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An electrocardiogram (ECG) consists of complex P-QRS-T waves. Detecting long-term ECG
recordings is time-consuming and error-prone for cardiologists. Deep neural networks
(DNNs) can learn deep representations and empower automatic arrhythmia detection.
However, when applying DNNs in practice, they usually suffer from domain shift that exits
between the training data and testing data. Such shift can be caused by the high variability
contained in ECG signals between patients and internal-variability of heartbeats for same
patients, leading to degrading performance and impeding generalization of DNNs. To tackle
this problem, we propose an unsupervised semantic-aware adaptive feature fusion net-
work (USAFFN) to reduce such shift by alleviating the semantic distribution discrepancy
between the feature spaces of two domains. Furthermore, an ECG contains rich information
from different angles (beat, rhythm, and frequency levels), which is essential for arrhyth-
mia detection. Therefore, a multi-perspective adaptive feature fusion (MPAFF) module is
introduced to extract informative ECG representations. The experimental results show that
the detection performance of our approach is highly competitive with the upper bound of
alternative methods on the ARDB, and the generalization is confirmed on the INCART and
LTDB.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Arrhythmias refer to a large group of conditions in which there is abnormal activity or behavior in the heart [1]. Electro-
cardiograms (ECGs) are used routinely by medical personnel for the diagnoses of arrhythmias [1]. Current arrhythmia anal-
ysis typically adopts a beat-by-beat analysis strategy. The complex P-QRS-T waves and subtle changes of ECGs make it time-
consuming and error-prone for professional cardiologists to analyze long-term recordings. Therefore, it is necessary to
exploit automatic arrhythmia detection of beat-by-beat analysis based on machine learning strategy. However, the discrep-
ancies in waveforms and characteristics of ECGs among different subjects and subject groups pose a major challenge for reli-
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able automatic heartbeat detection [2]. Such discrepancies are determined by the specific physiological structure of each
individual heart.

A series of literature [2–7] on the inter-subject arrhythmia detection task have been proposed, mainly including patient-
independent methods, patient-specific methods and domain-adaptation methods. The patient-independent methods tend to
train a model with data frommultiple patients and then directly apply this model to detect arrhythmias for new individuals.
For example, Niu et al. [7] designed a convolution neural network utilizing data from multiple patients for heartbeat clas-
sification. Due to without adapting to the high inter-subject variability in ECG data, the patient-independent models gener-
ally perform poor generalization. In reality, therefore, it is difficult to apply these models to detect arrhythmias. From this, a
natural solution is to take the specificity of each new individual in ECG data into account for adapting the patient-
independent models, and thus, producing the patient-specific methods. Generally, the patient-specific methods tend to train
a specific model for each individual. For instance, Hu et al. [2] proposed a mixture-of-experts (MOE) approach for patient-
adaptable heartbeat classification. This work combined a global classifier and a subject-specific classifier, in which the global
classifier was trained with large labeled ECG signals from multiple subjects and the subject-specific classifier was trained
with several samples from the particular subject. However, two natural issues prevent the patient-specific methods from
being applied in practice. Firstly, labeling a certain amount of ECG samples with each subject for training is impossible in
reliable applications; Secondly, the parameters saved in the model increase linearly with increased numbers of patients.
Instead of taking the specificity of each individual into account for adapting, several researchers term the discrepancies
among ECG signals from inter-subject groups as domain shifts, and thus, they introduced domain-adaptation methods.
Domain adaptation seeks to deal with the problem where training data (i.e. source domain) and test data (i.e. target domain)
share a similar task but follow dissimilar distributions. Generally, in this setting, source domain contains labeled data and
target domain contains unlabeled data. The domain-adaptation methods make full use of existing sufficient annotated data
(source domain) to transfer valuable knowledge to unseen samples (target domain), thus bridging the gap between two
domains. For example, Chen et al. [4] adapt the established classifier from source domain to target domain with two
domain-regularizer loss functions. Niu et al. [5] proposed an unsupervised domain adaptation network to extract domain
invariant representations via adversarial training for arrhythmia detection. Nevertheless, this adversarial domain adaptation
method performs semantic-unawareness domain adaptation, thus negative transfer of knowledge may occur. In addition,
the above methods do not take into account the diversity of information contained in ECG signals, so the features learned
are not robust enough, resulting in poor performance.

Inspired by the above observations and considerations, an unsupervised semantic-aware adaptive feature fusion network
(USAFFN) is proposed for inter-subject arrhythmia detection. Its main motivation is shown in Fig. 1. In particular, Fig. 1(a)
presents the traditional adversarial domain adaptation framework, and it is dedicated to learn a shared feature space
between different domains. In this framework, different categories of samples from different domains are regarded as a glo-
bal feature space to align, but the semantic information contained in different categories of samples is ignored, resulting in
the mixture of the feature spaces of different domains. In order to make up for the shortcoming, a semantic-aware adver-
sarial domain adaptation framework is proposed, in which category information from different domains is integrated into
the adversarial domain adaptation process, as shown in Fig. 1(b). This operation is able to align the global feature spaces
of different domains and ensure the discriminability between the feature spaces of different categories. The experimental
results turn out that compared with the traditional adversarial domain adaptation approach, our scheme mitigates the neg-
ative transfer of representations and the representations have better discrimination. In particular, the framework of the
USAFFN is shown in Fig. 2. The USAFFN consists of a feature extractor, a domain discriminator, and a heartbeat classifier.
The feature extractor is used to extract features of samples from different domains; The domain discriminator is mainly used
to guide the feature extractor to realize a shared feature space of different domains alignment in the adversarial training pro-
cess. At the same time, the semantic information from different domains is integrated into the feature extractor to ensure the
discrimination between different feature spaces of categories; The heartbeat classifier is used to predict and output final
results of the model. In addition, to extract informative ECG representations, a multi-perspective adaptive feature fusion
(MPAFF) module is explored for the feature extractor. Its construction is inspired by the fact that ECGs carry rich information
from different angles, and the information also plays variant roles in arrhythmia detection. The framework of the MPAFF
module is shown in Fig. 3(b). It includes two sub-branches: the first sub-branch aims to extract multi-perspective features
by a multi-branch attention block, and the second is to adaptively learn weights of the extracted features, and then fuse
these weighted features together to obtain robust features.

The merits of this paper are summarized as follows:

� An unsupervised semantic-aware domain adaptation framework is developed for arrhythmia detection, and it is the first
time to take the idea of semantic-aware adversarial domain adaptation and multi-perspective adaptive feature fusion into
account for unsupervised domain adaptation. The experimental results show it achieves excellent performance.
� The USAFFN is proposed to alleviate semantic distribution discrepancies between the feature spaces of two domains, so as
to achieve excellent performance on the target domain.
� The MPAFF module is explored to learn robust and informative ECG representations, where ECGs are characterized by
complex P-QRS-T waves, subtle changes, and multiple views.
� The effectiveness and generalization of our framework are demonstrated on several benchmark databases. The experi-
mental results are consistent with the theoretical analysis and the visualization analysis.
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Fig. 1. Classical adversarial domain adaptation vs. semantic adversarial domain adaptation. (a): Traditional adversarial domain adaptation mines the
similarity between different domains via the global feature space alignment. It performs category-agnostic domain adaptation. However, this may result in
negative transfer of features. (b): Semantic adversarial domain adaptation integrates the category information from different domains into the traditional
adversarial domain adaptation process. It mitigates the negative transfer of features via aligning the category distribution statistics of different domains.

P. Feng, J. Fu, Z. Ge et al. Information Sciences 582 (2022) 509–528
The remainder of this paper is structured as follows. Section 2 introduces the related work. Section 3 describes the details
of our method. Section 4 presents experiments and results. Finally, conclusions and future research directions are presented
in Section 5.

2. Related work

This section includes three related aspects: arrhythmia detection, domain adaptation and multi-view learning, as detailed
below.

