 
and acceptable. The proposed MA will be applied to solve the uncertain 
optimization problem in the next section. 

5.3. Results of the uncertain optimization results 

5.3.1. Sensitivity analysis 
As mentioned before, DPI is an essential parameter for helping 

decision-makers make a reasonable decision. However, the value of DPI 
is unknown in advance, and it is selected by empirical experiments, 
which can be regarded as sensitivity analysis of DPI value. As an 
example, we have chosen a instance named URLRP20-5-1. In this part, 
let the value of DPI vary within the interval [0, 1] with a step of 0.1, then 
record the simulation results of the best solutions. 

The simulation results for URLRP20-5-1 can be found in Table 5 and 
Fig. 11. These tables and figures show tendencies regarding the cost 
caused by the planned distances (PC), additional cost caused by the 
additional distances due to failures (AC), the cost for total distance (TC), 
and other indicators that vehicles covered as the dispatcher preference 
index varies. We observe that with the increase of the DPI value, the AC 
decreases, and there is no clear trend in the TC and PC. For instance 
URLRP20-5-1, the AC strictly decreases as DPI value increases from 0 to 
0.6. However, when DPI ∈ [0.7, 1], the AC becomes 0, and this means 
that there is no failure route. According to these results, we find that 0.8 
is the best DPI value to make the decision. 

As mentioned in Section 4.2, DPI expresses the dispatcher’s attitude 
toward risk. When the dispatcher is not risk-averse, he/she will choose 
lower values of parameter DPI. This scenario indicates that the 
dispatcher does not prefer risk-averse. When DPI is with a high value, 
the dispatcher prefers risk-averse, which would decrease the chance of 
generating additional cost due to the failure routes. The simulation re-
sults in Table 5 empirically prove this point. 

5.3.2. Comparison with deterministic AGS model 
As we have discussed, when the DPI value is low, the decision-maker 

subjectively desires to make full use of the vehicle, so the PC is minimal. 
In this situation, the chance that the vehicles may not meet the GGSs’ 
AGS increases, and the driver has to return to the STP to load more AGS. 
These failure routes bring more additional distances, leading to the 
delay of the service time. Higher values of DPI are characterized by 
lower vehicle capacity utilization along the planned routes and less AC 
due to fewer failures. 

To further compare with the deterministic AGS model, we have 
performed a Monte Carlo Simulation for each solution by assuming it 
under an uncertain environment. The procedures can be described by 
Fig. 12, and a detailed algorithm is given in Algorithm 3. Table 6 sum-
marizes the comparison results. 

Table 6 reports the simulation results of the solutions obtained by 
considering the fuzzy AGS and deterministic AGS model. We set the 

parameter DPI as 0.8, which is the best DPI value. In these scenarios, AC 
is equal to 0, which means there is no failure route. However, the so-
lutions obtained by deterministic AGS show a high AC, which discloses 
that, in this situation, these solutions tend to have more failure routes. 

Finally, when comparing the TC, the solution with considering fuzzy 
AGS is slightly more expensive than without considering fuzzy infor-
mation. The t-test is to use the t distribution theory to infer the proba-
bility of the difference, so as to compare whether the difference between 
two averages is significant. We carried out a t-test on the values of TC in 
the group named “deterministic model” and group called “fuzzy model”. 
We find that the t-value equals to 0.2455 (greater than 0.05, reject the 
hypothesis), which indicates that the values of TC has no significant 
different. 

Considering that robustness is one of the most critical issues in gas 
production, it is still acceptable to pay a slight additional cost. So, we 
may conclude that the relocation-routing model considering fuzzy AGS 
is more reasonable to help the policy-makers make reasonable decisions 
about relocation and vehicle routing problem. 

6. Conclusions 

Most of the previous studies found in the literature about gas-field 
logistics systems tend to study the location problem of the facility 
separately from the vehicle routing problem. Some gas production en-
terprises failed to predict their production in the early enough, and when 
the facility (such as STP) could not satisfy high scale of production, the 
policymakers intend to build some new facilities. The objective of this 
issue is to minimize the total cost, including fixed cost of the newly built 
facilities, logistics costs. This article, considering this scenario, proposed 
a fuzzy chance-constraint for a relocation-routing problem in the area of 
green production of gas. Fuzzy AGS and stochastic travel time were 
taking into account in this model. Given that the model has attributes of 
combinatorial optimization and uncertain programming, we developed 
a solving approach by integrating MA and Monte Carlo simulation. 

To validate the proposed approach, first, the model was reduced to 
the classical LRP. Then the comparison with Prins et al. [9] and Prins 
et al. [10] shows that MA is an effective and efficient algorithm for this 
study. Then MA was applied to solve the fuzzy chance constraints. The 
AC due to route failures was estimated by Monte Carlo simulation pro-
cedures for each planned route. Several different sizes of test instances 
are then generated, and the computational experiments showed that the 
dispatcher preference index greatly influenced the planned cost, addi-
tional cost, and total cost. Best DPI were obtained from empirically 
analysis by changing the DPI value with a step of 0.1 gradually. Finally, 
the comparison between the solutions obtained by the fuzzy AGS model 
and the deterministic AGS model validates the strength of considering 
fuzzy AGS. The best DPI obtained by our model and algorithm can help 
the decision-makers make a better decision when they trade off the cost 
and risk. 

The location-routing problem is a subject that has been widely 
studied in the manufacturing industries. But the current related research 
is aimed at helping companies plan a completely new logistics layout. In 
developing countries, many companies are facing business expansion. 
This means that the most primitive logistics layout cannot meet the 
growing development needs. Therefore, it is necessary to optimize 
further and add new logistics facilities on the basis of the original lo-
gistics facility layout to keep the entire logistics system in an optimal 
state. Therefore, this research is an essential reference value for making 
up for the existing deficiencies and providing logistics decision-making 
for developing enterprises. 

The limitation of this paper is that the model does not consider the 
dynamic changes [53] of AGS and carbon emission of the vehicles [54], 
which could be the main work of future research. On the other side, 
some senior techniques will also be nested into meta-heuristic to 
improve the efficiency of this solving approach. 
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