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Temporary emergency medical service center provides an expeditious and appropriate medical treatment for injured patients 

in the post-disaster. As part of the first responders in quick response to disaster relief, temporary emergency medical service 

center plays a significant role in enhancing survival, controlling mortality and preventing disability. In this study, the final 

patient mortality risk value (injury severity) caused by both initial mortality risk value and travel distance (travel time) is 

considered to determine the location-allocation of temporary emergency medical service centers. In order to improve effective 

rescue task in post-disaster, two objectives of models are developed. The objectives include minimize the total travel time 

and the total mortality risk value of patients in the whole disaster area. Then, genetic algorithm with modified fuzzy C-means 

clustering algorithm is developed to decide locations and allocations of temporary emergency medical service centers. 

Illustrative examples are given to show how the proposed models optimize the locations and allocations of temporary 

emergency medical service centers and handle post-earthquake emergencies in the Portland area. Furthermore, comparisons 

of the results are presented to show the advantages of the proposed algorithm in minimizing the total travel time and the total 

mortality risk value for temporary emergency medical service centers in disaster response. 
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1. INTRODUCTION 

Quick and timely location-allocation of temporary emergency medical service (EMS) centers to the urgent needs of medical 

treatment in disaster areas is a significant issue for relieving the serious situation. The performance of temporary EMS center 

in the disaster area relies on the limited transportation and the medical resources. Besides, the most important and expeditious 

duties of the society mainly are rescuing human lives and helping all those injured patients who require medical attendance 

through life-saving operations (Badal, Vázquez-Prada et al. 2005). In this sense, a number of temporary EMS centers should 

be considered and located in the reasonable locations to satisfy the urgent needs of emergency recovery, reducing mortality 

and preventing health deterioration (Alsalloum and Rand 2006). On the other hand, many research show that higher mortality 

risk are significantly associated with higher injury severity scores (Baker, o'Neill et al. 1974, Deng, Tang et al. 2016, Gu, 

Zhou et al. 2016, Le, Orman et al. 2016). The injury severity should be considered as another critical factor to decide the 

survival of patients. Therefore, a feasible solution should be proposed to tackle multiple temporary EMS centers location-

allocation problem from the perspectives of satisfying medical treatment care demands (Peña-Mora, Chen et al. 2010). 

In the immediate aftermath of a disaster, a robust system for EMS should be established to decrease the travel time of 

injured patients and emphasize the priority of patient with higher mortality risk. At the scene of disaster, the temporary EMS 

center serves as a field hospital in the disaster area to enhance survival, control mortality and prevent disability (Kobusingye, 

Hyder et al. 2006). These temporary EMS centers are equipped with advanced utility vehicles and emergency medical 

equipment such as mobile emergency room and mobile emergency bed (Yoo, Park et al. 2003) and some other devices. In 

order to improve the performance of temporary EMS centers in hasty response to disaster relief, the location of the EMS 

centers and the allocation of the resources should be carried out effectively and efficiency. 

There are two objectives in this study. The first one is to minimize the total travel time and the second one is to minimize 

the total mortality risk value of patients. The location-allocation of temporary EMS centers is a generalized multi-Weber 

problem, which is also known as an uncapacitated multi-facility location-allocation problem (MFLP) stated by Copper 

(Cooper 1963), and the problem can be interpreted as an enumeration of the Voronoi partitions of the customer set, which 

has been proven to be a NP-hard problem (Megiddo and Supowit 1984, Bischoff, Fleischmann et al. 2009). 
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In this study, we consider demand locations, travel distance, and available number of temporary EMS centers. Demand 

locations are composed of patient locations and injury severities triggered from the disaster. Patient locations and injury 

severities are known from civilian reporting system or local emergency management office. The Manhattan distance is used 

to approximately express the route distance between the injured patient and the temporary EMS center. Management of 

temporary EMS center in such an environment requires the patient to go to a designated temporary EMS center. And these 

temporary EMS centers are responsible for all emergency medical treatment task because all of the hospitals are damaged in 

the disaster. 

The contents of the paper are organized in the following order. Section 2 provides the literature review of related works. 

In Section 3, the two main models formulations, proposed methodologies and process are provided. The data set is described 

in Section 4. Then, the experimental examples and results are presented and discussed in Section 5. Finally, Section 6 

concludes this study with the contributions and further directions. 

 

2. LITERATURE REVIEW 

 

In this section, we present a literature review of relevant works in temporary EMS systems. Given the occurrence of a large-

scale disaster emergency, a number of temporary EMS centers need to be applied to relieve the impact of the emergency 

disaster because EMS center is the first safety measure to provides medical treatment for people who have encountered 

emergency injuries. In this sense, the goal of temporary EMS centers location-allocation problem is to determine the locations 

of facilities to serve a given set of customers optimally (Esnaf and Küçükdeniz 2009).  