2.1. Arrhythmia detection

Many attempts have been made to automatic arrhythmia detection in recent years [6–15], which are commonly divided
into two types: conventional machine learning algorithms and deep learning algorithms. Traditional machine learning algo-
rithms typically require handcrafted features to characterize ECG signals. These features contain wavelet [12], RR intervals
[13], high-order statistics [14], wave amplitude [15], and so on. Lately, given the strong characteristic learning ability and
outstanding performance of DNNs, arrhythmia detection models based on DNNs have been widely proposed [6–11]. Several
researchers designed patient-independent arrhythmia detection models that do not adapt to the specificity of each new sub-
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ject in ECG data [7,8,11]. Niu et al. [7] proposed a multi-perspective convolution neural network for inter-patient heartbeat
classification. Nevertheless, this work required careful preprocessing of raw signals and eliminated patient-specific ECG rep-
resentations that are meaningful for heartbeat classification. Mousavi et al. [8] combined a convolution neural network and a
sequence-to-sequence model for arrhythmia detection. However, their constructed classification task is simple by selecting
samples. Wang et al. [11] proposed an intelligent ECG-assisted annotation system, that not only supplemented labeled data,
but also significantly reduced the workload compared with manual annotation. Nevertheless, this work required manual
intervention. While these DNNs-based patient-independent models performed well within a dataset, it is unsatisfactory
to apply these models directly to other datasets due to the distribution discrepancies of different test conditions. Some
researchers developed patient-specific models for arrhythmia detection to adapt the specificity of each new subject in
ECG data [6,9,10]. Zhai et al. [6] combined a dual heartbeat coupling approach and a convolution neural network for
inter-patient arrhythmia classification. However, it involves selecting the most representative heartbeats. Ye et al. [9] pro-
posed an automatic subject-adaptable heartbeat classifier based on semi-supervised learning and multi-view learning. It
selected several high-confidence samples of each particular subject to train the model. Golany et al. [10] introduced a gen-
erative model to synthesize subject-specific ECG data to fine-tune the pre-trained model that trained with data of other sub-
jects. Nevertheless, these algorithms typically require manual intervention in developing patient-specific models or the
number of the models is equal to that of subjects, which hinders their application in practice.
2.2. Domain adaptation

Domain adaptation [16], with the ability leveraging the labeled source domain to learn a model for the target domain, is a
subproblem of transfer learning. It typically includes two domains: source domain and target domain. It aims to address the
problem where training data (i.e. source domain) and testing data (i.e. target domain) share a similar task but follow differ-
ent probability distributions. Its main goal is to mine similarities between the two domains in order to improve the perfor-
mance of the model in the target domain. Recently, domain adaptation based on DNNs ( i.e. deep domain adaption ) has
attracted much attention [16]. Researches have done in-depth researches on deep domain adaptation and achieved inspiring
results. For example, Chen et al. [17] constructed an image-to-image translation generate network based on CycleGAN [18]
for unsupervised domain adaptation in chest X-ray segmentation. Unsupervised domain adaptation has also been applied to
ECG classification [4,5,19–21]. Bazi et al. [19] proposed a domain transfer SVM model for arrhythmia detection, but required
manual intervention. Jin et al. [20] developed a domain adaptive residual network to detect atrial fibrillation. Ammour [21]
proposed a de-noising auto-encoder for feature learning and used hidden layers to reduce the data shift to detect atrial fib-
rillation. Beyond that, inspired by the success of unsupervised domain adversarial training [22–24], a few representative
approaches have been available for ECG classification [4,5]. Specifically, Chen et al. [4] adopted an unsupervised domain
adaptation model to classify heartbeat, which aligned category distributions between the two domains by introducing
two domain-regularizer loss functions. Niu et al. [5] employed an unsupervised adversarial domain adaptation network
for arrhythmia classification. This method aligned the global movement between the two domains, but ignored the semantic
information in the samples, which may lead to negative feature transfer. In addition, ECG signals contain multiple patterns
(beat, rhythm, and frequency levels) that have been ignored by previous feature extractors. In contrast, in this work, multi-
view ECG features and sematic information based on unsupervised domain adaptation are taken into account for arrhythmia
detection.
2.3. Multi-view learning

Multi-view learning is interpreted to boost learning performance by integrating the diversity of multi-view data. The
views can be attained from diverse sources or constructed from different perspectives. Multi-viewmechanisms have demon-
strated their success based on two principles: complementary principle and consensus principle [25]. The former principle
typically adopts a multi-perspective setting. Each perspective may contain knowledge that the others do not. This multi-
perspective setting provides a comprehensive description of the data. In addition, compared with a single perspective, ran-
domness and uncertainty are significantly reduced. The latter principle is commonly used to build different models in order
to agree on the predictions for the same sample. Researchers have conducted in-depth studies on multi-view mechanisms
and achieved inspiring results [3,26,27]. Ye et al. [3] employed the consensus principle to implement automatic arrhythmia
detection by combining a general classifier and a specific classifier. Li et al. [26] utilized the complementary principle to con-
struct three-dimensional inputs to enhance arrhythmia detection performance. Huang et al. [27] developed a multi-view fea-
ture fusion model for heartbeat classification. In this work, our model not only considers multi-view inputs, but also
introduces a multi-perspective adaptive feature fusion module to obtain robust features.
3. Method

The discrepancies of ECG signals between different subjects pose a great challenge to deep learning algorithms. Therefore,
our goal is to effectively mitigate the discrepancies and adapt the source model based on deep learning to the target domain.
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3.1. Problem formulation

In this work, we model the inter-subject discrepancies as an unsupervised domain adaptation setting for arrhythmia
detection. Specifically, there are two different but related domains, namely, the source domain DS and the target domain

DT . The labeled samples from the source domain are defined as DS ¼ XS;YSf g ¼ xiS; y
i
S

� �� �NS

i¼1 and the unlabeled data from

the target domain are defined as DT ¼ XTf g ¼ xiT
� �NT

i¼1. The goal is to learn a model trained with XS;YSf g and XT so that it
can correctly predict the labels of XT .

To achieve this goal, traditional adversarial domain adaptation methods align the marginal distribution of the feature
space between two domains by adversarial learning. These methods involve two processes. Firstly, these methods learn a
model by minimizing the classification loss LC on the source domain. Specifically,
LC f F ; f Cð Þ ¼ E l f C f F XSð Þð Þ; YSð Þ½ �; ð1Þ
where E �½ � is the statistical expectation, l �; �ð Þ denotes an appropriate loss function. f F and f C represent the feature extractor
and the classifier, respectively.

Secondly, we aim to obtain domain-invariant representations to minimize the feature distribution distances between the
two domains. These domain-invariant representations are obtained by the f F , when they are able to confuse the domain dis-
criminator f D. The f D aims to distinguish samples source and target domains. The f F and f D act as two opponents: the f F
would try to obtain domain-invariant representations to confuse the f D, while the f D, on the contrary, would try to detect
whether these representations from the source domain or the target domain. The competition between f F and f D drives them
to improve themselves, until the f D is indistinguishable from the feature representations obtained by the f F . Formally, this
process can be achieved by iteratively optimizing the domain discrimination loss LD and the domain confusion loss LF:
min
hD

LD XS;XT; hF ; hDð Þ;ð2Þ

min
hF

LF XS;XT; hD; hFð Þ:ð3Þ
The implementation details of the above will be introduced in Section 3.2.3. However, the main limitation of these tra-
ditional adversarial adaptation methods is that they mainly focus on aligning global domain statistics without considering
the crucial semantic information for each category.