In the past, quantities of methods have been proposed for solving various MFLPs. Jia et al. (Jia, Ordóñez et al. 2007) 

analyzed the characteristics of large-scale emergencies and proposed a general facility location model that was suited for 

large-scale emergencies. This general facility location model can be cast as a set covering model, a P-median model or a P-

center model, and each of them suited for different needs in large-scale emergencies. Araz et al. (Araz, Selim et al. 2007) 

developed a multi-objective covering-based emergency vehicle location model considering the objectives of maximization 

of the population covered by one vehicle, maximization of the population with backup coverage and increasing the service 

level by minimizing the total travel distance from locations at a distance bigger than a pre-specified distance standard for all 

zones. Coskun and Erol (Coskun and Erol 2010) presented an integer optimization model to decide locations and types of 

service stations, regions covered by these stations under service constraints in order to minimize the total cost of the overall 

system. Sorensen and Church (Sorensen and Church 2010) developed a hybrid model, designated the local reliability-based 

maximum expected covering location problem, which combined the local-reliability estimates of maximum availability 

location problem with the original maximum expected coverage goal of maximum expected covering location problem. Başar 

et al. (Başar, Çatay et al. 2011) proposed a Tabu Search approach to solve the multi-period location planning problem of 

EMS stations. Hosseini and Ameli (Hosseini and Ameli 2011) presented a bi-objective mathematical model for the emergency 

services location-allocation problem on a tree network considering maximum distance constraint. Fares (Fares 2014) 

investigated the prospects of integrating data mining techniques and GIS simulation modeling in developing an innovative 

approach for modeling EMS systems, and a fuzzy K-means method was used in conjunction with GIS to model an EMS 

system. Chanta et al. (Chanta, Mayorga et al. 2014) proposed three bi-objective covering location models that directly 

considered fairness via a secondary objective in order to balance the level of first-response ambulatory service provided to 

patients in urban and rural areas by locating ambulances at appropriate stations. Chen and Yu (Chen and Yu 2016) applied 

integer programming and node-based K-medoids algorithm for location planning of temporary EMS facilities in disaster 

response. 

A MFLP is defined as a special clustering problem if the sets of customers served by the same facility are considered 

as clusters (Küçükdeniz and Büyüksaatçi 2008) where K-means (Zhou and Lee 2017) and fuzzy C-means (FCM) clustering 

methods are widely used. Žalik (Žalik 2006) proposed that FCM was used to minimize the mean squared distance from each 

data point to its nearest center. Sheu (Sheu 2006, Sheu 2007) developed different versions of a hybrid fuzzy clustering method 

to group the customer order demands. Esnaf and Kucukdeniz (Esnaf and Küçükdeniz 2009) presented a fuzzy clustering-

based hybrid method for a MFLP which assumed that the capacity of each facility was unlimited. Ozdamar and Demir 

(Ö zdamar and Demir 2012) described a multi-level clustering algorithm that grouped demand nodes into smaller clusters at 

each planning level, enabling the optimal solution of cluster routing problems. Chen et al. (Chen, Yeh et al. 2014) considered 

the Euclidean distance in seeking of potential locations of temporary EMS facilities by clustering EMS demands previously. 

Moreover, heuristic algorithms are widely used for various EMS facility location models. Jaramillo et al. (Jaramillo, Bhadury 

et al. 2002) built a genetic algorithm (GA) algorithm which was tested on two standard data sets. The solutions obtained from 

GA were slightly better, compared with a Lagrangian heuristic followed by a substitution procedure.  

In order to improve the performance of clustering algorithm, the combination of the clustering algorithm and GA was 

used to achieve data clustering. And genetic algorithm clustering was the algorithm that achieves data clustering by genetic 

algorithm (Ou, Cheng et al. 2004). Many research used GA with the FCM algorithm to assign patterns or data into different 
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clusters for soft partitioning. Ding and Fu (Ding and Fu 2016) proposed a kernel-based fuzzy C-means (KFCM) to optimize 

FCM clustering result based on the GA optimization. In the algorithm, the improved adaptive GA is used to optimize the 

initial clustering center firstly, and then the KFCM algorithm is availed to guide the categorization, so as to improve the 

clustering performance of the FCM algorithm. Yang et al. (Yang, Kuo et al. 2015) proposed a non-dominated sorting genetic 

algorithm using fuzzy membership chromosome for categorical data clustering based on K-modes method which combined 

fuzzy genetic algorithm and multi-objective optimization to improve the clustering quality on categorical data. 

From the research above, we can see that genetic fuzzy clustering algorithm (Gong and Guo 2007) combined the 

advantages of GA and FCM to overcome the defect that FCM was sensitive to the noise of isolated data and the initial 

clustering center. And FCM enhanced the local search capabilities of GA, which had a good effect on the clustering result. 

In this study, a GA with modified FCM clustering algorithm (GA-MFCM) is proposed to tackle the multi-temporary EMS 

center location-allocation problem in disaster area. Patients are assigned to uncapacitated temporary EMS centers considering 

their geographical locations and final mortality risk value. We first have patient locations and injury severities. Then, travel 

distance is taken into account for each patient which worsens the mortality risk value of patient. Furthermore, each patient 

would be assigned to a single temporary EMS center exactly based on the biggest membership value, which is used to split 

demands into several groups. Finally, each group is considered as a single facility location problem. Therefore, patients are 

grouped by GA-MFCM in respect to individual mortality risk and geographical location. 

 

3. PROBLEM DESCRIPTION AND METHODOLOGY 

 

The methodology for achieving the research objectives is presented in this section. First, integer programming formulations 

for multi-facility locations are presented for two different models M1 and M2. The GA-MFCM is later introduced to 

improve the objective performance. The main different between M1 and M2 is whether we take individual injury severity 

into consideration when we determine the optimal locations for temporary EMS centers. 

 
2.1 Problem Description 

The model (M1) is a multi-facility location problem, where the set of facility locations depends on the locations of patients. 

The objective of M1 is to minimize the total travel time. In the model, given the total number of patients 𝐿, the parameter 𝐾 

indicates the number of temporary EMS centers to be established. In the model, |𝑃𝑙𝑥 −
∑ 𝑤𝑙𝑘𝑃𝑙𝑥

𝐿
𝑙=1

∑ 𝑤𝑙𝑘
𝐿
𝑙=1

| + |𝑃𝑙𝑦 −
∑ 𝑤𝑙𝑘𝑃𝑙𝑦

𝐿
𝑙=1

∑ 𝑤𝑙𝑘
𝐿
𝑙=1

| is the 

Manhattan distance between patient 𝑃𝑙  and temporary EMS center 𝐶𝑘. 𝑉0 = 60km/h is the travel speed (Harewood 2002). 

The decision variable 𝑤𝑙𝑘  is a binary variable, which represents assignment of patient 𝑃𝑙  and temporary EMS center 𝐶𝑘.  

 

Model M1: 
 

Min ∑ ∑ 𝑤𝑙𝑘 ∙
|𝑃𝑙𝑥 −

∑ 𝑤𝑙𝑘𝑃𝑙𝑥
𝐿
𝑙=1

∑ 𝑤𝑙𝑘
𝐿
𝑙=1

| + |𝑃𝑙𝑦 −
∑ 𝑤𝑙𝑘𝑃𝑙𝑦

𝐿
𝑙=1

∑ 𝑤𝑙𝑘
𝐿
𝑙=1

|  

𝑉0

𝐿

𝑙=1

𝐾

𝑘=1

 (1) 

s.t. 

∑ 𝑤𝑙𝑘

𝐾

𝑘=1

= 1         ∀ 𝑙 ∈ {1,2, … , 𝐿} (2) 

∑ 𝑤𝑙𝑘

𝐿

𝑙=1

> 0         ∀ 𝑘 ∈ {1,2, … , 𝐾} (3) 

𝑤𝑙𝑘 = {
1 if 𝑃𝑙  is assigned to 𝐶𝑘      ∀ 𝑙 ∈ {1,2, … , 𝐿}, 𝑘 ∈ {1,2, … , 𝐾}

0 otherwise
 (4) 

 

The following model (M2) is also a multi-facility location problem, where the set of facility locations depends on the 

locations and mortality risk value of patients. The objective of M2 is to minimize the total mortality risk value. In the model, 

|𝑃𝑙𝑥 − ∑
𝑤𝑙𝑘∙𝑀𝑙𝑘

𝐼

∑ 𝑤𝑙𝑘∙𝑀𝑙𝑘
𝐼𝐿

𝑙=1
∙ 𝑃𝑙𝑥

𝐿
𝑙=1 | + |𝑃𝑙𝑦 − ∑

𝑤𝑙𝑘∙𝑀𝑙𝑘
𝐼

∑ 𝑤𝑙𝑘∙𝑀𝑙𝑘
𝐼𝐿

𝑙=1
∙ 𝑃𝑙𝑦

𝐿
𝑙=1 |  is the Manhattan distance between patient 𝑃𝑙  and temporary 

http://www.sciencedirect.com/science/article/pii/S0925231215017658
http://www.sciencedirect.com/science/article/pii/S0925231215017658
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EMS center 𝐶𝑘. And the parameter 𝑀𝑙𝑘
𝐼  is the initial mortality risk value of patient 𝑃𝑙  assigned to temporary EMS center 𝐶𝑘. 

Parameter 𝛼 = 0.02 is a coefficient (Nicholl, West et al. 2007).  

 

Model M2: 

 

Min ∑ ∑ 𝑤𝑙𝑘 ∙ 𝑀𝑙𝑘
𝐼 ∙ [1 + 𝛼 ∙ (|𝑃𝑙𝑥 − ∑
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𝐼
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s.t. 

 

∑ 𝑤𝑙𝑘

𝐾

𝑘=1

= 1         ∀ 𝑙 ∈ {1,2, … , 𝐿} (6) 

∑ 𝑤𝑙𝑘

𝐿

𝑙=1

> 0        ∀ 𝑘 ∈ {1,2, … , 𝐾} (7) 

𝑤𝑙𝑘 = {
1 if 𝑃𝑙  is assigned to 𝐶𝑘           ∀ 𝑙 ∈ {1,2, … , 𝐿}, 𝑘 ∈ {1,2, … , 𝐾}

0 otherwise
 (8) 

 

where objective function (1) minimizes the total travel time of injured patients and objective function (5) minimizes the total 

mortality of risk value of patients. Constraints (2) and (6) determine that one patient can only be assigned to a temporary 

EMS center in M1 and M2 respectively. Constraints (3) and (7) guarantee that at least one patient 𝑃𝑙  should be assigned to 

temporary EMS center 𝐶𝑘. Constraints (4) and (8) are decision variables in M1 and M2 respectively. 