3.2. Our approach

To deal with the limitation mentioned above, a novel unsupervised domain adaptation framework is proposed for
arrhythmia detection. Fig. 2 shows the outline of the framework. Briefly, an unsupervised semantic-aware adaptive feature
fusion network (USAFFN) is developed. The USAFFN embeds category information into the adversarial domain adaptation
process by introducing a semantic loss function. In addition, we leverage the fact that ECG signals contain rich information
from different angles (beat, rhythm and frequency levels). A multi-perspective adaptive feature fusion (MPAFF) module is
explored to obtain latent representations. The USAFFN is composed of three components: a shared feature extractor F with
the MPAFF module, a domain discriminator D, and a heartbeat classifier C. The USAFFN and the MPAFF module are illustrated
in Fig. 3(a) and (b) respectively.

In the following, the whole procedure of our approach, including preprocessing, network and optimization, is introduced
in detail.

3.2.1. Preprocessing
Given the raw ECG data, the preprocessing procedure includes the following four steps:
1) Denoising: Noise usually distorts ECG signals and impairs arrhythmia detection. In order to increase the signal-to-noise

ratio, we perform the baseline removal which is the same as that in the article [4].
2) Peak detection: After suppressing the baseline wander, the signals need to be separated into segments for classifica-

tion. Before segmentation, the detection of R-peaks is required. The commonly used R-peaks detection methods include the
Pan-Tompkins algorithm [28] and the gqrs package [29]. Recently, several algorithms [30–32] based on deep learning have
been available for R-peaks detection. Herein, in order to look at the effect of our proposed module, we apply the algorithm
[33] which is the same as that in the article [4] for R-peaks detection.

3) Segmentation: An ECG signal is represented as a sequence of P-QRS-T waves: a P wave followed by a QRS set and finally
a T wave. After detecting R-peaks, instead of dividing continual ECG signals into separate units [34], we segment ECG signals
into heartbeats by starting at the 0.14s (50 points at a sampling rate of 360) before the R-peak and ending at the 0.28s (100
points at a sampling rate of 360) after the R-peak, guaranteeing each segment contains one heartbeat. On this basis, we resize
each segment to 128 sample points according to the selection of segment width in the article [26].

4) Input: Since beat-to-beat correlation can advance the performance of arrhythmia detection [6], we extract RR interval
(a time interval between two consecutive R peaks) information including the pre-RR ration [35] (the ratio of the current pre-
RR interval to the average of all pre-RR intervals of the corresponding records) and near-pre-RR ration [26] (the ratio of the
513



Fig. 2. The overview of our semantic-aware adversarial adaptation framework for arrhythmia detection. Traditional adversarial adaptation approaches
align the marginal distribution of the feature space between source domain and target domain without considering the semantic information contained in
samples. Our semantic-aware adversarial adaptation incorporates the category information into the traditional adversarial adaptation process by
introducing a semantic loss function LS. Moreover, we leverage the fact that ECG signals contain rich information from different angles (beat, rhythm and
frequency levels). The MPAFF module is explored to obtain rich feature representations. The overall training process contains four loss functions: heartbeat
classification loss function LC, domain discrimination loss function LD, domain confusion loss function LF and semantic loss function LS.
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current pre-RR interval to the average of ten pre-RR intervals before the heartbeat). In addition, the ECG segment contains
intra-heartbeat knowledge, the RR interval information and ECG segment are stacked together to form the input of the
network.

3.2.2. Network
Fig. 3(a) shows the structure of the USAFFN. It includes three components: a shared feature extractor with the MPAFF

module, a domain discriminator and a shared heartbeat classifier.
1) Feature extractor: We leverage the fact that consists of complex P-QRS-T waves, and these waves contain rich infor-

mation from different perspectives (beat, rhythm, and frequency levels). A multi-perspective adaptive feature fusion
(MPAFF) module is proposed to enhance the power of extracting feature representations. Besides, the skip connection is used
to keep the original features not be suppressed and it also avoid the degeneration of the network. The structure of the MPAFF
module is shown in Fig. 3(b), which is described below.

MPAFF module: As shown in Fig. 3(b), the MPAFF module consists of two sub-branches. The first sub-branch aims to
obtain multiple perspective representations via a multi-branch attention module. The second sub-branch attempts to adap-
tively learn the weights of different features obtained by the first sub-branch. The first sub-branch is a tree-shaped structure
containing multiple branches of the same size. It should be noted that although the structure of each branch is the same, they
do not share parameters. According to Table 7, the number of the branches is selected as 3. Each branch can be interpreted as
a single squeeze-and-excitation (SE) layer [36], which accounts for the interdependencies between channels. Specifically, in
order to sum out the spatial information of the feature map, the squeeze operation is realized by global average pooling,
denoted as Fsq. Then, in order to obtain the importance of each feature map, one fully connected (Fc) layer, one Relu layer

and another Fc layer are used. This operation is termed as Fse. Thus, the output Ui of the i-th branch is obtained:
Ui ¼ Fse Fsq Uð Þ
� �

2 RC�1; ð4Þ
where U is the input feature map U 2 RC�H�W .
Concatenating the outputs of the above N branches together, the fusion space of the feature representation is obtained:
Uall ¼ U1;U2; . . . ;UN
h i

2 RC�N: ð5Þ
514



Fig. 3. (a): The structure of the USAFFN. (b): The structure of the MPAFF module.
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In the second sub-branch, in order to obtain the weight of the feature fusion output Uall, two operations are performed.
Firstly, global average pooling is introduced to remove the spatial dimension, and then an adaptive weighting operation
including one Fc layer and a softmax function is applied:
Fweight Uð Þ ¼ softmax W1Fsq Uð Þ
� �

2 RN�1; ð6Þ
where W1 2 RN�C is the weight matrix of softmax layer.
Then, the adaptive weighted result is obtained:
UallFweight Uð Þ 2 RC�1: ð7Þ
Finally, the adaptive output U
�
is obtained:
U
�
¼ Fscale U; sigmoid UallFweight Uð Þ

� �� �
2 RC�H�W ; ð8Þ
where the operation Fscale refers to the channel-wise multiplication.
In this way, compared with only one branch layer, the MPAFF module utilizes multi-perspective adaptive feature repre-

sentation fusion to extract richer information.
2) Domain discriminator: The domain discriminator is used to distinguish whether the features obtained by the feature

extractor come from the source domain or the target domain. It is usually implemented by performing binary classification.
In the optimization process, the domain discriminator and the feature extractor act as two opponents: the goal of feature
extractor is to obtain domain invariant features, so as to confuse the domain discriminator, while the domain discriminator
attempts to distinguish whether these features come from the source domain or the target domain. The competition encour-
ages them to improve themselves until the domain discriminator cannot distinguish the features obtained by the feature
extractor. The structure of the domain discriminator is shown in Fig. 3(a).

3) Heartbeat classifier: To decode the deep representations from the feature extractor, a simple yet efficient classifier is
applied, as shown in Fig. 3(a), with one Fc layer, followed by a softmax function.
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3.2.3. Optimization
It is noted that traditional adversarial adaptation methods align global domain statistics without considering the seman-

tic information contained in samples. Thus, the USAFFN incorporates category information into the adversarial adaptation
process by introducing a semantic loss function LS. The optimization process based on the traditional adversarial unsuper-
vised domain adaptation method is presented as follows. Firstly, the desired heartbeat classifier is obtained by minimizing
the weighted cross-entropy classification loss function LC on the source domain:
LC XS;YS; hF ; hCð Þ ¼ � 1
Ns

XNs

i¼1
wiyi log f C f F xsi

� �� �� �
; ð9Þ
where hC is the parameter of the heartbeat classifier f C; hF is the parameter of the feature extractor f F .
Secondly, in order to obtain the domain-invariant features, a domain discriminator f D with the parameter hD is used to

distinguish whether the features obtained by the f F come from the source domain or the target domain. These deep
domain-invariant representations are obtained by optimizing two loss functions: the domain discrimination loss function
LD and the domain confusion loss function LF:
LD XS;XT; hF ; hDð Þ ¼ �
X
d

I yD ¼ d½ � log qd; ð10Þ

LF XS;XT; hD; hFð Þ ¼ �
X
d

1
D

log qd; ð11Þ
where yD denotes the domain label, qd corresponds to the softmax activated by the domain discriminator:
qd ¼ softmax hTDf D x; hFð Þ

� �
. 1
D is the probability of domain. The loss function LD only updates the parameter hD, seeking to

obtain the best domain discriminator. The loss function LF only updates hF , attempting to obtain domain-invariant features.
These features are obtained when the best domain discriminator performs poorly. Obviously, the competition encourages
the f F and the f D to improve themselves until the f D cannot distinguish the features obtained by the f F . According to the
parameters obtained from the previous iteration, the hD and hF are iteratively updated to optimize.