 

3.2 Modified FCM Algorithm 

The FCM clustering algorithm is developed by Dunn (Dunn 1973), and later on improved by Bezdek (Bezdek and Dunn 

1975). In the beginning of the algorithm, the number of clusters should be pre-determined. Then, the algorithm tries to assign 

each of the data points to one of the clusters. The difference between FCM and K means clustering algorithm is that FCM 

does not decide the absolute membership of a data point to a given cluster and its main procedures are the calculation of 

membership degree and the update of cluster centers, which starts with two and designated. Hence, data points are allowed 

to belong to several clusters with different degrees of membership. The membership degree is used to represent the extent to 

belong to each cluster, and this information is also used to update the cluster centers. The FCM can be seen as the fuzzified 

version of K-means algorithm and is based on the minimization of an objective function called C-means function (Bezdek 

and Dunn 1975, Kenesei, Balasko et al. 2006). 

In this study, a modified FCM clustering algorithm based on FCM clustering algorithm is proposed to tackle this multi-

temporary EMS center location-allocation problem considering patient’s geographical locations and initial mortality risk 

value. The modified FCM is different from the classical FCM because it introduces parameter 𝑀𝑙𝑘
𝐼 , initial mortality risk value, 

to calculate C-means function and update temporary EMS centers.  

For the modified FCM clustering algorithms, there are three input parameters needed to run this function including the 

number of clusters 𝐾; the fuzziness exponent 𝑚> 1; the termination tolerance 𝜙> 0. Given the data points 𝐿 that includes 

geographical X and Y coordinates and initial mortality risk value. And the algorithm tracks the following steps. 

3.2.1 FCM function 

The minimization of an objective function called FCM function: 

𝐽 = ∑ ∑ 𝑢𝑙𝑘 ∙ 𝑀𝑙𝑘
𝐼 ∙ 𝐷(𝑃𝑙 ,𝐶𝐾)

𝐿

𝑙=1

𝐾

𝑘=1

 (9) 

Here, 𝐶𝐾 is the center vector; 𝑢𝑙𝑘 is the degree of membership for patient 𝑃𝑙  in temporary EMS center 𝐶𝑘; the norm 

𝐷(𝑃𝑙 ,𝐶𝐾) which is the Manhattan distance measures the similarity (or closeness) of the patient 𝑃𝑙  to the center vector 𝐶𝐾. Note 

that, in each iteration, the algorithm maintains a center for each of the clusters.  
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3.2.2 Degree of membership 

For a given patient 𝑃𝑙, the degree of membership to the cluster 𝐶𝑘 is calculated as follows: 

 

𝑢𝑙𝑘 =
1

∑ (
 𝐷(𝑃𝑙 ,𝐶𝑘)

 𝐷(𝑃𝑙 ,𝐶𝑞)
)

2

𝑚−1
𝐾
𝑞=1

 
(10) 

 

where, 𝑚 is the fuzziness coefficient, and the center 𝐶𝑘(𝐶𝑘𝑥 , 𝐶𝑘𝑦) is calculated as follows: 

 

𝐶𝑘𝑥 =
∑ (𝑢𝑙𝑘)𝑚 ∙ 𝑀𝑙𝑘

𝐼 ∙ 𝑃𝑙𝑥
𝐿
𝑙=1

∑ (𝑢𝑙𝑘)𝑚𝐿
𝑙=1 ∙ 𝑀𝑙𝑘

𝐼  (11) 

  

𝐶𝑘𝑦 =
∑ (𝑢𝑙𝑘)𝑚 ∙ 𝑀𝑙𝑘

𝐼 ∙ 𝑃𝑙𝑦
𝐿
𝑙=1

∑ (𝑢𝑙𝑘)𝑚𝐿
𝑙=1 ∙ 𝑀𝑙𝑘

𝐼  (12) 

 

In the equation above, 𝑢𝑙𝑘 is the value of the degree of membership calculated in the previous iteration; 𝑀𝑙𝑘
𝐼  is initial 

mortality risk value. Note that at the start of the algorithm, the degree of the membership for the data point 𝑃𝑙  to the cluster 

𝐶𝑘  is initialized with a random value  𝜗𝑙𝑘 , 0 ≤ 𝜗𝑙𝑘 ≤ 1 , such that  ∑ 𝑢𝑙𝑘 = 1𝐾
𝑘=1 . The fuzziness coefficient 1 < 𝑚 < ∞ 

measures the tolerance of the required clustering.  

 

3.2.3 Termination condition 

The required accuracy of the objective function value 𝐽 determines the number of iterations completed by the FCM clustering 

algorithm. This measure of accuracy is calculated using 𝐽 from one iteration to the next.  

If we represent the measure of accuracy iteration 𝑛 with 𝐽𝑛, we calculate termination tolerance value ϕ as follows: 

 

ϕ = |𝐽𝑛+1 − 𝐽𝑛|  (13) 
 

 

3.3 GA-MFCM 

The FCM based on the objective function is widely applied because of its strong ability of local search and its fast convergence 

speed. However, FCM algorithm has two defects (Ding and Fu 2016). The first one is that the sum of the membership degree 

for all of the categorizations, which makes it sensitive to the noise and isolated data. The second one is that FCM is sensitive 

to the initial clustering center and easy to converge to a local extremum.  

Aim at the problems existed in the FCM clustering algorithm, a modified FCM is proposed to optimize FCM clustering 

by changing the FCM function and updating the center vector. On the other hand, GA is global, parallel, stochastic search 

methods, founded on Darwinian evolutionary principles. During the last decade GA has been applied in a variety of areas, 

with varying degrees of success (Ding and Fu 2016). In this sense, we develop GA-MFCM which is combined of the GA and 

modified FCM clustering algorithm. Then a center-based string encoding, nonlinear ranking select measurement, adaptive 

crossover and mutation strategy (Wikaisuksakul 2014) are employed in GA-MFCM. In the GA-MFCM algorithm, the 

adaptive GA is used to optimize the clustering center and MFCM algorithm provides the categorization of the data, so as to 

improve the result of clustering algorithm. 

Fitness is the standard to judge and evaluate the individual. The final criteria are the maximum evolution generation or 

the average fitness convergence. Genetic operators that are responsible for the search process are detailed in the following 

parts. 

3.3.1 Chromosome Design 

FCM is easy for cluster centers to fall into local extreme points. Thus, in this study, cluster centers coding method is used to 

represent the chromosome, which is center-based string encoding for the clustering centers. Firstly, each individual of cluster 

centers is arranged in the chromosome and each gene contains the center location information. We use a letter with index 



Gao et al. A Hybrid Genetic Algorithm For Multi-Emergency Medical Service Center 

 

668 

 

number to present the each of individual cluster centers. If there are 𝐾 cluster centers, each cluster center is called a gene and 

index number goes from 1 to 𝐾 (Figure 1). 

 

 
 

Figure 1. Center-based string encoding for cluster centers 
 

For a given number of cluster centers 𝐾, we have cluster vector {𝐶1,  𝐶2, …  𝐶𝑘 … 𝐶𝐾}. And each gene 𝐶𝑘 in chromosome 

has geographical X coordinate 𝐶𝑘1 and Y coordinate 𝐶𝑘2. 

3.3.2 Fitness function 

In a modified FCM clustering algorithm, the results of clustering are measured by the objective function.  

And it is small when the result is good. The objective function is: 

 

ℎ = ∑ ∑ 𝑤𝑙𝑘 ∙ 𝑀𝑙𝑘
𝐼 ∙ 𝛼 ∙ (|𝑃𝑙𝑥 − ∑

𝑤𝑙𝑘 ∙ 𝑀𝑙𝑘
𝐼

∑ 𝑤𝑙𝑘 ∙ 𝑀𝑙𝑘
𝐼𝐿

𝑙=1

∙ 𝑃𝑙𝑥

𝐿

𝑙=1

| + |𝑃𝑙𝑦 − ∑
𝑤𝑙𝑘 ∙ 𝑀𝑙𝑘

𝐼

∑ 𝑤𝑙𝑘 ∙ 𝑀𝑙𝑘
𝐼𝐿
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∙ 𝑃𝑙𝑦

𝐿
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|)

𝐿
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𝐾
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 (14) 

 

𝑤𝑙𝑘 = {
1 if 𝑢𝑙𝑘 = max(𝑢𝑙1, 𝑢𝑙2, … , 𝑢𝑙𝑘 , … , 𝑢𝑙𝐾)          ∀ 𝑙 ∈ {1,2, … , 𝐿}, 𝑘 ∈ {1,2, … , 𝐾}

0 otherwise
 

(15) 

  

In genetic algorithm, fitness is the standard to judge and evaluate the individual. The individual with bigger fitness value 

is finer and has a greater probability to survive. So the reciprocal objective function is considered as the fitness function to 

evaluate that an evolutionary individual is excellent or inferior. The fitness formulation is calculated as follows:  

 

𝑓 =
108

1 + ℎ
 (16) 

 

3.3.3 Genetic operator 

(1) Selection operator 

The constant ratio selection method is adopted to choose some chromosomes to undergo genetic operations. In order to avoid 

the current best individual being destroyed by crossover or mutation operation, the optimal preservation strategy is taken in 

this paper. In other words, the fittest individual will be selected among the certain number 𝑆 of random selected individuals, 

which indicates that the fitter the individual, the higher the probability to survival. Although one individual has the highest 

fitness, there is no guarantee that it can be selected. 

 

(2) Crossover operator 

We generates a random number 𝑝 between [0, 1], if 𝑝 < 𝑃𝑐 (𝑃𝑐 is a given crossover probability), then two patients implement 

crossover and generate two new children in each time. The crossover operator adopted in GA-MFCM is single-point crossover 

operator. A random integer number 𝑘 belonging to [1, 𝐾-1] is generated, which is considered as the crossover point. The 

crossover process is shown in the Fig. 2. 