Algorithm 1. The calculation process of the semantic loss function

Input: Labeled samples S, unlabeled samples T, batch size M, iterations N, global and local centers for two domains:

CS;CT;C
k
S and Ck

T
Output: Semantic alignment loss function: LS
1: LS ¼ 0
2: CS ¼ 1

Sj j
P

x;yð Þ2Sf F xð Þ, CT ¼ 1
Tj j
P

x;yð Þ2T f F xð Þ
3: for i ¼ 1 to N
4: Si = Random Sampling (S,M), Ti = Random Sampling (T,M)

5: eTi ¼ Annotating f F; f C; Tið Þ
6: CS ið Þ  1

jSi j
P

xj ;yjð Þ2Si f F xj
� �

, CT ið Þ  1
Tij j
P

xj ;yjð Þ2Ti
f F xj
� �

7: CS  1� að ÞCS þ aCS ið Þ , CT  1� að ÞCT þ aCT ið Þdo
8: for k ¼ 1 to K do

9: Ck
S ¼ 1

Skj j
P

x;yð Þ2Sk f F xð Þ, Ck
T  1eTk

��� ���P x;yð Þ2eTk
f F xð Þ

10: Ck
S ið Þ
 1

Skij j
P

xj ;yjð Þ2Ski f F xj
� �

, Ck
T ið Þ
 1

jeTk
i j

P
xj ;yjð Þ2eTk

i

f F xj
� �

11: Ck
S  1� að ÞCk

S þ aC
k
S ið Þ
, Ck

T  1� að ÞCk
T þ aC

k
T ið Þ

12: LS  LS þ d CS;CTð Þ þ d Ck
S;C

k
T

� �
13: end for
14: end for

However, the global alignment based on traditional adversarial adaptation approaches ignores the semantic information
contained in samples. Therefore, the USAFFN is used to incorporate category information into the adversarial adaptation pro-
cess by introducing a semantic loss function LS. The LS implements category-level migrations via aligning the global centers
and the local centers on the two domains:
LS XS;YS;XT; hFð Þ ¼ d CS;CTð Þ þ
XK
k¼1

d Ck
S; C

k
T

� �
; ð12Þ
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where K is the number of categories. CS and Ck
S are the global center and the k-th local center for the source domain S respec-

tively. CT and Ck
T are the global center and the k-th local center for the target domain T respectively. d :; :ð Þ is a distance metric

function. In this study, we use the cosine similarity distance d x1; x2ð Þ ¼ 1� x1�x2
x1k k x2k k , because for softmax classifiers, the angle

can well represent the difference in feature vectors of different categories [37]. Due to lack of semantic information in the

target domain, Ck
T is not obtained. The pseudo-labels are assigned to the samples from the target domain by the pre-trained

model on the source domain. The calculation process of the semantic loss function LS is shown in Algorithm 1.
To sum up, the object function of jointly updating the f F and the f C is formulated as:
L ¼ LC þwf LF þwsLS; ð13Þ
where wf and ws are the weights of LF and LS, respectively.

3.2.4. Theory analysis
In this section, based on the domain adaptation theory [23], the feasibility of our model is analyzed. The bound eT hð Þ

relating the expected error on the target samples is represented as follows.

Theorem 1. Given the source domain S and the target domain T , assume that H is a hypothesis space. For any hypothesis h 2 H,
eT hð Þ 6 eS hð Þ þ d1 DT ;DSð Þ þmin eS f S ; f Tð Þ; eT f S ; f Tð Þf g; ð14Þ
where eS hð Þ is the expected error on the source samples, d1 DS ;DTð Þ presents a discrepancy distance across the two domains S and
T ; f S and f T are classification functions for the source and target domain respectively.
Proof. The first term eS hð Þ can be minimized easily with source label samples. d1 DS ;DTð Þ is used to measure the distribution
divergence of the two domains [22]. Recall that eT hð Þ ¼ eT h; f Tð Þ and eS hð Þ ¼ eS h; f Sð Þ. According to the triangle inequality,
for any classification functions f 1; f 2 and f 3, we have e f 1; f 2ð Þ 6 e f 1; f 3ð Þ þ e f 2; f 3ð Þ. Then,
eT hð Þ ¼ eT hð Þ þ eS hð Þ � eS hð Þ þ eS h; f Tð Þ � eS h; f Tð Þ ð15Þ
¼ eS hð Þ þ eT h; f Tð Þ � eS h; f Tð Þ þ eS h; f Tð Þ � eS h; f Sð Þ ð16Þ
6 eS hð Þ þ d1 DS ;DTð Þ þ eS h; f Sð Þ þ eS f S ; f Tð Þ � eS h; f Sð Þ: ð17Þ
)eT hð Þ 6 eS hð Þ þ d1 DS ;DTð Þ þ eS f S ; f Tð Þ: ð18Þ
In the same way, then,
eT hð Þ ¼ eT hð Þ þ eS hð Þ � eS hð Þ þ eT h; f Sð Þ � eT h; f Sð Þ ð19Þ
¼ eS hð Þ þ eT h; f Tð Þ � eT h; f Sð Þ þ eT h; f Sð Þ � eS h; f Sð Þ ð20Þ
6 eS hð Þ þ eT h; f Sð Þ þ eT f S ; f Tð Þ � eT h; f Sð Þ þ d1 DT ;DSð Þ: ð21Þ
)eT hð Þ 6 eS hð Þ þ d1 DS ;DTð Þ þ eT f S ; f Tð Þ: ð22Þ
To sum up, then,
eT hð Þ 6 eS hð Þ þ d1 DT ;DSð Þ þmin eS f S ; f Tð Þ; eT f S ; f Tð Þf g: ð23Þ
Unfortunately, without real target labels, the classification function f T is not obtained directly. Therefore, the pseudo-
labels are utilized to optimize. It is defined as R ¼min eS f S ; f Tð Þ; eT f S ; f Tð Þf g. It is showed that the USAFFN aims to optimize
the upper bound for R. According to the triangle inequality, then
R ¼min eS f S ; f Tð Þ; eT f S ; f Tð Þf g ð24Þ

6 min eS f S ;hð Þ þ eS h; f Tð Þ; eT f S ; f eT� �
þ eT f eT ; f T� �n o

ð25Þ

6 min eS f S ;hð Þ þ eS h; f eT� �
þ eS f eT ; f T� �

; eT f S ; f eT� �
þ eT f eT ; f T� �n o

; ð26Þ
where f eT is the pseudo target labeling function. Since source labels are obtained, then h is easily obtained in the hypothesis

space to approximate the f S . Our method use the pre-trained model in the source domain to assign pseudo labeled samples

in the target domain, then eS h; f eT� �
and eS f eT ; f T� �

will be minimized. The eT f eT ; f T� �
denotes the discrepancy between the

real target labeling function f T and the pseudo target labeling function f eT . The discrepancy can be minimized when the tar-

get labeling function is trained on the target domain. Since eT f S ; f eT� �
¼ Ex�T l f S xð Þ; f eT xð Þ

� �h i
, where l �; �ð Þ is typically the 0–1

loss function , the source labeling function f S should return k for source samples in category k. If the feature representations
of target samples in category k are similar to those of source samples in category k, the target samples can be predicted the

same as that of the target pseudo labeling function. Consequently, eT f S ; f eT� �
is expected to be small.
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In summary, the USAFFN is able to further minimize the R by aligning the global and the local centroid in the source
domain and the pseudo labeled target domain. Therefore, utilizing the obtained pseudo labels of the target samples is effec-
tive for unsupervised domain adaptation.
4. Experiments

4.1. ECG databases

In this work, ECG signals are required from three databases of varying difficulty: the MITBIH arrhythmia database (ARDB)
[38], the St. Petersburg Institute of Cardiological Technics (INCART) [39], and the MITBIH Long-Term ECG database (LTDB)
[39]. They are available on Physionet [39]. These databases are briefly described as followings. For all these databases, they
contain annotations for timing information and heartbeat category information verified by independent experts. The heart-
beat labeling adopts the ANSI/AAMI EC57:1998 standard [40]. The standard developed by the Association for the Advance-
ment of Medical Instruments (AAMI) recommends that the heartbeat types of ECG waveforms are clustered to five beat
classes: N (normal or bundle branch block), S (supraventricular ectopic beat), V (ventricular ectopic beat), F (fusion beat)
and Q (unassigned beat). This standard is referred to as the heartbeat type in this study. Table 1 shows that the heartbeat
types are mapping to the AAMI heartbeat categories. This paper mainly focuses on four classes: N, V, S, F, while class Q is
not considered. The details of the ECG signals from the three databases are shown in Table 2. Example signals for all exper-
imental databases are shown in Fig. 4.

1) ARDB: This database, the most common benchmark, contains 48 records and each includes two-channel ECG signals for
a 30-min duration. They are selected from 24-h recordings of 47 individuals. Continuous ECG signals are band-pass filtered at
0.1–100 Hz and then digitized at 360 Hz. According to the AAMI recommendation, 4 paced records (102, 104, 107, 217) are
excluded in the ARDB.

2) INCART: This database consists of 75 annotated recordings extracted from 32 Holter records. Each record is 30 min long
and contains 12 standard leads, and each sampled at 257 Hz. The reference annotation files contain over 175,000 beat anno-
tations in all. These raw signals are collected from patients suffering from coronary artery disease (15 women and 17 men,
aged 18–80; mean age: 58). They have no pacemakers, and most have ventricular ectopic beats.

3) LTDB: This database includes 7 long-term annotated ECG recordings extracted from Holter records. Each recording con-
tains two-lead signals of approximately 14 to 22 h, and each sampled at 128 Hz. The heartbeat type annotations are reviewed
manually.

In order to validate the effectiveness of our model, the performance is evaluated on the unlabeled target domain. Besides,
several ablation studies are explored to verify the effectiveness of the MPAFF module and the semantic-aware adaptation
module. Further, to verify the generalization ability, we evaluate the performance of the model in the INCART and LTDB.

To be specific, several experiments are conducted to better evaluate the performance of our proposed model for unsuper-
vised adaptation classification across three different domain shifts. In all these experiments, the labels of the target domain
are withheld. Table 3 briefly shows the three different domain adaptation tasks. For the domain adaptation task: DS1-DS2,
the ARDB is divided into two datasets: DS1 and DS2 by convention [41]. Specifically, the dataset DS1 consists of 22 records
(101, 106, 108, 109, 112, 114, 115, 116, 118,119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230) and the dataset
DS2 includes the other 22 records (100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228,
231, 232, 233, 234). This partition ensures that no heartbeats in the DS2 come from the same subject in the DS1, known as
the inter-subject paradigm [42]. The labeled dataset DS1 is used as the source domain, and the unlabeled dataset DS2 is used
Table 1
Mapping the heartbeat types to the AAMI heartbeat categories.

AAMI MIT-BIH Heartbeat Types

N N Normal beat
L Left bundle branch block beat
R Right bundle branch block beat
e Atrial escape beat
j Nodal(Junctional) escape beat

S A Atrial premature beat
a Aberrated atrial premature beat
J Nodal(Junctional) premature beat
S Supraventricular premature or ectopic beat

V V Premature ventricular contraction
E Ventricular escape beat

F F Fusion of ventricular and normal beat

Q / Paced beat
f Fusion of paced and normal beat
Q Unclassifiable beat
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Table 2
The database and its class representation in this work.

Database The number of heartbeat types Fs(Hz) #Record

N V S F

ARDB 89705 6982 2766 802 360 44
INCART 152348 19863 1944 219 257 75
LTDB 600110 64081 1499 2906 128 7

Fig. 4. Example ECG signals from ARDB, INCART, and LTDB.

Table 3
Different domain adaptation tasks in this study.

Domain adaptation tasks Training data Testing data

DS1-DS2 labeled dataset: DS1 labeled dataset: DS2
unlabeled dataset: DS2

ARDB-INCART labeled dataset: ARDB labeled dataset: INCART
unlabeled dataset: INCART

ARDB-LTDB labeled dataset: ARDB labeled dataset: LTDB
unlabeled dataset: LTDB
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as the target domain to verify the effectiveness of the USAFFN. In this paper, the inter-subject paradigm is employed to com-
pare the performance of our model with other algorithms on the ARDB. Note that for the samples in the target domain DS2,
only the initial five minute unlabeled heartbeats are used for training. The brief distribution statistics of the two datasets DS1
and DS2 are shown in Table 4. In addition, the performance of our model is evaluated on the INCART and LTDB for verifying
the generalization ability. It also presents the positive effect of our model across different domain shifts. Obviously, the dis-
crepancies between ECG signals from different databases are much larger than those from different datasets in the same
database. These discrepancies between signals from different databases are from individual characteristics, differences in
collecting devices or conditions, and so on. More precisely, for domain adaptation task: ARDB-INCART, we refer to the labeled
samples from the ARDB as the source domain and the unlabeled samples from the INCART or LTDB as the target domain.
Since these different databases have different channels and sampling rates, the signals of the target domain select the same
channel as the source domain data and re-sample to 360 Hz. For the adaptation task: ARDB-LTDB, due to the limited number
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Table 4
The distribution statistics of the DS1 and DS2.

Datasets The number of heartbeat types Total

N V S F

DS1 45820 3786 944 414 50964
DS2 43885 3196 1822 388 49291
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of patients on the LTDB, 7000 recordings are randomly sampled from the class N, and the same recordings on the ARDB are
extracted from other classes for training.

4.2. Evaluation metrics

In order to evaluate the performance of our model, the following four performance metrics are required: the overall clas-
sification accuracy (Acc), sensitivity (Sen), positive productivity (Ppr), the F1 score. TP, TN, FP, and FN represent true posi-
tives, true negatives, false positives, and false negatives respectively.

For the category k, define the following quantities as the parameters used in the scoring formulas,
TPk ¼ Tkk;

TNk ¼
X
k

Tkk

 !
� Tkk;

FPk ¼
X
j

Tik

 !
� Tkk;

FNk ¼
X
i

Tik

 !
� Tkk;

ð27Þ
where Acc is the ratio of correctly classified patterns to the total classified patterns, Sen is the rate of correctly classified
events among all events, and Ppr is the rate of correctly classified events among all detected events. In addition, the F1 score
is expressed as the harmonic mean of the Ppr and Sen, and it is used as a comprehensive criterion. They are defined as fol-
lows: Sen ¼ TPð Þ= TPþ FNð Þ, Ppr ¼ TPð Þ= TPþ FPð Þ, F1 ¼ 2� Sen� Pprð Þ= Senþ Pprð Þ, Acc ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ.