 

 
 

Figure 2. Crossover operation for two individuals 
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(3) Mutation operator 

Each individual generates a random number 𝑞  between [0, 1], if 𝑞 < 𝑃𝑚  (𝑃𝑚  is a given mutation probability), then the 

chromosome mutates. Before the mutation operator, an integer 𝑘 between [1, 𝐾] is generated in advance, then a random 

geographical location 𝐶𝑘
∗(𝐶𝑘1

∗ , 𝐶𝑘2
∗ ) is used to replace the 𝑘th gene. The mutation process is shown in the Fig. 3. 

 

 
 

Figure 3. Mutation operation for one individual 

 

3.3.4 GA-MFCM clustering algorithm steps 

The flowchart of GA-MFCM is illustrated in the Fig. 4 and GA-MFCM tracks the following steps. 

Step 1: Set the parameters 

Set the number of clusters 𝐾; population number 𝐿 with injury severities; generation number 𝐺; crossover probability 𝑃𝑐; 

mutation probability 𝑃𝑚; fuzziness value 𝑚 and termination tolerance value 𝜀. 

 

Step 2: Population and membership initialization. 

For each individual, we generate random 𝐿 × 𝐾 numbers, and the degree of the membership 𝑢𝑙𝑘 for data point 𝑃𝐾  to center 

vector 𝐶𝐾 is initialized with a random value 𝜗𝑙𝑘 , 0 ≤ 𝜗𝑙𝑘 ≤ 1. 
 

𝑢𝑙𝑘 =
𝜗𝑙𝑘

∑ 𝜗𝑙𝑡
𝐾
𝑡=1

 (17) 

 

Step 3: Set the individual chromosome  

In the practical application, each individual has a chromosome with 𝐾 cluster centers which are stored in a one dimension 

array. Thus, each row index number of the array can be regard as a gene of cluster center from 1 to  𝐾. 

 

Step 4: Genetic operation. 

Each individual with 𝐾 serial index numbers is considered as the cluster center. Then, fitness function value can be calculated 

for each of individuals. Genetic operations, including selection, crossover and mutation operator are used to improve genetic 

diversity, which avoids falling into local optimal value. 

 

Step 5: Optimal preservation. 

After the mutation operation of each generation, fitness function value which is based on FCM clustering algorithm is 

calculated for each of individuals. And individuals with higher fitness function value are more likely to be selected for survival, 

and the worst individuals are replaced by the better ones. 

 

Step 6: Termination condition  

Termination condition of testing adopts the combination of MFCM clustering algorithm and GA. If it is satisfied then the 

evolution stops, otherwise go to step 3. In this study, the termination consideration is the number of evolutionary generations 

𝐺 or the variance of the total individual fitness function value 𝜀. 𝑃𝑂𝑃C is the number of population. 

 

𝜀 = ∑ (𝑓𝑝 −
∑ 𝑓𝑝

𝑃𝑂𝑃C
𝑝=1

𝑃𝑂𝑃C

)

2𝑃𝑂𝑃C

𝑝=1

 (18) 

http://www.baidu.com/link?url=tZosjjRtkRXZhUy56NL9DtNAgvMHaWjDSWwQAGNnPAMyJPL_ELX9c9gjCBGzETg3


Gao et al. A Hybrid Genetic Algorithm For Multi-Emergency Medical Service Center 

 

670 

 

 
 

Figure 4. Flowchart of GA-MFCM 

 

Step 7: Output result 

If the termination condition is satisfied, the best individual generated by genetic algorithm is obtained. Then, the cluster 

centers are obtained by decoding that individual. 
 
4. DATA SET 

 

In this study, a specific disaster type is taken into consideration because the types of disaster result in different outcomes of 

damages and casualties. Here we consider an earthquake as our post-disaster environment and a specific level of earthquake 

leads to a certain number of casualties. For instance, the earthquake magnitude can destroy almost every facility of the city. 

The data set we used in the computational experiments is a real-world data of Portland (America) which has a population 

of 1.6 million and provides people geographical coordinates locations (Marathe and Eubank). As shown in the Fig. 5 (143 ×
130 (km2)), we transform the earth coordinate of Portland into 2D coordinate. Then, the proposed methodology is applied 

in this area considering patient’s injury severities and geographical locations.  
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Figure 5. Geographical location of Portland (America) 

 

We use the conclusion that the total deaths and injured people are log-linear with the earthquake magnitude in a certain 

area when the depth ℎ ≤ 60km. The proposed method is based on a quantitative model that combines earthquake magnitude S 

and population density 𝑃𝐷 to calculate the number of human losses 𝑁𝑆 in regression equations (SAMARDJIEvA and OIKE 

1992, Badal, Vázquez-Prada et al. 2005). 

 

log𝑁𝑆(𝑃𝐷) = 𝜅(𝑃𝐷) ∙ 𝑆 + 𝜂(𝑃𝐷) (19) 

  

where the coefficients 𝜅 and 𝜂 are regression parameters that depend on the average population density of the affected area. 

Here, 𝜂 = −3.15 and 𝜅 = 0.97 according to the average population density of Portland (𝑃𝐷 > 200people/km2). And the 

expected number of injured people 𝑁𝐼 can be calculated by the method of Christoskov and Samardjieva (Christoskov and 

Samardjieva 1984). 