4.3. Implementation details

Our method is trained with a PyTorch implementation and is performed in an Intel Corel I7 and a GeForce GTX 1080 Ti
Graphics Cards. The Adam optimizer trains our proposed network with a mini-batch size of 256. We start the training stage
with an initial learning rate of 0.01 and decay it by a factor of 10 for every 100 epochs. The weight hyper-parameters of the
domain confusion loss function and the semantic alignment loss function are set to 0.01 and 0.1 respectively. The hyper-
parameter a in the calculation of the semantic loss function is 0.1. If no performance improvement is observed in twenty
iterations, we terminate the training process early. We randomly choose 90% of the samples in the source domain to opti-
mize the model parameters, and then use the remaining 10% to select the optimal model. The maximum number of training
iterations is set to 200 in the pre-trained process, and the maximum number of training iterations in the adaptation process
is set to 300.

4.4. Results and discussions

To better evaluate the performance of our model, we conduct four experiments. Section 4.4.1 aims to validate the effec-
tiveness of the USAFFN by comparing the performance of our model with the current methods on the ARDB. Section 4.4.2 is
to verify the effectiveness of the MPAFF module and the semantic-aware adaptation module. Section 4.4.3 attempts to
demonstrate the generalization ability of our method. Section 4.4.4 is to explore the impact of several hyperparameters
on the model performance.

4.4.1. The effectiveness of our method
Comparison with alternative methods: Table 5 shows the performance of our method and the results obtained by sev-

eral representative alternative algorithms [3–7,12,19,26,43–45] with the same inter-subject scheme on the DS2. These ECG
classification algorithms are roughly divided into three categories: patient-independent, patient-specific, and domain-
adaptation practice. The patient-independent ECG classification approaches [7,12,26,43–45] typically use population data
to train general classifiers and then directly predict new patients. The patient-specific methods [3,6] introduce patient-
adjustable models for new patients and usually require manual intervention. The domain-adaptation algorithms[5,4,19]
aim to achieve excellent performance on the target domain by alleviating the distribution discrepancy between the feature
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Table 5
Comparison of the performance of inter-subject arrhythmia detection methods on the DS2.

Method N(%) V(%) S(%) F(%) Overall Acc(%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

Li et al. [26]1 91.8 98.9 95.2 95.1 90.1 92.5 89.0 35.4 50.6 32.2 20.3 24.9 91.4
Shi et al. [12]1 92.1 99.5 95.6 95.1 88.1 91.4 91.7 46.2 61.4 61.6 15.2 24.3 92.1

Sellami et al. [43]1 88.5 98.8 93.3 92.0 72.1 80.8 82.0 30.4 44.3 68.3 26.5 38.1 95.3
Niu et al. [7]1 98.9 97.4 98.1 85.7 94.1 89.7 76.5 76.6 76.6 0.2 0.7 0.3 96.4
Raj et al. [44]1 91.0 99.3 94.9 89.5 85.4 87.4 80.9 50.9 62.4 93.5 12.6 22.2 89.9
Zhai et al. [45]1 96.3 99.0 97.6 87.5 90.9 89.2 93.8 59.0 72.5 31.1 19.8 24.1 95.2
Ye et al. [3]2 99.7 97.3 98.4 91.8 98.0 94.7 61.4 90.7 73.2 9.0 38.2 14.5 97.0
Zhai et al. [6]2 99.6 98.5 99.0 93.8 92.4 93.0 76.8 74.0 75.3 79.5 62.3 69.8 96.1
Niu et al. [5]3 93.9 97.4 95.6 85.1 57.8 68.8 76.6 73.2 74.8 38.4 44.9 41.3 92.3
Chen et al. [4]3 95.3 98.4 96.8 95.7 93.8 94.7 78.5 88.6 83.2 43.8 8.8 14.6 94.3
Bazi et al. [19]3 – – – – – – – – – – – – 93.0
Our method3 97.0 98.7 97.9 87.6 91.3 89.4 86.0 67.6 75.7 64.9 32.3 43.1 95.7

1 Patient-independent practice.
2 Patient-specific practice.
3 Domain-adaptation practice.
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spaces of the two domains. Since patient-specific classifiers typically require additional expert annotations for each test sub-
ject, these methods are impractical in real-world applications. Although semi-supervised learning has been used to label new
patient data in these works [3,6], it is still necessary to select data from each new patient’s data as input, which undoubtedly
increases the workload. In particular, when the number of new subjects is large enough, the workload is undesirable. Besides,
these algorithms [5,4,19] based on domain adaptation technology have been widely developed in semi-supervised learning
to improve the performance of heartbeat classification. As shown in Table 5, compared with these algorithms [5,4,19], the
overall accuracy of our model achieves the state-of-the-art on the domain adaptation task DS1-DS2.

Specifically, Niu et al. [7] proposed a novel deep learning framework for inter-patient heartbeat classification based on a
symbolization approach and a multi-perspective convolution neural network. The framework achieved a high classification
accuracy (96.4%), but the F1 score of class F is low (0.3%). The symbolization approach jointly represented the morphology
and rhythm of the heartbeat, normalized the signal, and alleviated the effect of inter-patient variation based on the baseline
correction. However, the symbolic representations eliminate patient-specific representations that are meaningful for classi-
fication. Besides, the raw ECG signals need to be carefully preprocessed (beat alignment and baseline correction). Shi et al.
[12] constructed two hierarchical weighted XGBoost classifiers, which undoubtedly increased the complexity. Li et al. [26]
proposed an automatic heartbeat classifier based on DNN, which required a complicated process to calculate the beat-to-
beat correlation. Compared with our method, the performance of category V in the articles [12,26] shows an advantage to
some extent, but the overall performance is not satisfactory. Sellami et al. [43] proposed a convolutional neural network
based on a batch-weighted loss function. Despite the overall accuracy was relatively outstanding (95.3%) in the work[43],
the power of predicting category S was significantly insufficient, that is, the positive productive was 30.4 % and the F1 score
was 44.3 %. Raj et al. [44] extracted features using the sparse decomposition technique, which required hand-crafted features
and some professional clinical knowledge, achieving a high sensitivity (93.5%), but low positive productivity (12.6%) for class
F. Zhai et al. [45] obtained comparable performance based on a semi-supervised learning system, including a normal beat
estimation module and an iterative heartbeat label update algorithm. At the same time, the heartbeats need to be selected
for new patients. As shown in Table 5, compared with these patient-independent approaches [7,12,26,43–45], our model
achieves the competitive overall performance and the highest F1 score (43.1%) for class F.

In addition, since the patient-independent methods do not consider the differences between individuals of ECG signals,
these patient-independent classifiers [7,12,26,43–45] generally perform less well than the patient-specific classifiers [3,6].
To be specific, Ye et al. [3] employed the consensus principle to model a general classifier and a specific classifier for auto-
matic arrhythmia detection. Zhai et al. [6] adapted a patient-specific deep learning system for inter-patient heartbeat clas-
sification based on a convolution neural network. They transformed heartbeats into a dual beat coupling matrix and
introduced a beat selection approach to select the most representative heartbeats for training. In addition, several labeled
ECG data of the test patients were used for training. Therefore, several heartbeats of each new patient are required to anno-
tate. Besides, it involves tedious data preprocessing, requiring the selection of representative heartbeats.

Recently, several articles [5,4,19] based on domain-adaptation practice have been introduced. Chen et al. [4] adopted an
unsupervised domain adaptation approach to align category distributions between two domains by introducing two
domain-regularizer loss functions. Niu et al. [5] employed an unsupervised adversarial domain adaptation network for
arrhythmia detection by obtaining domain invariant representations. Bazi et al. [19] proposed a domain transfer SVMmodel,
which matches two distributions measured with the maximum mean distribution, but requires manual intervention. These
domain adaptation methods align the global movement between the two domains, but ignore the semantic information in
samples, which may lead to negative transfer of features. The performance of class F in the article [4] has significant advan-
tages over that of class F in the article [5]. These results indicate that the performance of the adversarial domain adaptation
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model in the article [5] has some advantages for category F. In contrast, the results obtained by the two domain regularizer
loss functions in the work [4] are more friendly to the classes N, V, and S. Bazi et al. [19] only described the overall accuracy.
We add sensitivity, positive productivity, and F1 score to make a more comprehensive comparison with other recent refer-
ences. In general, in terms of the performance of our model, the results of classes N, V, and S are competitive with several
other alternative methods.

To sum up, our model shows the competitive performance among these methods. It avoids annotating and selecting ECG
data for new subjects, and only requires collecting ECG data per se, which is relatively easy and part of the clinical routine.
Our unsupervised semantic-aware domain adaptation framework is a valuable tool to deal with the annotation or detection
of a large amount of unlabeled ECG data in clinical applications.

Overall classification performance: From Table 5, on the whole, our model is competitive on the DS2: the overall accu-
racy is 95.7%; the F1 scores for class V and S are 89.4% and 75.7%, respectively; Especially the F1 score for category F is 43.1%.
The confusion matrix on the DS2 is shown in Table 6. To be specific, we draw the following conclusions: 1) For category N,
most are misclassified as category S. The reason for this classification error may be that the morphological characteristics of
heartbeat type N are similar to those of heartbeat type S. In the same way, for category S, the most significant proportion of
those misclassified heartbeat types is category N. 2) For category F, most are misclassified as category N. It is worth noting
that category F is not wrongly predicted as category S, and vice versa. Therefore, it can be inferred that there are significant
discrepancies between the morphological characteristics of category S and F. 3) Inspired by the performance of each heart-
beat type, the characteristic differences among these categories can be inferred.

We construct an unsupervised semantic domain adaptation framework based on adversarial learning with learning
category-aware information of both domains, its essence still depends on data-driven to extract features to some extent.
Given these limited training samples, it is not easy to train a perfect model for all heartbeat types. Overall, our method
has obtained competitive performance for categories N, V, S and promising performance for category F on the DS2.
4.4.2. Ablation studies
In this section, in order to further verify the effectiveness of the MPAFF module and the semantic-aware adaptation mod-

ule, we evaluate the influence of each module.
Effectiveness of branches in the MPAFF module: The number of branches (Num) in the MPAFF module is interpreted as

different perspectives. In general, the more perspectives there are, the richer the extracted representations. However, too
many perspectives easily lead to over-fitting and increase the complexity. To choose the best Num that can balance perfor-
mance and efficiency, we set Num to 1, 2, 3, 4, respectively.

The experimental results are shown in Table 7. The results suggest that: 1) The overall accuracy improves as Num
increases. While Num is 4, the overall accuracy appears degradation phenomenon. This means that more Num dose not
always indicate more superior performance. To be specific, when Num is 3, the performance is relatively optimal. The reason
for this may be that Num = 3 is the optimal trade-off between performance and efficiency. 2) As Num increases, the gains of
categories N, V, S are not significant and remain in a small range of about 1% to 10%. However, the gains of category F are
relatively significant, and the average range of gains varies well over 10%. The gains validate that the multi-perspective set-
ting enhances the power of learning characteristics between the two domains.

Effectiveness of adaptive weights in the MPAFF module: In order to analyze the impact of adaptive in the MPAFF mod-
ule, we conduct an additional experiment to investigate the performance by averaging the outputs of multiple branches, and
compare it with the performance based on our adaptive weights.

The experimental results are presented in Table 8. From Table 8, we observe that the F1 score of categories F, V, and S are
increased by 3.1%, 5.5%, and 18.5% respectively, in the adaptive weight setting. For category N, the overall performance is
slightly improved.

The reason for these performance variations is that branches obtain rich characteristics from different perspectives. These
characteristics are not equivalent and need to be weighted adaptively instead of giving the same weight. Comparing the
experimental results in Table 8, it is confirmed that the adaptive weights have good adaptability.

Effectiveness of the semantic adaptation: To verify the effectiveness of the semantic adaptation, we evaluate the dis-
criminant ability of the model. In addition, we investigate the performance of the adversarial adaptation algorithm, which
eliminates the semantic alignment loss in the whole joint loss function. Further, we assess the performance of non-
adaptation.
Table 6
The confusion matrix of our method on the DS2.

Algorithm result

Ground truth N V S F

N 42597 221 648 419
V 185 2800 102 109
S 220 34 1568 0
F 127 9 0 252
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Table 7
Impact of the number of branches (Num) in the MPAFF module on the DS2.

Setting N(%) V(%) S(%) F(%) Overall Acc(%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

Num = 1 94.9 97.4 96.1 87.3 90.6 88.9 74.4 71.9 73.1 20.2 5.1 8.2 93.0
Num = 2 96.8 97.4 97.1 85.7 83.4 84.5 66.7 55.9 60.8 43.2 77.3 55.4 94.5
Num = 3 97.0 98.7 97.9 87.6 91.3 89.4 86.0 67.6 75.7 64.9 32.3 43.1 95.7
Num = 4 96.3 97.1 96.7 82.3 85.9 84.1 72.9 51.3 60.2 12.0 39.4 18.4 93.8

Table 8
Impact of adaptive weights in the MPAFF module on the DS2.

Setting N(%) V(%) S(%) F(%) Overall Acc(%)

Sen Ppr F1 Sen Ppr F1 Sen Ppr F1 Sen Ppr F1

w/o adaptive 96.0 97.4 96.7 81.8 86.2 83.9 60.7 54.1 57.2 68.8 28.2 40.0 93.5
w adaptive 97.0 98.7 97.9 87.6 91.3 89.4 86.0 67.6 75.7 64.9 32.3 43.1 95.7
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The performance of the three settings (non-adaptation, adversarial adaptation, our adaptation) on the DS2 is presented in
Fig. 5. Further, The performance suggests that: 1) In the setting of non-adaptation, in order to obtain a relatively high overall
accuracy, the model lays emphasis on the discrimination of classes N and V, and relatively ignores the performance of classes
S and F. 2) After the adversarial adaptation, the classification performance of each category and the overall accuracy are
improved. Namely, the classical adversarial adaptation method mitigates the degradation caused by the discrepancy of data
distributions. 3) After our adaptation, our model significantly improved the performance of classes S and F between the two
domains. Specifically, the gains of the F1 scores for classes F and S are 8.1% and 5.6% respectively. The experimental results
confirm that our method significantly alleviates the performance degradation caused by the discrepancy of data distribution.
Further, in order to intuitively illustrate the positive effect of the adaptation, we visualize the representations extracted by
the feature extractor by using the t-distributed stochastic neighbor embedding (t-SNE) [46]. The visual diagrams present the
discrepancies between ECG signals from the DS1 and DS2, as shown in Fig. 6. From Fig. 6, we draw the following conclusions:
1) From (a), it is evident that there are discrepancies in the feature space of the two datasets DS1 and DS2 due to individual
differences. As a result, the performance of the pre-trained model on the DS1 decreases on the DS2. 2) From (b)!(c), obvi-
ously, our model alleviates the misalignment of categories between the two domains. 3) From (c), the feature spaces of the
two domains are aligned so that the pre-trained heartbeat classifier on the source domain performs well on the target
domain. To sum up, we confirm the effectiveness of our semantic adaptation model.

4.4.3. The generalization of our method
To further verify the generalization of our method, we evaluate the performance of our method across different domain

shifts. More precisely, two domain adaptation tasks are constructed: ARDB-INCART and ARDB-LTDB, as shown in Table 3.
Further, in order to intuitively illustrate the positive effect of the adaptation process, we visualize the deep representations
extracted by the feature extractor by using the t-distributed stochastic neighbor embedding (t-SNE) [46].