 

log(𝑁𝐼 𝑁𝑆⁄ ) = 𝜏 ∙ 𝑆 + 𝜑 (20) 

  

where the coefficients 𝜏 = 0.21 and 𝜑 = −0.99 are parameters. Note that for a fixed earthquake magnitude 𝑆, 𝑁𝐼 is directly 

proportional to 𝑁𝑆 (Christoskov and Samardjieva 1984, Samardjieva and Badal 2002, Badal, Vázquez-Prada et al. 2005). 

When earthquake magnitude S is 7.0, the total human losses 𝑁𝑆 = 11419 that are chosen from 1.6 million people 

randomly. Then, we set the injury severity threshold value 𝑇 = 6.0 of death which is given by the author. Because the injury 

severity 𝐺𝑙𝑘 approximately follows exponential distribution (Hutchinson 1976, Hutchinson 1976, Hutchinson and Lai 1981), 

the mean injury severity λ can be calculated as.  

 

λ =
𝑇

𝑙𝑛𝑁𝑆−𝑙𝑛𝑁𝐼
  (21) 
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Finally, we select 3973 injured patients who have injury severity ranging from 2.0 to 6.0 because injury severity less 

than 2.0 can hardly be life-threatening. 

Based on the injury severity, we can calculate initial mortality risk value 𝑀𝑙𝑘
𝐼  according to the following quadratic 

regressions (Weaver, Barnard et al. 2013).  

 

𝑀𝑙𝑘
𝐼 = ϱ ∙ 𝐺𝑙𝑘

2 + ν ∙ 𝐺𝑙𝑘 + ξ (22) 

  

where the coefficients ϱ, ν and ξ are regression parameters depending on the collected data. Here, ϱ = 0.07, ν = −0.33 

and ξ = 0.40 while 𝑅2 = 0.88. 

In the following experiments, the parameters of the GA-MFCM are shown in Table 1. 

 

Table 1 Parameters of the GA-MFCM in experiments 

 

Parameters Value 

Fuzziness exponent: 𝑚 2 

Initial population number: 𝑃𝑂𝑃I 50 

Next population number: 𝑃𝑂𝑃C 80 

Number of selected individuals: 𝑆 5 

Mutation probability: 𝑃𝑚 0.5 

Crossover probability: 𝑃𝑐 0.1 

Variance of fitness value: 𝜀∗ 10−5  

 

5. EXPERIMENTAL RESULTS 

 

Here, the data set is applied in M1 and M2 with two different number of clusters K=4 and K=8. And the injured patients with 

higher injury severities are given in the right side of the area because of different radius to the earthquake epicenter. In the 

experimental results, big red points stand for temporary EMS centers and small points in diverse colors stand for patients. 

Beside, small points in the same color indicate that they belong to the same cluster. 

 

5.1 Results of 𝐌𝟏 

A certain earthquake with the magnitude S = 7.0 is tested in two different number of clusters (K=4 and K=8 respectively) to 

minimize the total travel time of patients. The maximum membership of each patient corresponding to the geographical 

location is shown in Fig. 6 and temporary EMS centers maps are shown in the Fig. 7. 

 

 
 

(a) K=4 
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(b) K=8 
 

Figure 6. Maximum membership of each patient with different number of clusters in M1 

 

  
(a) K=4 (b) K=8 

 

Figure 7. Temporary EMS center maps with different number of clusters in M1 

 

5.2 Results of 𝐌𝟐 

The same data is used to find the performance of M2 in two different number of clusters (K=4 and K=8 respectively) in 

minimizing the total mortality risk value of patients. The maximum membership value of each patient corresponding to the 

geographical location is shown in Fig. 8, and temporary EMS centers maps are shown in the Fig. 9. 

 

5.3 Comparison of 𝐌𝟏 and 𝐌𝟐 

The total travel time and the total mortality risk value in first 50 generations are shown for both M1 and M2. Fig. 10 illustrates 

the total travel time per stage of generation with different number of centers in M1 and M2. Fig. 11 presents the total mortality 

risk value per stage of generation with different number of centers in M1 and M2. It is remarkable that both the total travel 

time and the total mortality risk value present decreasing trends with the growing number of centers which indicates more 

centers enable to improve the efficiency of rescue task. 

Table 2 provides detailed information for the performance of M1 and M2 under different number of temporary EMS 

centers. Geographical coordinates, generation number, the total travel time and the total mortality risk value are also given in 

the Table 2, which shows that M1 has lower total travel time than M2, whereas M1 has larger total mortality risk value than 

M2. We can find that a smaller total mortality risk value can be obtained at the expense of longer total travel time and vice 

versa. 
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5.4 Discussion 

 

5.4.1 Effects of travel time 

 

 
(a) K=4 

 

 
(a) K=8 

 

Figure 8. Maximum membership of each patient with different number of clusters in M2 
 

  
(a) K=4 (b) K=8 

 