The overall accuracy of different unsupervised adaptation methods between ARDB, INCART, and LTDB is shown in Table 9.
The classification performance of the non-adaptation, adversarial adaptation, and our model on the INCART and the LTDB is
presented in Figs. 7 and 8, respectively. Figs. 9 and 10 present the discrepancies in the feature spaces of the ECG signals from
the two domain adaptation tasks: ARDB-INCART and ARDB-LTDB, respectively. Compared with the domain adaptation task:
DS1-DS2, the distribution shift of other domain adaptation tasks is significantly larger. From Table 9, the following conclu-
sions are drawn: our method greatly improves the classification accuracy of the three domain adaptation tasks. In general,
for domain adaptation tasks: ARDB-INCART and ARDB-LTDB, the overall accuracy of all classes improves significantly from
78.5% to 96.7% and from 52.2% to 90.8%, respectively. Specifically, as shown in Figs. 7 and 8, the darker the color, the less
misclassification. Clearly, the performance of the non-adaptation model performs poor. The positive effect of the adversarial
adaptation model and our adaptation model is illustrated by observing the darker colors. Further, our adaptation model per-
forms better than that of the adversarial adaptation model. However, not all classes improve. The reasons for this may be
twofold. Firstly, the deep neural network is difficult to achieve high accuracy with limited samples; Secondly, several classes
do no have correctly labeled target signals before adaptation, and the adaptation is unable to recover the performance of
these classes.

From Figs. 6, 9 and 10, we draw the following conclusions: 1) Comparing Figs. 9(a), 10(a) with Fig. 6(a), it is confirmed
that the discrepancies of the ECG feature spaces in different databases are much more significant than those in different
datasets of the same database. There is consistent with the performance of the non-adaptation method, as shown in Table 9.
The greater the discrepancy in the feature spaces between the two domains, the lower the performance of the non-
adaptation model. 2) From (b) !(c) of Figs. 9 and 10 respectively, our adaptation model obviously alleviates the misalign-
ment of category distributions between the two domains to some extent. 3) From (c) in Figs. 6, 9 and 10, the representation
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Fig. 5. Domain adaptation task: DS1! DS2. The classification performance of the non-adaptation, adversarial adaptation, and our adaptation model on the
DS2. We observe that our unsupervised adaptation algorithm performs better.

Fig. 6. Domain adaptation task: DS1 ! DS2. We confirm the effects of our algorithm on the DS2 via using the t-SNE [46] to visual the feature
representations. Red, blue, green and black represent N, V, S and F respectively. The symbol � represents the source domain sample, and the symbol �
denotes the target domain sample, as shown in the chart.

Table 9
The overall accuracy of various methods in different domain adaptation tasks.

Method DS1-DS2 ARDB-INCART ARDB-LTDB

Non-adaptation 93.8% 78.5% 52.2%
Adversarial adaptation 94.8% 92.9% 79.5%

Our adaptation 95.7% 96.7% 90.8%

Fig. 7. Domain adaptation task: ARDB! INCART. The classification performance of the non-adaptation, adversarial adaptation, and our adaptation model
on the INCART. We observe that our unsupervised adaptation algorithm performs better.
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Fig. 8. Domain adaptation task: ARDB! LTDB. The classification performance of the non-adaptation, adversarial adaptation, and our adaptation model on
the LTDB. We observe that our unsupervised adaptation algorithm performs better.

Fig. 9. Domain adaptation task: ARDB ! INCART. We confirm the generalization of our model on the INCART via using the t-SNE to visual the feature
representations. Red, blue, green and black represent N, V, S and F respectively. The symbol � and � represent samples from source and target domain,
respectively.

Fig. 10. Domain adaptation task: ARDB! LTDB. We confirm the generalization of our model on the LTDB via using the t-SNE to visual the obtained feature
representations. Red, blue, green and black represent N, V, S and F respectively. The symbol � and � represent samples from source and target domain,
respectively.
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spaces of the two domains in different domain adaptation tasks are aligned, so that the pre-trained heartbeat classifier on the
source domain performs well on the target domain. In conclusion, we confirm the generalization of our model.

4.4.4. The hyperparameters of our method
The hyper-parameters of the model are the parameters that control the training process. They determine the properties of

the constructed specific domain adaptation task. Therefore, they have an indirect impact on the features extracted by the
network. In this study, the hyperparameters, including batch size, the number of iterations, learning rate decay, the weights
of the semantic alignment loss function and the domain confusion loss function, are discussed in the domain adaptation
task: DS1-DS2.

Batch size: To analyze the impact of batch size on the performance, Fig. 11 shows how the overall accuracy of our model
changes with the batch size. With the increasing batch size, the overall accuracy of the model does not change significantly.
Only when the batch size is 512, the overall accuracy of the model decreases significantly. Therefore, it is inferred that the
effect of batch size on the model is relatively limited. At the same time, the batch size of 256 is a suitable choice for the over-
all accuracy and avoiding over-fitting.

The number of iterations and learning rate decay: To analyze the impact of whether with the learning rate decay for
training the model, Fig. 12 shows the variation trend of train loss with or without learning rate decay as the number of iter-
ations increases in the pre-train stage and the domain adaptation stage, respectively. From Fig. 12, we observe that compared
with the model without learning rate decay, the learning rate with decay helps to train the model relatively fast and stable.

Weight factors: Fig. 13 shows the influence of different combinations of weight factors in the loss function on the overall
performance. When the weight factor wf of the model fusion loss function and the weight factor ws of the model semantic
loss function are set to wf ¼ 0:001;ws ¼ 0:001

� �
; wf ¼ 0:001;ws ¼ 0:01
� �

; wf ¼ 0:001;ws ¼ 0:1
� �

; wf ¼ 0:01;ws ¼ 0:001
� �

;

wf ¼ 0:01;ws ¼ 0:01
� �

; wf ¼ 0:01;ws ¼ 0:1
� �

; wf ¼ 0:1;ws ¼ 0:001
� �

; wf ¼ 0:1;ws ¼ 0:01
� �

, and wf ¼ 0:1;ws ¼ 0:1
� �

, we
evaluate the overall accuracy of our model. As shown in Fig. 13, when the weight factors are set to wf ¼ 0:01;ws ¼ 0:1

� �
,

Fig. 11. The effect of batch size on the classification performance.

Fig. 12. The effect of learning rate decay on the train loss in the pre-training and adaptation phase.
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Fig. 13. The effect of weight factors wf and ws on the classification performance.
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the overall accuracy of our model is the highest. When wf ¼ 0:01, the overall accuracy of our model fluctuates slightly, and
the overall accuracy is relatively high compared with other options of 0.1 or 0.001.
5. Conclusion

This paper presents an unsupervised semantic-aware adaptive feature fusion network for inter-subject arrhythmia detec-
tion. We view the discrepancies of ECG signals from diverse individuals as domain shifts. Prior unsupervised adversarial
adaptation methods in the context of arrhythmia detection ignore the multi-level pattern characteristics and semantic infor-
mation of ECG signals. Our proposed method considers the multi-perspective representations and semantic-aware informa-
tion of ECG signals from the two domains. To be specific, we employ a multi-perspective adaptive weight feature fusion
module for better extracting deep representations from the two domains and incorporate the category information between
two domains in the process of domain adaptation. Our method achieves satisfactory performance and has a great reference
advantage in diagnosing ECG signals from diverse sources. Besides, we confirm the generalization capability of our model on
the benchmarks ARDB, INCART, and LTDB. Further, we consider some influential factors of the model such as batch size,
weight factors, and so on. The experimental results show that the hyperparameters of the model results are suitable.

As for future work, the concept of our unsupervised semantic-aware adaptation can be generalized to other meaningful
medical scenarios, such as computer-aided obstructive sleep apnea detection and intelligent annotation. Another potential
application is anomaly detection in industry. Since the data distribution may change across different equipment and time,
the concept of our approach enables efficient anomaly detection with only unlabeled data that can be collected easily during
the working period. Besides, lightweight deep learning models for mobile or other embedded applications have a far-
reaching impact on applications. In the future, efforts will be made to explore the application of domain adaptation technol-
ogy in the lightweight medical field.
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