Figure 9. Temporary EMS center maps with different number of clusters in M2 
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In order to reduce the total mortality risk value and emphasize the importance of patient with higher mortality risk, additional 

mortality risk based on initial mortality risk and travel distance is taken into account. Besides, each patient selects the 

temporary EMS center according to its maximum membership value and arrives at the temporary EMS center personally or 

by vehicle provided by local government. Because there are so many injured patients after huge earthquake that the number 

of ambulances cannot meet the demands. Finally, the location of temporary EMS center can be placed closer to the worst-hit 

areas (Fig. 9 and Table 2) to reduce the total mortality risk value. 
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Figure 10. The total travel time with different number of centers in M1 and M2 
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Figure 11. The total mortality risk value with different number of centers in M1 and M2 

 

5.4.2 Effects of the earthquake magnitude 

According to the research above, the total deaths and injured people present positive relationships with earthquake magnitude 

when the depth ℎ ≤ 60km. However, an estimation of casualties of the population in the region is a key factor to determine 

whether the emergency medical service task could be completed successfully and effectively. For example, Taiwan 

earthquake loss estimation system (TELES) (Christoskov and Samardjieva 1984, Chen, Lu et al. 2015), which provides the 

estimation of casualties of the population in the region. This is achieved by combining the EMS demands forecast in usual 

conditions and the estimated impacted demands from TELES in New Taipei City. Finally, location-allocation of temporary 

EMS centers can be resolved based on the estimation collected by TELES. 

 

5.4.3 Effects of number of temporary EMS centers 

As shown in the Table 2, more temporary EMS centers should be assigned to disaster areas while reducing the total mortality 

risk value. However, the number of temporary EMS centers cannot exceed the specific number or there will be not enough 

doctors and nurses to guarantee temporary EMS center normal operation and complete rescue medical task in collaboration 

with each other. 
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Table 2 Comparison of the total travel time and mortality risk value of each model 

Models 

 

 

Number of 

centers 𝑘 

M 1 M 2 

K=4 K=8 K=4 K=8 

𝐶𝑘𝑥 𝐶𝑘𝑦 𝐶𝑘𝑥 𝐶𝑘𝑦 𝐶𝑘𝑥 𝐶𝑘𝑦 𝐶𝑘𝑥 𝐶𝑘𝑦 

1 68.9237 85.0459 56.3154 57.7532 78.9972 69.0748 82.5230 69.0127 

2 64.8495 54.6462 71.4446 84.6345 90.4770 50.1744 74.8230 99.9354 

3 47.7250 66.5846 68.3519 52.1823 71.8424 84.4759 92.6904 53.4614 

4 68.1878 68.9337 49.0388 66.6346 67.7336 63.3490 71.6270 83.3226 

5 -- -- 79.0373 68.1365 -- -- 73.9615 39.5058 

6 -- -- 35.6238 70.1666 -- -- 75.5745 69.2376 

7 -- -- 62.1129 85.6270 -- -- 66.1018 69.8029 

8 -- -- 65.8279 68.9410 -- -- 69.6160 58.7328 

Number of 

Generations 500 1000 500 1000 

Total Travel 

Time 
729.853 526.349 1000.53 798.961 

Total Mortality 

Risk Value 
1250.437 1175.894 1175.074 1119.893 

 

5.4.4 Decision making of location and allocation 

The proposed algorithm is a self-adaptive searching method to identify the locations and allocations of temporary EMS 

centers. It combines the advantages of GA and FCM to overcome the defects that FCM is sensitive to the noise of isolated 

data and the initial clustering center which avoids falling into local extreme point easily. And FCM enhances the local search 

capabilities of GA, which has a good effect on the clustering result. Hence, GA-MFCM provides a solution for location-

allocation of temporary EMS centers decision making from the perspectives of reducing the total mortality risk value of 

temporary EMS centers. On the other hand, each patient has K degrees of membership, which enables to provide alternative 

strategy for patient. 

 

6. CONCLUSION AND FURTHER DIRECTIONS 

 

Location-allocation models are imperative in geographical modeling of health-care service. In this paper, we applied GA-

MFCM clustering algorithm to solve location-allocation of EMS centers considering the dynamic patient mortality risk and 

travel distance (travel time) in quick response to the disaster relief. Given the data of geographical location and injury severity 

in the disaster, the locations and allocations of temporary EMS centers are identified. Numerical examples showed the 

performances of the proposed algorithm in different number of centers. The performances were demonstrated on whether 

considering the initial injury severity in the disaster affected area. By comparing M1 and M2 models, the M2 model has better 

performance in reducing the total mortality risk value of temporary EMS centers and M1 is good at decreasing the total travel 

time. Besides, both the total travel time and the total mortality risk value present decreasing trends with the increasing number 

of temporary EMS centers. Furthermore, for each temporary EMS center, the location of center is inclined to the worst-hit 

areas in M2, which emphasizes the patient with higher injury severity and enables to reduce mortality. 

Finally, it is expected that the proposed model M2 can produce several benefits not only for reducing the total mortality 

risk value of temporary EMS centers, but also emphasizing the patient with higher injury severity. The proposed model has 

a highly instructive significance and time efficiency to temporary EMS centers locations and allocations decision making. 

For further research directions, we will focus on developing a robust transportation model considering traffic volumes and 

traffic congestion when the huge disaster happens, which intends to decline the travel time of patients. Additionally, 

improving the operational efficiency of temporary EMS center system by redesigning service procedure is another key factor 

to reduce the mortality and rescue time. 
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